
Received December 21, 2017, accepted January 24, 2018, date of publication January 26, 2018, date of current version March 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2798918

A Multimodal Fingerprint-Based Indoor
Positioning System for Airports
BENJAMIN MOLINA , ENEKO OLIVARES , CARLOS ENRIQUE PALAU, (Senior Member, IEEE),
AND MANUEL ESTEVE
Communication Department, Universitat Politecnica de Valencia, 46015 Valencia, Spain

Corresponding author: Benjamin Molina (benmomo@upvnet.upv.es)

This work was supported in part by the European Commission through the Door to Door Information for Airports and Airlines
Project under Grant GA 635885 and in part by the European Commission through the Interoperability of Heterogeneous
IoT Platforms Project under Grant 687283.

ABSTRACT Indoor localization techniques are becoming popular in order to provide a seamless indoor
positioning system enhancing the traditional GPS service that is only suitable for outdoor environments.
Though there are proprietary and costly approaches targeting high accuracy positioning, Wi-Fi and BLE
networks are widely deployed in many public and private buildings (e.g. shopping malls, airports, univer-
sities, etc.). These networks are accessible through mobile phones resulting in an effective commercial off-
the-self basic infrastructure for an indoor service. The obtained positioning accuracy is still being improved
and there is ongoing research on algorithms adapted for Wi-Fi and BLE and also for the particularities of
indoor environments. This paper focuses not only on indoor positioning techniques, but also on a multimodal
approach. Traditional proposals employ only one network technology whereas this paper integrates two
different technologies in order to provide improved accuracy. It also sets the basis for combining (merging)
additional technologies, if available. The initial results show that the positioning service performs better with
a multimodal approach compared to individual (monomodal) approaches and even compared with Google’s
geolocation service in public spaces such as airports.

INDEX TERMS BLE beacons, indoor location, indoor positioning, Internet of Things, Wi-Fi fingerprinting.

I. INTRODUCTION
Indoor positioning and navigation services are more and
more demanding nowadays and increasing research is being
performed from both academia and industry, as there are
a large variety of context-aware and location-based appli-
cations interested covering different fields such as secu-
rity, healthcare and tracking. Outdoor location is widely
performed via the Global Position System (GPS), but it is
not suitable for indoor environments for several reasons,
such as no line-of-sight, interference and noise, etc. [1], [2].
Some theoretical alternatives for indoor GPS have been pro-
posed in the literature [3]–[6], but they provide either no
real tests or impractical scenarios for standard users as they
require additional equipment.

Though multiple technologies have emerged specifically
in the indoor localization arena, many of them, such
as Radio Frequency Identification (RFID) or Ultra-Wide
Band (UWD), are not commonly used: special infrastruc-
ture setup is typically required with the deployment of
location sensing devices which incurs in additional costs.

Complex calibration process, moderate robustness or high
installation costs are additional general drawbacks. Unless a
high level of accuracy is mandatory, there is a common trend
in providing a flexible and low-cost positioning technology
using existing indoor infrastructure and exploiting communi-
cation and processing capabilities of users’ mobile devices.
Wi-Fi is already deployed in many private and public build-
ings (airports, shopping malls, universities, etc.) and can pro-
vide an acceptable positioning technique in terms of accuracy
and cost compared to similar systems.

Bluetooth Low Energy (BLE) sponsored by Apple is also
being deployed in many sites in form of iBeacons (small,
cheap and autonomous devices easy to install) and can also
be used as proximity and even positioning technology [7], [8].
From user’s and device’s perspective both network technolo-
gies are suitable as they are present in current user mobile
phones. In fact, people are getting used to Google maps to
self-locate not only outdoors, but also in indoor environ-
ments; Google geolocation plugin available in smartphones
is able to scan for available Wi-Fi networks to determine

10092
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-1995-4192
https://orcid.org/0000-0002-9703-2660


B. Molina et al.: Multimodal Fingerprint-Based Indoor Positioning System for Airports

indoor location and is expected to start using BLE infor-
mation in the positioning algorithm. This is clear evidence
that multimodality is gaining acceptance and is probably the
best approach to increase the accuracy and reliability for the
location estimation by exploiting all current available off-the-
self deployed networks. We have followed a similar approach
in this paper focussing on merging the information from
scanned BLE and Wi-Fi networks but we differ in the way
the process is built: our approach is based on fingerprinting
whereas Google is based on a crowdsourcing operation.

The process of fingerprinting uses empirical data to esti-
mate location and is composed of two phases. First, a radio
map of the whole location is built by collecting the mea-
sured RSSI of known locations known as calibration grid.
Second, the location of a user is estimated by comparing the
real time measured RSSI values with the radio map. From
a basic approach there is no need to model the complex
signal propagation in the area and also no need to know
the locations of the Access Points (APs). However, the first
offline phase (calibration) can be tedious depending on the
grid granularity and the area to be covered. Besides, some
adjustments are typically required in the location algorithm
in order to provide a moderate accuracy in real time envi-
ronments. Although a pretty good indoor accuracy can be
obtained in controlled environments with reduced space and
low experimental timeframes [9], [10], real living buildings
(e.g. universities, airports, etc.) require robust location algo-
rithms to provide acceptable estimations throughout time.
This paper will investigate and provide results in such open
living spaces.

There are typically two different methods for imple-
menting a positioning system: self and remote positioning.
In self-positioning, the physical location is self-determined
by the user’s device using transmitted signals from terres-
trial or satellite beacons (e.g. GPS for outdoor scenarios). The
location is known by the user and can be used by applications
and services operating on the user’s mobile device. In remote
positioning, the location is determined at the server side using
signals emitted or captured from the user device. The location
is then either used by the server in a tracking software sys-
tem, or transmitted back to the device through a data transfer
method. This second approach is typically used in commer-
cial indoor solutions as it provides a centralized management
platform to better exploit business cases. Besides, enhanced
features can be provided at server side. It is also important
to highlight that the indoor estimation is typically offered
as an indoor service to users where additional features are
relevant and help self-determining the location. For example,
whenever a user requests an indoor location estimation it
typically expects a visual result in form of a (georeferenced)
indoor map, and not just a point composed of latitude, lon-
gitude and altitude, which might not be helpful at all. Here a
good indoor map implicitly provides additional information
(e.g. stairs, elevator, toilets) allowing the user to auto-
matically correct any potential deviation in the location
algorithm’s accuracy.

TABLE 1. Overview for potential indoor technologies.

The paper is structured as follows: section 2 presents
related work considering different technologies and tech-
niques for indoor positioning specially focussing in finger-
printing mechanisms. Section 3 presents the architecture
of the system composed of three modules: map service,
POI location and the indoor module with additional sub-
modules. After that, the performance evaluation is presented
providing real results obtained from a mobile app. Finally the
paper ends with the conclusions and further work.

II. RELATED WORK
Although there are various taxonomies for indoor localization
in the literature, there is a general classification in two sep-
arate groups: those based on RF approaches and those using
other kind of technology. Among RF-based techniques one
may cite GPS, wireless local area network (including Wi-Fi
and BLE), and RFID localization. Non-RF-based techniques
may include different and alternative technologies based,
among others, on audio, visual, ultrasonic, infrared and laser
sensors. In this paper, we will primarily focus on RF-based
techniques. Table 1 summarizes main RF technologies.

Nowadays developing indoor navigation systems for the
common user is a hot topic. Researchers have explored sev-
eral alternatives of Indoor Positioning Systems (IPSs) that use
Wi-Fi signal intensity to estimate position [11]–[13]. Other
wireless technologies, such as Bluetooth [14]–[16], Ultra-
Wide Band [17], [18] and RFID [19] [20] have also been
proposed. Another innovative approach uses geo-magnetism
to create magnetic fingerprints to track position from dis-
turbances of the Earth’s magnetic field caused by structural
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TABLE 2. Positioning techniques.

steel elements in the building [21], [22]. Other alternatives
for dealing with the problem of indoor location are the
(combined) use of inertial sensors [23], [24], exploiting the
smartphone accelerometer and gyroscope to build a reliable
indoor positioning system without any infrastructure assis-
tance. This paper will focus on the use of Wi-Fi and BLE
technologies for the implementation of the indoor service.

Depending on how theRF signal is treated onemay classify
the positioning process. Table 2 summarizes a list of available
(indoor and outdoor) positioning techniques based on exter-
nal beacons.

- Cell of Origin (CoO): this mode returns the closest base
station to the user. It has normally been employed in
cellular networks with an inaccuracy of at least the size
of the cell. For better precision other technologies and
techniques are combined, such as GPS, Time of Arrival
and even some improvement algorithm [25].

- Angle of Arrival (AoA): this technique is mostly suitable
for areas with direct Line of Sight (LoS) between mobile
users and reference points. The estimation is determined
by measuring the angle between a line that runs from
the reference point to the user and vice versa with a
predefined direction [26], [27]. Though good accuracy,
the biggest drawback lies in the need of special reference
points to sense the exact direction of the received signal.

- Time of Arrival (ToA): it is based on the measurement
of the propagation delay from a user to one or more ref-
erence points [28], [29]. This technique is considerably
difficult to perform accurately and requires synchronic-
ity at clock level between user and reference points.

- Angle Difference of Arrival (ADoA) and Time Difference
of Arrival (TDoA) are similar to AoA and ToA, respec-
tively, by just changing measured values with measured
difference values. The obtained accuracy is somehow
also similar.

- Triangulation: it is a trigonometric method where the
angles of a triangle formed by three reference points
are measured. Some extensions have been proposed
for the triangulation algorithm to improve the robust-
ness [30], [31]. If distance instead of angle is measured,
the technique is called trilateration.

- Location Fingerprinting: It is a mechanism which com-
pares the Received Signal Strength (RSS) from each
wireless access point (other devices might also be pos-
sible) in the area with a set of pre-recorded values taken
from several locations. This technique is usually broken
down into two phases: offline sampling (training phase)
and online location (positioning phase). With a great
deal of calibration, this solution can yield very accurate
results. However, this process is time consuming and has
to be repeated at every new site.

In order to reduce the scope of the research we will focus
only in location fingerprinting, as it provides relatively
good results. Regarding this approach, the K-Nearest Neigh-
bours (KNN), decision tree, Bayesian classification and neu-
ral network methods are the most common techniques [32].
As they are quite different methodologies, this paper will
concentrate in KNN algorithms as they will be used in the
proposed system. The usage and comparison of other tech-
niques is considered further work.

KNN constructs distance vectors from RSSI data and cal-
culates the position of the mobile user by comparing its
fingerprint vector to the training vectors. After that, the signal
space distances are sorted. The K samples with the smallest
distances are chosen. Distance can be measured in various
ways (e.g. Euclidean, Manhattan), with slightly different
accuracies in most cases [33]. KNN is probably the most
widely used method due to its simple approach, but current
implementations often include weights in the selected K sam-
ples (WKNN) to better estimate the location by just consid-
ering that smaller error introduces larger weight. Additional
improvements on top of theWKNN algorithm have been pro-
posed in the literature. Yen et al. [34] propose a Differential
Coordinate method (DC-WKNN) to reduce potential errors
caused when calculating weights. Wang et al. [35] investigate
the impact of signal fluctuations in the positioning accuracy
and suggest the use of a Gaussian filtering pre-process as
well as a signal strength AP selection policy for the region
decision policy. Gholoobi and Stavrou [36] advocate for the
construction of the radio map of the localization environment
based on the signal fading statistics of multiple short paths,
instead of a homogenous grid.

Besides location fingerprinting mobile users can also
take advantage of present inertial sensors in their phones
(accelerometer, gyroscope, and magnetometer) [37], [38].
However, Inertial Navigation Systems (INSs) are usually
subjected to ‘‘integration drift,’’ which is the error inmeasure-
ment of acceleration and angular velocity. Since these errors
are integrated each iteration, they will be compounded into
greater inaccuracy over time. Therefore, INSs are often used
to supplement another navigation system to provide a higher
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degree of accuracy. Chen et al. [39] present a fusion algorithm
that integrates a typical Wi-Fi indoor positioning system with
a Pedestrian Dead Reckoning (PDR) system resulting in an
increased accuracy.

RFID is also a technology that can be considered to some
extent as COTS. Many of the RFID papers found in the
literature compare results with the traditional LANDMARC
algorithm [40], such as [41] and [42]. Though internally
the localization mechanisms in such papers are using some
kind of WKNN approach, the obtained results are commonly
based on reduced layouts (e.g. 3.6m x 4.8 m) to provide
high accuracy, but no result is provided for big open spaces
such as airports, which differ in form and shape significantly.
From another perspective, in contrast to Wi-Fi and BLE,
RFID is not deployed on the pilot sites used in this paper
and therefore cannot be easily considered a COTS approach
as it would require deploying an important number of
RFID readers to cover the whole airport area; furthermore,
there are some privacy issues challenging the approach as
travellers typically are reluctant to carry RFID tags and
be tracked. Such issues are investigated in the PASSME
European research project [43].

In summary, indoor positioning is a hot research topic with
plenty of technologies and algorithms being used and under
experimentation. Improved accuracy is typically obtained
when a hybrid approach is chosen combining different
techniques. However, to the best of authors’ knowledge this
combination is mainly produced between radio and inertial
systems, but not between two or more radio technologies.
This paper focuses on the combined use of Wi-Fi and BLE
and an enhanced WKNN algorithm to estimate indoor loca-
tions in public living spaces such as universities and airports.

III. SYSTEM ARCHITECTURE
In order to correctly manage indoor location there are two
additional modules to be considered if there is an aim for
providing a standalone positioning service. The first module
refers to the map service: if a user is to be graphically located
on a place, it makes sense to do it on a map. Though strictly
the feature of indoor location might involve only a name
(e.g. room A), it turns out that for every day (mobile) appli-
cations users want their location to be displayed on a map,
so that they get an overall picture of the scenario. Sometimes
it is better the name of positioning, as this feature provides a
more detailed level of accuracy. The other component to be
included as part of the overall architecture is the POI (Points
of Interest) module, as they are also a relevant piece of
information for the user at presentation level.

A. MAPS SERVICE
Valid indoor maps are typically not provided and the very
first task should start on this topic. In general terms, in public
spaces such as universities and airports, the process starts
from an architectural (CAD) map and should end into a geo-
referenced map. The georeferenced map can be of type either
rasterized or vectorial. The latter is obviously the preferred

FIGURE 1. Final shapefile example (PMI airport, Main Terminal, Floor 0).

format in order to preserve quality as the user performs zoom
in/out. The typical vectorial format for georeferenced images
are Shapefiles (SHP) which has been chosen in this paper.

The conversion from proprietary CAD formats
(e.g. DWG or DGN) to shapefile is not a one click process
and should be typically left to an expert for a professional
outcome. There are tools (e.g. ESRI’s ArcCatalog) able to
make an initial conversion, but one has to select the dif-
ferent types of entities to be considered (e.g. Annotation,
MultiPatch, Point, Polygon, Polyline) and it is not possible
to anticipate the best option for each map. Thus, a trial-and-
error approach needs to be performed in order to obtain the
best output. In any case, the resulting output is often not
clean and some additional (manual) adjustment is necessary.
Additionally, when exporting the map to shapefile format,
spatial reference information is typically lost, and spatial
adjustment is required using some background cartography:
OpenStreetMaps (OSM), Google Maps or national reference
cartography via Web Map Service (WMS). A result example
can be seen in Fig.1 for the Palma de Mallorca (PMI) airport.
All the resulting shapefiles are imported into a GIS Server
(the open source GeoServer) in order to provide all maps
through a standard WMS (Web Map Service) service.

B. POINTS OF INTEREST
It is important to include POIs as an independent module as
they provide added valuewhen deploying a location service: a
user may not only want to know its current location, but also
the location of nearby entities (POIs) without explicit need
for navigation. Regarding indoor location, and focusing on
airports, POIs are:

- Interesting places for users (e.g. restaurants, information
points)

- Special zones to be used or avoided (e.g. queues in
security checks, stairs, lifts)
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FIGURE 2. Georeferenced POIs (PMI airport, Terminal C).

- Special points to monitor for status, availability and
changing conditions (e.g. boarding gates, lifts)

Even if there are a large variety of POIs, 14 categories have
been basically identified and selected, mainly focusing on
mobility relevance, as the location service is expected to be
later integrated with an indoor navigation service. The cate-
gories are: toilets, elevators, escalators, travelators, boarding
gates, entrances, security checkpoints, check-in points, stairs,
catering, shops, information points, luggage belts, meeting
points, shuttle bus stations, car rental places, taxis, public
buses, car sharing stations and bike sharing stations. An
example for PMI is depicted in Figure 2.

POIs are described in a generic and extensible format that
includes, besides position and category, additional informa-
tion as Key-Value-Pairs (KVPs).

C. INDOOR LOCATION
The indoor positioning process involves three main actors:

- The environment itself as a series of deployed devices
able to provide or broadcast information that help esti-
mating user’s location. For indoor environments, it is
typically referred to as Wi-Fi APs or iBeacons.

- The user’s device, typically a mobile phone able to sense
the environment and collect measurements that serve
as basic input for the estimation algorithm. Once the
algorithm has been executed, the client’s device presents
the result to the user, typically on a georeferenced map.

- The server side, which performs the necessary process
(location estimation). It may also provide related and/or
additional features such as maps and POIs. In a general
sense, the server also encapsulates the business logic
defined by a company exploiting the service.

The process sequence is very simple: (1) the mobile user
senses the environments and collects Wi-Fi/BLE measure-
ments, (2) sends them to a remote server for location esti-
mation and (3) finally presents the result to the user.

Location FingerPrinting (FP) has been selected in this
paper as positioning technique. Thus, there is a need for a
FP database based on RSSI measurements for each floor from

FIGURE 3. General overview of the indoor service process.

each building/terminal. Each measurement can potentially
include any radio source that the mobile user is able to sense,
which normally maps to the use of Wi-Fi and BLE. The
mobile network radio signal (3G/4G) was also considered
initially, but provided poor results compared to Wi-Fi and
BLE in indoor environments.

Even if the main sources of information are radio sig-
nals, it is possible to include additional information of the
environment. Here we refer to the possibility of including
inertial sensors (mobile accelerometer and gyroscope) that
might help in the location estimation. Note that typically the
obtained location result is much more accurate when the user
is still (motionless) than when the user is moving (e.g. across
the terminal). Thismakes sense because there is a time needed
for collecting the measurements; if the user moves during this
interval, the ‘quality’ of the measurements are compromised
and thus the algorithm will provide a location result with less
accuracy.

The general process that involves the different tasks per-
formed to provide an indoor location service is depicted
in Fig.3. It consists of six building blocks: data model, maps,
Fingerprinting Grid, Algorithm implementation, Mobile tests
(probes) and analysis of the obtained results, which has an
impact on some of the previous processes in case an error
is detected or some enhancement is suggested. Each process
will be described in the following subsections.

1) DATA MODEL OVERVIEW
The indoor service is considered a standalone service and
therefore requires a data model to represent the different
entities involved according to its own architecture. Without
going in deep detail into the data model, some general aspects
might be highlighted in order to better understand data rep-
resentation and the relevant entities to be considered in the
architecture:

- Basic entities are floors, which is the normal scenario
where a user is located indoors. A collection of floors
represents a building (a Terminal according to airport
terminology) whereas a collection of buildings repre-
sents a zone (an airport according to airport terminol-
ogy). For each entity a management console has been
developed to add, edit or delete items.

- Measurement data is treated in two steps: raw data and
average measurements. Raw data can store as many data
(RSSI values per each detected radio signal on a specific
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location) as needed and allows performing an
independent (signal) analysis without linking to other
information available in other tables. Processed data
(measurements) represent average values that are
assigned to a specific FingerPrinting node and is there-
fore linked to other tables, and used by the positioning
algorithm.

- The FingerPrinting database is mainly composed of the
fingerprinting nodes that make the link between specific
locations on a floor with the associated RSSI average
values provided by the measurement data.

- POIs should also be represented on this model, but are
not linked to measurement data. They contain geolo-
cation and additional information, similar to overlay
georeferenced maps that are linked to floors.

2) MAPS OVERVIEW
This process has already been described in a previous section
(maps service)

3) FINGERPRINTING GRID OVERVIEW
The insertion of FingerPrinting nodes on each floor is typi-
cally a manual process. Once the maps are available, some
specific points (nodes) have to be defined where measure-
ments will be collected during the calibration phase. It is
difficult to generate the radio map automatically for several
reasons (building orientation, wall order, specific places to
omit, etc.). Besides, one has to consider that node separation
cannot be very small (neighbor nodes will get practically
the same measurements, the process may become really
though) or very high (accuracy will diminish), and the best
separation value is not always possible to anticipate.

In order to facilitate edit and management functions, a web
user interface tool was developed to place georeferenced
nodes on any available floor (containing maps). Figure 4
depicts a short portion of fingerprints in PMI. Besides, for
each node the administrator can set a radius to look for
adjacent nodes which is independently of node density. This
might be useful for the positioning algorithm in order to
reduce the target FingerPrinting space or even predict trajec-
tories. In general terms, a distance of around 5m between
nodes has been (empirically) considered as an appropriate
default value for large spaces (halls, corridors, etc.).

Each FingerPrinting node collects not only Wi-Fi but also
BLE measurements. In fact, iBeacons is the approach pro-
posed by Apple, which drove the market to the release of an
‘Android’ branch called Eddystone. It is not exactly the same,
but the data model has been adapted to store the three types
of measurements (Wi-Fi, iBeacons and Eddystone). In all
cases an RSSI value is obtained from each technology. Last,
the datamodel can be extended to incorporate additional radio
signals.

4) ALGORITHM OVERVIEW
The algorithm is called DORA and is responsible for esti-
mating the user location depending on the collected real
time measurements, by comparing this collection with the

FIGURE 4. Fingerprinting Grid (PMI airport, Floor 4).

ones available in the Fingerprinting database (radio map).
Basically, the value to be taken as comparison is the RSSI,
and the node providing the least distance value in signal space
is the one selected as the candidate value (NN approach), but
it is also possible to take the K nearest nodes and interpolate
(KNN approach). The various configuration parameters are:

- Positioning algorithm: currently weighted NNSS (Near-
est Neighbor in Signal Space) is used. Other algorithms,
such as HLF (Hyperbolic Location FingerPrinting), are
expected to be introduced and analyzed in the future but
are beyond the scope of this paper and considered further
work. Also statistical processing to better characterize
the signal behavior such as the Spearman correlation
factor [44] is considered further work.

- Maximum sample size: this represents the maximum
number of measurements considered within a sample.
In practical terms, if a value of 50 is set, this means
that the mobile device is able to provide one RSSI value
for up to 50 different SSIDs. This value is configured
for each technology. Wi-Fi works with SSIDs whereas
iBeacon and Eddystone work with UUID.

- Missing MAC penalty: In order that the comparison
between collected measurements and FP database can
be performed, it is necessary to ‘homogenize’ the field.
A missing MAC (related to an SSID) in the user’s
request will be interpreted by the algorithm as a ‘virtual’
measurement with a configurable value (e.g. −200dB).
This parameter is necessary but can be sometimes tricky
as it can have an impact on the final distance value and
therefore on the estimation.

- Candidate set size: this parameter allows diminishing
the FP space to the top T nearest FP nodes of the
previous calculated node. In practical terms, if the user
is not moving quite fast, and was at node N at time
interval t, it makes sense to try to position him/her on
the neighbor nodes at interval t+1. Even if the FP space
is not reduced, it seems more sensible to locate the user
near the previous estimated node if the algorithm gets
two candidate similar values, one far away and the other
close to the previous node.
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- Checks before hop: the previous assumption might not
be always appropriate and may guide the algorithm to
fail. If a distant node from a previous estimation gets a
‘better’ distance than another one close to the previous
estimation for various consecutive time intervals, then
the distant node is selected.

- Distance algorithm: this parameter refers to the way
the distance in signal space is calculated. Typically,
the Euclidean distance is used (norm 2), but other
alternatives are possible: Manhattan, Chebyshev, and
Minkowski.

- Distance algorithm arguments: additional arguments
(if any) required by the previous chosen selected
distance algorithm. For example, the Euclidean dis-
tance algorithm does not require additional parameters,
whereas the Minkowski approach does.

- Filter sequence: The algorithm allows the inclusion of
several filtering expressions with the obtained result.
Note that the result at an intermediate level of the
algorithm is not just a candidate node, but the whole
set that can be ordered. For example, one can be able
to obtain the best N candidate nodes (NHIGHEST
filter), or skip a certain SSID during the evaluation
(REGEX filter).

The core algorithm process is initially decomposed into
three parallel threads treating the different technologies
(Wi-Fi and BLE). For each technology, a best estimation
(or a list of best candidates) is given. Afterwards, both tech-
nologies are merged in order to provide a better and more
stable result. Note that it is impossible to compare directly
Wi-Fi and BLE values because the sensitivity and the signal
space size are quite different. Therefore, the raw values of
distance for both technologies differ and have to be somehow
normalized. For our algorithm, we have established a basic
approach similar to WKNN for establishing the weights to
the best candidates for both technologies. There are also
some special cases or exceptions to consider in the process:
for small distances BLE is typically more accurate than
Wi-Fi and it is recommended to omit Wi-Fi estimations
which would increase the confidence radius. In the next
section estimation results will be presented for bothWi-Fi and
BLE technologies.

In order to promote interoperability with other inter-
nal or external services (e.g. indoor navigation) a swag-
ger REST API has been developed. Basically, the algo-
rithm only needs to know a space (floor, building or zone)
and a collection of taken measurements (provided in the
HTTP body). Optionally, the usermay also provide a previous
node, in order to facilitate (speed up) the search. The response
provides the best candidate node and a position that results
from interpolation of the three best candidates nodes, among
other parameters (floor identifier, level, etc.).

IV. PERFORMANCE EVALUATION
Initial tests have been performed at the Universitat Politec-
nica de Valencia (UPVLC) premises for practical reasons.

 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 5. App for taking measurements.

Afterwards, the tests have also been performed in two air-
ports: Palma de Mallorca (PMI) and Berlin-Tegel (TXL).

A. APP OVERVIEW
In order to test the service, a mobile app has been
developed that allows not only getting the measure-
ments (training phase), but also displaying the results
on a map (positioning phase). The app has been devel-
oped in the cross-platform environment Ionic and thus
allows to be compiled for both Android and iOS devices
(see Figure 5). Development for Android resulted with
no problem; however, there is a serious drawback in
the current iOS SDK: it does not allow scanning for
Wi-Fi signals. There might be non-standard (non-official)
SDKs that allow this functionality, but it will be detected by
Apple if the final app is to be placed in the Apple marketplace
and will be withdrawn. The reason for that is unclear but
it seems that Apple prefers for its devices to use iBeacon
technology, offering an SDK for this. This issue motivated
the support for iBeacons (and Eddystone) in the positioning
service in order to reach both Android and Apple users. In the
remaining paper results will be presented from those obtained
from Android devices. From an algorithmic point of view,
Wi-Fi localization is more challenging than BLE localiza-
tion, so a special analysis and considerations will apply for
Wi-Fi measurements.

B. WI-FI CONSIDERATIONS
The success (accuracy) of a FingerPrinting approach depends
on a relatively stable radio signal strength along time as the
algorithm has to compare an average measurement taken
at time T with another measurement taken in the future at
time T+t. If the signal fluctuations are significant, this may
have an impact on the calculated estimation. For this reason,
we made an initial radio analysis and scanned continuously
for a whole day the signal fluctuation of one of the APs
available at UPVLC premises (see Fig.6) in the 2.4 GHz
frequency band. It turned out that during nights there is some
internal recalibration mechanism where the signal strength
diminishes by more than 10 dB. This fluctuation led to the
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FIGURE 6. RSSI fluctuation for an Access Point at UPVLC.

FIGURE 7. Heat map analysis at UPVLC (ETSIT, Floor 2).

additional use of special Wi-Fi beacons manufactured by the
company Creative Systems Engineering (CSE) with a more
stable beacon signal.

C. INITIAL POSITIONING RESULTS
In order to pre-test the algorithm and anticipate up to some
extent the possible result, we integrated a basic Wi-Fi heat
map tool into the service management console in order to
calculate the ‘signal distance’ from one FP node to the
other nodes in the same floor. This must be performed for
each of the nodes, detecting up to 3 different situations
(see Fig. 7):

- Desired situation: the signal at one FP node is quite
different to the others. For the algorithm, it will be easy
to decide if the user is at this location.

- Acceptable situation: the signal at one FP node has
similarities with adjacent nodes. The algorithmwill have
some difficulties to estimate the best location, but as long
as the nodes are close to one another, the deviation might
be acceptable.

- Undesired situation: the signal at one FP node is similar
to many nodes, not only adjacent ones. The algorithm
will probably perform poorly here, as there might be
no means to associate a best candidate accurately. This
situation may happen for various reasons: the adja-
cent radius between nodes is very low; nodes are in
open space quite distant from APs (thus the received
signal is similar), etc. One possibility to alleviate this
situation consists in introducing another technology
(e.g. iBeacons) and giving priority to special signals.
Another possibility is to consider previous location esti-
mations (if provided), infer trajectories and setting a
small potential candidate size.

FIGURE 8. Location results.

Another series of results is depicted in Fig. 8. We took
various measurements at each of the 32 FP nodes building
the radio map throughout a short period of time (5 minutes
for each FP node). We identified how many of these (in %)
provided an accurate result (i.e. the algorithm provided the
same FP node were the measurements were taken). The first
(top) bar chart depicts a relatively poor performance for
basic configuration parameters of the algorithm; in average,
in only 50% of the cases the algorithm provided the right
node. This is not necessarily a bad performance as in most
of the cases (78%) an adjacent node was estimated and the
perception by the user might be acceptable.

In a second iteration, we introduced three filter sequences
in order to increase the accuracy level (see Fig. 8). The cor-
respondent (low) bar chart demonstrated that the algorithm
performed better providing in average a right result in 80%
of the cases and an adjacent node in 94% of the cases).

Regarding results at mobile phones, the developed app was
tested on an Android device and the results were compared
with the built-in geolocation plugin (available also through
Ionic), which is used e.g. in Google Maps. Our indoor ser-
vice outperformed the internal geolocation plugin: Google’s
plugin places sometimes the user directly on the street even if
it is in an indoor environment, and sometimes it converges to
a more accurate location, but sometimes not. This situation
is depicted in in Fig.9, where the real place is depicted
in red, Google’s internal geolocation plugin estimation is
represented in blue and the DORA algorithm estimation is
depicted in green. This Figure shows the best and worst case
scenario for both estimation (DORA algorithm and Google’s
estimation) in two different screenshots. In our experiments
at UPVLC premises the results were always better (more
accurate) with our approach than using Google’s plugin. Our
indoor service provides an accuracy of less than 5 meters
in 80% of the cases, and less than 15 meters in 99% of the
cases. On the other side, Google internal geolocation plugin is
providing errors of up to 30meters in 50% of the cases, which
in some cases corresponds with outdoor locations even if the
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FIGURE 9. Location estimation (indoor algorithm vs Google built-in
geolocation plugin).

FIGURE 10. FP grid for TXL airport.

user is located indoors. However it is important to highlight
that Google’s algorithm is dynamic and converges after a
couple of minutes in 70% of the cases, providing acceptable
values. From another perspective, our algorithm is able to
provide z-coordinate (level) whereas Google’s plugin is not
(yet) providing this information.

D. POSITIONING RESULTS IN AIRPORTS
The positioning service has been tested in the airports of
Palma deMallorca (PMI) and Berlin (TXL). For Tegel airport
(TXL), 461 FP nodes were defined to cover Terminal C,
Terminal B, part of Terminal A and an external car rental
station (see Fig. 10). Note that some nodes (yellow nodes)
did not get any associated signal scan during the calibra-
tion phase. This is the case of some nodes on an outdoor
path where GPS should provide positioning information. The
offline phase detected up to 220 different SSIDs across the
whole scanned area; most of these SSIDs had to be filtered as
they related to temporal or untrustedWi-Fi networks resulting
in a final list of 15 relevant SSIDs to be considered.

Some results are depicted for Terminal C at TXL
(see Fig. 11) in form of screenshots extracted from the
mobile app. The screenshots have been taken in different time
intervals (but from the same location) in order to check the
variability for the estimation and trying to show best and

FIGURE 11. Positioning results (Terminal C, TXL).

FIGURE 12. Positioning results (Terminal C, PMI). DORA variability.

worst case scenarios. As can be observed, the indoor service
average accuracy (around 5 meters) outperforms the internal
geolocation plugin (around 10 meters). In this case, the rea-
son mainly lies in the usage of BLE technology (besides
Wi-Fi) as Terminal C is fully covered with iBeacons. Though
in most cases the indoor service provided a reduced con-
fidence radius, in 10% of the cases it could increase up
to 19 meters (worst case).

The airport in Palma (PMI) is much bigger than TXL
airport and therefore the FingerPrinting process took longer
and was performed Terminal by Terminal. 720 FP nodes
where defined for Terminal C where 40 different SSIDs were
scanned. For the main Terminal there were 287 FP nodes and
62 different SSIDs for floor 0, 297 FP nodes and 42 different
SSIDs for floor 2, and 205 FP nodes and 35 SSIDs for floor 4.
After a proper filtering a set of 5-11 relevant SSIDs were
selected for each floor. Some results are depicted in Fig. 12,
Fig. 13 and Fig. 14. In general terms, the results were not
that successful compared to TXL airport, because there was
no BLE technology deployed and also because of a larger
amount of metallic objects deployed (e.g. travelators). The
latter reason has probably caused more signal fluctuations
with a real impact on the estimated position and accuracy.
In fact, the DORA WKNN algorithm did not provide the
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FIGURE 13. Positioning results (Terminal C, PMI). No Google’s plugin
convergence.

FIGURE 14. Positioning results (Terminal C, PMI). Google’s plugin
convergence.

real nearest FP nodes in most cases (see Fig. 12). However,
compared to Google’s internal geolocation plugin, our indoor
service still provides a clear better estimation in 70% of the
cases, with average accuracy of 5 meters in 60% of the cases,
though the confidence radius varies from 5-15 meters. How-
ever, in some cases (see Fig. 12), the provided result including
the confidence radius does not cover the real location and
thus resulting in a bad estimation. Here Google’s internal
plugin does not ‘converge’ and provides the same estimation
continuously (except for Fig. 14).

We firmly think that this is caused because of the strong
signal variability (see Fig. 15) that has been detected on
several areas of the airport. We could not change it because
access to infrastructure in airports is very limited and takes
too much time. The situation in our preliminary results was
not that bad but variability was also detected due to overlap
in the Wi-Fi channels at 2.4 GHz band. However we expect
to repeat the experiment in the near future, as the PMI airport
operator plans to deploy iBeacons in several months; thus the
comparison improvement is considered as further work.

E. FURTHER IMPROVEMENTS AND RESULTS
In order to minimize or mitigate the potential errors that could
appear at Wi-Fi level in real scenarios the algorithm has been
improved in several aspects:

- Support for 5 GHz band: current deployed access points
are supporting both 2.4 and 5 GHz bands, therefore the
attenuation impact is mitigated. Furthermore, there is no
overlap in 5 GHz channels and so the signal strength is

FIGURE 15. Wi-Fi signal variability at PMI airport.

more stable (some access points reconfigure TX power
at 2.4 GHz when strong interference is detected).

- Infrastructure deployment awareness: now the algo-
rithm considers the location of access points, the rele-
vant SSIDs involved, the involved MACs as well as the
TX power at each band. As will be shown later, such
awareness reduces the target node set, the average accu-
racy and the average response time.

- Internal geolocation plugin support: the algorithm sup-
ports also as optional input parameter the estimation
provided by a third party, in this case the internal geolo-
cation plugin of the smartphone. This has several advan-
tages. First, it is an independent estimation that can be
also used either as input for a data fusion technique or as
a comparator with the internal result of the algorithm in
order to check which one is providing the best accuracy.
Second, it can be used as default value if the algorithm
has no way to provide an estimation; this could be the
case when the traveler is wandering across the terminals
through an outdoor path without Wi-Fi coverage but
GPS support.

Some preliminary results have been obtained at UPVLC
where the required information related to infrastructure has
been obtained. Figure 16 shows the deployed access points
for a floor building at UPVLC whereas Fig 17 and 18 show
the associated node sets assigned to a specific access point.

The node set for each access point deployed is built
after the FingerPrinting process. For each fingerprint of the
floor/building, the strongest signal measured is associated to
an access point according to theMAC. The result is that every
access point has an assigned node set which corresponds to
its strongest area of influence, and is different depending on
the frequency band (see Fig. 17 and Fig. 18). Several partial
conclusions can be extracted. First, the assigned node set is
not only dependent on frequency but also on TX power from
nearby access points; some fingerprints on one floor may be
even assigned to access points located in a different floor.
Second, the aggrupation of fingerprints in node sets can be
exploited to reduce the target node set in the online phase:

- In the first version of the algorithm, whenever a mea-
surement is taken at a given location, the target node set
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FIGURE 16. Awareness of infrastructure deployment information (UPVLC).

FIGURE 17. Node set associated to access point ar1-tel4d2sc at 2.4 GHz
band (UPVLC).

FIGURE 18. Node set associated to access point ar1-tel4d2sc at 5 GHz
band (UPVLC).

may be the whole floor, building or the entire airport.
Obviously the required time for calculating distances
increases as well as the potential accuracy error.

FIGURE 19. Positioning results at 5 GHz band (UPVLC, SATRD lab).

- In the new version, the measurement is processed in
order to extract the closest (strongest) access points, and
the target node set is built as the union of such access
points (APs) node sets. It is clear that such target node
set is significantly reduced, among all compared with
the whole airport and the potential accuracy error also
diminishes. The usage of more than one AP node set
(if detected) makes the algorithm more reliable, because
due to signal fluctuations one may think that some
fingerprints may have been assigned to one or another
access points depending on the moment the measure-
ment is taken. Considering up to 3 APs node sets for
building the target node set (if detected) provides enough
confidence and guarantee that the target node set is
correct and the remaining nodes can be filtered out.

Some results are presented in the following Figures for the
5 GHz Wi-Fi band. In order to better describe the location
process some extra nodes have been depicted as described
in Fig. 19. At a given real place (red node) measurements are
taken from the smartphone and sent to the indoor positioning
service. First, measurements are filtered to consider only
relevant SSIDs. Second, RSSI values are ordered in order
to get those with strongest signal, and the corresponding
access points are detected. As can be observed in Fig. 18 two
nearby access points have been detected, and the target node
set is built from the union of both AP node sets (yellow
nodes). Therefore there is no need to get the node set of the
whole floor, reducing the processing time. Finally, the tar-
get node set is compared with the taken measurement and
the three nearest ones (in signal space) are selected (grey
nodes around yellow ones). A weighted approach (WKNN) is
applied resulting in a final estimation (green node) including
level/floor detection as well as an accuracy radius. The accu-
racy radius depends on the target node set and the distance
between nearest access points.

The response time of the indoor positioning service has
also been evaluated. Whereas the first version of the algo-
rithm provided responses within 1-2 seconds, depending
on the target node set (floor, building, airport), the second
version is providing values below 0.5 seconds. Even
for 20 simultaneous requests values below 0.7 seconds
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FIGURE 20. Positioning results at 5 GHz band (UPVLC, corridors 1).

FIGURE 21. Positioning results at 5 GHz band (UPVLC, corridors 2).

are obtained. This is in fact not relevant for the user because
the smartphone is not continuously scanning for Wi-Fi, but
periodically after 6-8 seconds for battery savings reasons.
Besides, reliable BLE scanning may take around 5 seconds
in smartphones, and the service response time is considerably
below such value.

F. INTEGRATION IN IOT ENVIRONMENTS
It is common to find in IoT context models the location of
the objects (entities) as an attribute; it can be either fixed for
static entities or dynamic for entities with mobility capabili-
ties. Usually, mobile entities are equipped with GPS enabled
support providing location data that is acceptable for outdoor
environments; however, they struggle to provide an accurate
position when the entities enter indoor facilities.

In order to facilitate third-party integration, the DORA IPS
has been integrated and tested in a multi- IoT environment,
considering as use case activity carried out at ports (see
Fig. 22). Typically, the Port Authority is the entity in charge
of providing security and managing the coordination of all
involved parties in port transactions. Each party owns its
own IoT platform to manage internal processes, and limited
interoperability is exposed. In order to ease communication
and optimize resources among all of them an interoper-
ability platform, called Inter-IoT, has been proposed [40].
It encompasses a multi-level architecture so that interoper-
ability between IoT platforms can be established at different

FIGURE 22. DORA IPS integration with the Port IoT environment.

layers (device, network, middleware, application, and seman-
tics). The objective in our paper consisted in setting up the
DORA IPS as an application service on top of Inter-IoT,
so that different IoT platforms are able to use the service
through an integrated interface (see Fig. 22).

Interoperability in Inter-IoT requires a meta-model for
any entity subject to be interoperable between two or more
IoT platforms. Thus there is a need to represent virtual
objects covering multiple dimensions. The object represen-
tation must be extensible in order to fulfill present and future
service requirements. In our use case, we have included an
indoor model extension in order to cover those entities oper-
ating in indoor environments, conceptually similar as for a
typical outdoor model. Basically, the indoor model relates
the target radio map (fingerprinting grid), the scanned mea-
surements and the positioning estimation. Note also that the
radio map may be provided from each IoT platform operator,
sharing just the access to the algorithm.

The use case tested in this paper relates to a third party
transportation company entering the port of Valencia by
truck. Here Access Control Systems (ACS) and Port Commu-
nity System (PCS) verify the correct entrance of the truck and
allow them to go to the destination terminal. In a typical sce-
nario, the exchange of tracking information between systems
mainly involves GPS coordinates, but there was no effort to
include indoor positioning. In our system this is performed by
incorporating the DORA IPS with support in some buildings
at the port. Moreover, the positioning service can involve both
the truck and the driver, which might not be on the same place
necessarily in an indoor environment. Here indoor geo-Role
Based Access Control (RBAC) policies can be established
in order to assure that truck and driver only enter authorized
zones.

Considering the generic approach of IoT platforms, entities
may not only be trucks and drivers. Though this is not yet
implemented and is considered as further work, the internal
radio map (FingerPrinting Grid) typically provided by each
building owner may be dynamically generated and updated
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TABLE 3. KPIs for the DORA IPS integration.

by a special entity (mobile device) managed by an IoT plat-
form (radio map provider).

Though it is difficult to evaluate the impact of integrat-
ing the positioning system in a multi IoT environment with
numbers, some basic Key Performance Indicators have been
established and listed in Table 3. The response time of the
DORA IPS takes as average 6,3 seconds; this is caused if BLE
is used as scanning technology because it takes a time for the
ranging process; this is just a limitation of the internal plugin
of the mobile device. If only Wi-Fi is used, the response time
is reduces less than 1 second. Integrating the DORA IPS into
the IoT environment does not have any practical impact as
depicted in Table 3. Some additional milliseconds are needed
in the IoT environment due to security checks for granting
access. Regarding the management of radio maps, the DORA
IPS was conceived as a central service and thus it has to
manage all FingerPrinting grids (TXL airport, PMI airport).
Integrated in amulti-IoT platform, the generation and updates
of radio maps is delegated to each IoT platform, each one in
charge of managing their own maps. In our use case, we were
able to set up 2 FingerPrintingmanagement entities, one radio
map for the Port Authority IoT platform (1 building) and
another one for one of the Terminals (1 building).

Considering the number of platforms integrated, we were
able to test the interoperability with three different open plat-
forms: FIWARE, Open-IoT and WSO2. In fact most of the
work is done by the Inter-IoT platform and mainly the indoor
model extension was necessary. Such integration allowed us
to easily use the integrated DORA IPS frommultiple services
in the three platforms that can potentially make use of an
indoor location for their internal processes. We successfully
tested it with 9 services, three from each of the IoT plat-
forms. Obviously this numbermay increase seamlessly; it just
depends on the services requiring indoor positioning in each
IoT platform. We tested it on 9 services in order to check and
verify the integration process.

As further work and considering potential businessmodels,
various IPS services may converge and register into the Inter-
IoT platform, exposing different FingerPrinting technologies
and accuracy. For example, DORA IPS is based on Wi-Fi
and BLE but another IPS may support RFID and UWB.
In this scenario, each IoT platform may request available
capabilities and decide which one to use.

V. CONCLUSIONS
Indoor location is a trendy topic and is foreseen to grow in
the upcoming years, once the outdoor scenario is already
stabilized. Some of the first target indoor areas are airports
and shopping malls, thus there is a recent approach to deploy
indoor solutions.

A general indoor service has been developed based on
Wi-Fi FingerPrinting and Wi-Fi beacons, with the possibility
to include also iBeacons and Eddystone beacons. The indoor
service is decomposed in various components and integrates
smoothly with other related services (maps, POIs). Besides,
there is a HTTP REST interface available with Swagger
support that facilitates an easy integration with other software
components (e.g. indoor navigation).

The developed service included not only a server side
component but also a mobile app to target fingerprinting and
location tests using Ionic, and the latter one can serve as initial
basis for custom apps.

Indoor maps are really important not only for users but
also for setting up the fingerprints. If the surface to cover is
really huge, it is important to have important reference points
(e.g. pillars) available in order to assure that the fingerprint is
taken at the right place. From the end user perspective, some
building details should be removed to provide a simple view.
This is a work intended for a design professional worker from
the airport.

In general terms, Wi-Fi does not seem to be well suited for
accurate indoor location as single technology. It can provide
good estimations at certain spots, but for big areas with
changing conditions strange estimations might occur and on
site adjustments are required. So it is important to combine
different technologies (BLE and GPS if possible) in order to
increase the accuracy and reduce the effect of signal strength
variations. The usage of both bands (2.4 GHz and 5 GHz)
for Wi-Fi helps also mitigating signal strength variability and
thus reducing the average accuracy error.

The obtained accuracy in real live conditions can range
from 2-15 meters; it depends on several factors, such as
the fingerprinting grid and signal strength stability, among
others. For very accurate estimation, additional investment
is required, which will be no longer a COTS approach. The
algorithm has been enhanced from an unaware infras-
tructure approach to an aware one, exploiting the knowl-
edge of access point’s locations, their MACs, TX power
and relevant SSIDs. Under such circumstances, the target
node set is reduced, as well as the response time and the
accuracy error. This is also helpful in airports to miti-
gate the extreme population density in airports where sig-
nal strength severely reduces, as the algorithm infers the
estimation based on the nearest (strongest) access points
detected.

It is important to work with the airport staff in order to
set the fingerprinting grid, deploy additional beacons and
finally test the indoor location; a lot of different tests have
to be performed across the target place (including restricted
areas). Thus, some staff working daily at airports is required
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to make tests and help generating a model to overcome the
details of an airport. Note that each airport is different and
has different problems in terms of signal propagation that
affects the quality of measurements taken, thus guiding to
’surprising’ estimations unless the situation is detected and
corrected or minimized.

Probably the most challenging aspect for indoor position-
ing relates to the location of users while they are mov-
ing, as the signal strength varies across the path. Here the
DORAalgorithm (and alsoGoogle’s one) provides inaccurate
results even if including inertial sensors and also timewindow
filtering. Intensive work has to be performed in this direction
to obtain good results without consuming too much battery
(energy).

Long corridors with long metallic travellators seem to
provide unexpected signal reflections and thus resulting in a
poor estimation. Accuracy seems better at the waiting areas
at both sides of the main corridors.

The positioning system has also been successfully inte-
grated and evaluated in a multi IoT scenario where different
services from different open IoT platforms were able to get
an indoor positioning value enriching the capabilities of their
services.

Further work can spread in different directions, but we are
mainly focussed on improving the DORA algorithm for just
Wi-Fi deployed areas as well as studying different position-
ing technologies (e.g. RFID) to better test and improve the
merging process.
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