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ABSTRACT In the Industrial Internet of Things (IIoT), wireless sensor network (WSN) technology makes
devices that communicate with each other. The information integrated from multiple data sources will
be transformed into productivity. However, the clusters close to the base station take a considerable load
over multi-hop transmission, and in this case, the lifetime of the industrial WSN is restricted. To solve
this problem, a grid-based clustering algorithm via load analysis for IIoT is presented in this paper. First,
the network load is quantitatively analyzed and then a load model is constructed. Furthermore, a set of
expressions is deduced to indicate the network load distribution. It is concluded that the number of delivered
packets in each level is related to the grid length at that level. The optimal grid length is obtained by solving
polynomials to achieve the uniform energy consumption of nodes at each level. Finally, the network is
partitioned into unequal grids according to the optimal cluster size and all the nodes of a grid are formed
into a cluster. Results of the experiments show that compared with ACT, ER-HEED, and RUHEED, our
algorithm balances energy depletion effectively and extends the whole network lifetime.

INDEX TERMS Clustering algorithm, energy-balanced, load analysis, Industrial Internet of Things, wireless
sensor network.

I. INTRODUCTION
Industrial internet of things (IIoT) brings the 4th industrial
revolution and makes the whole world move to Industry 4.0.
It will increase the production efficiency by 25%. Indus-
trial wireless sensor network (IWSNs) is the underlying
support technique of IIoT. Meanwhile, the development of
cloud computing [1], [2] and mobile communicating tech-
nology [3] have made wireless sensor networks (WSNs)
ubiquitous, numerous fields such as environmental monitor-
ing [4], [5], industrial production [6], smart home [7], [8],
traffic monitoring [9], [10] and health care [11] have
employed WSNs to collect data periodically from a moni-
tored area. Some sensor nodes with finite energy, computa-
tion ability, and storage ability self-organize into a network to
accomplish application tasks. However, the limited energy of
sensor nodes (their batteries cannot be replaced conveniently)
restricts the lifetime of a network. Prolonging the lifetime of
a network is an important task.

For prolonging the lifetime of a network, Cluster-
based routing protocols are superior to flat routing proto-
cols [12]–[14]. However, energy consumption imbalance
remains as a problem [15], [16]. In equal size clustering
routing protocols, the cluster heads (CHs) close to the base

station (BS) are burdened with more loads than those far from
the BS [17]–[19]. Thus, the sensor nodes in these clusters
exhaust their energy faster than those in other clusters, and
finally the network is partitioned into pieces. Consequently,
the network is unable to coverage the whole monitored area.
Unequal size clustering has advantage to achieve balanc-
ing energy consumption of the network and prolonging the
network lifetime. Since there are more CHs near the BS
to undertake the network load than that under equal size
clustering. In general, the network lifetime is defined as the
round when the first dead node appears. Ideally, supposing
that all nodes in a network deplete their energy at an equal
rate, the network lifetime will be the longest. To realize
the goal that maximizing the network lifetime, it is crucial
to balance energy consumption of nodes in the network.
The CH in a cluster receives packets from its cluster mem-
bers (CMs) and other CHs. Thus, it consumes more energy
than CMs and plays a key role in the network. Accord-
ingly, several points need to be considered to achieve the
goal:

1. How to obtain the optimal unequal cluster sizes?
2. How to select the optimal CHs?
3. When and how to rotate the CHs?
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The information such as location, energy, etc. is usually
considered as a parameter to compute the optimal unequal
cluster sizes. As for IWSNs, all nodes transmit their packets
to the BS and hence the data transmission in IWSNs has
characteristics of centripetal. In other words, it is helpful to
obtain the optimal unequal cluster sizes by constructing a load
analysis model. In the CH selection process, a large number
of control packets are exchanged among nodes for selecting
an optimal CH. The node with the most energy in a cluster
is usually elected to be CH, however, the location of the CH
need to be used as a reference when considering the balance
of energy consumption. The CH rotation process ensures that
the CH has more energy than its CMs. It is also a key step in
achieving energy-balanced unequal clustering.

In this study, a grid-based clustering algorithm via load
analysis for industrial internet of things (GCA) is proposed
for prolonging the network lifetime. The major contribution
of this work can be summarized as follows:

1. A load distribution model is presented for analyzing
the network load. Furthermore, on the basis of the analysis
of energy consumption, it is concluded that the number of
delivered packets in each level is related to the cluster size at
that level.

2. The optimal cluster size can be determined to balance
the energy consumption of the network by solving polyno-
mials, and then the network is partitioned into grid clusters
according to the obtained size. The load of the network is
redistributed with unequal cluster size.

3. The new CH in each cluster is selected based on
the energy and distance information in that cluster. Thus,
the energy consumption of the intra transmission is decreased
and the overhead of CH selection lessens effectively.

The remainder of this paper is organized as follows: several
studies on clustering-based routing algorithms are presented
in Section II. The models used in this study are described in
Section III. Section IV explains the cluster sizes optimiza-
tion process. The routing algorithm is described in detail
in Section V, and a series of experiments is presented in
Section VI. The conclusion is drawn from the research results
in Section VII.

II. RELATED WORKS
Different applications of WSNS have diverse requirements
and challenges. However, the energy consumption imbalance
is always the key issue in different applications, and not
just in IIoT. Existing studies show that cluster-based proto-
cols for energy efficiency optimization can be classified into
two categories: CH optimization and cluster size optimiza-
tion. At present, the latter is receiving more attention than
the former. Several cluster size optimization algorithms are
described in the following paragraphs.

To solve the problem of uneven energy consumption,
numerous unequal clustering algorithms are proposed, which
are brought into sharp focus. According to the clustering
formation process, these algorithms can be divided into two
categories. On the one hand, the network is partitioned into

clusters directly. The concept of competition radius is pro-
posed to partition the network into several clusters with
unequal sizes, such as in [20]–[24]. The CHs are selected
with localized competition. The competition radius is the
same as the cluster size. In [25], FPUC computes the competi-
tion radius according to the sensor node’s distance to the sink
and the sensor node’s surrounding node density. HUCL [26],
which is a hybrid of static and dynamic cluster approach also
adopts the competition radius mechanism in the cluster setup
phase, and the CH rotating in the intra-cluster effectively
reduces the cluster overhead. In the above algorithms, the dis-
tribution of CHs is stochastic and the cluster size is usually
related to the distance and energy information. On the other
hand, the network will be initially partitioned into a series
of concentric rings or levels and then the clustering process
will be completed. A certain number of CHs are elected in
each ring or level. In [27], the network is divided into inner
and outer regions, and unequal clustering is implemented in
the two different regions. In [18], the area is divided into
some virtual tracks around the BS. Nodes located in the
same track form clusters with similar sizes. The distance
to the BS and the distance among the CHs are two criteria
that influence on the cluster sizes at different tracks. But the
overlap area should be taken into account when the competi-
tion radius is calculated. In [28], the optimal unequal cluster
size is obtained at different layers with the symmetrical and
unsymmetrical deployment of nodes. In [16], UCRP is evenly
dividing the network into multi-layer rings. In [29], COCA is
proposed for constructing optimal clustering architecture to
minimize the total energy consumption of all sensor nodes.
The region is initially divided into rectangles, and then the
rectangles are divided into square units with the same width.
Hierarchical network, with the uniform distribution of CH,
ensures the network coverage ratio, but the overhead will be
increased and the scalability of the algorithm is weak.

According to the calculation process of cluster sizes, these
algorithms can be divided into three categories to discuss.
Many works fall into the same category such as [20]–[26].
All of these algorithms adopt competition mechanism. The
cluster size is usually related to the distance between the
CH and the BS or residual energy. That is, CHs close to the
BS have smaller cluster sizes than those far from the BS.
The optimal cluster sizes are computed on the base of the
network performance analysis belongs to the second cate-
gory. ACT is proposed in [30] for arranging the cluster sizes
and transmission ranges of WSNs. The author uses theory
analysis to calculate the cluster size based on the relaying
load of the CH. The CHs close to the BS avoid the excessive
relaying loads. However, the result of calculating the load
may be inaccurate. In [31], a mathematical framework for
calculating the optimal cluster size by finding the optimal
value of kopt for one-hop communication networks between
the CH and the BS is presented. However, the discussion on
optimizing cluster size under the multi-hop transmission pat-
tern is not included in this previous study. The methods using
fuzzy logic are the third category. In these methods, some

13118 VOLUME 6, 2018



J. Zhang et al.: GCA via Load Analysis for IIoT

parameters are used as input while competing radius as out-
put. A fuzzy logic approach named EAUCF in [32] is adopted
to handle uncertainties in estimating the radius of the CHs.
Two fuzzy sets of the distance from a sensor node to the BS
and the residual energy of a sensor node are regarded as input
values. Meanwhile, the competition radius of the tentative
CH is the output value. The membership function is the key
point, but the author does not provide the selection principle.
An improvement of EAUCF is proposed in [33]. The node
degree is considered in the competitive radius computation
process. Simultaneously, the CH degree is used for cluster
formation to overcome the energy consumption imbalance
around the BS. In [34], It uses a fuzzy-based CH selection
technique for selecting nodes with high residually energy,
having more number of neighboring nodes, and high quality
of communication link as CHs. In [35], the fuzzy method is
used to obtain the unequal cluster size. Distance, energy and
load are as input parameters. With fuzzy control mechanism,
the accuracy of the optimal cluster size is decided by the input
parameters and fuzzy sets, but there is no rule for the fuzzy
sets selection. According to the above algorithms, once the
network scale is determined, the distribution of network flow
is computable when no malicious node attacks the network.
Thus, through the analysis of network performance, it is more
accurate to calculate the cluster size.

According to the shape of the cluster, these algorithms can
be broadly divided into three categories which are circular
clusters, grid cluster, and triangle cluster respectively. Most
of unequal clustering algorithms adopt circular cluster, such
as in [20]–[24]. In [36], EBCAG partitions the network into
clusters with unequal circular cluster sizes, and each sensor
node maintains a gradient value. Based on the analysis of
the network load, the size of a cluster is decided by the
gradient value of its CH. Data gathered from the CMs should
follow the direction of the descending gradient to reach the
BS. In [15], UMBIC divides the sensor field into number
of virtual grids and constructs the candidate sensor set via
selecting a certain number of sensor nodes with high energy
in each virtual grid. The number of grids depends on the
sensor field size and themaximum competition range. In [37],
the monitoring area is divided into virtual grids with differ-
ent sizes. The X-axis and Y-axis in the monitoring area are
divided into several parts according to an arithmetic sequence
with the equal difference being d . Only a small number of
results belong to the third category. ‘Sierpinski Triangle’ is
used to partition the network into unequal clusters in [38]. The
manner of the cluster formation is static mode. The number of
clusters is decided by the number of iteration. From the above
discussion, the overlap area should be taken into account
when the shape of the cluster is circle, and not when the
cluster shape is grid or triangle.

Through the above analysis, the cluster size is usually
related to the value of energy, distance, coverage and link
quality, etc., regardless of the method used. In this study, a
grid-based clustering algorithm via load analysis for indus-
trial internet of things is proposed. The network is partitioned

into grid clusters, which increases the accuracy of load anal-
ysis. The entire network is covered by grid clusters with the
overlap area not being considered. An energy consumption
analysis is also conducted. By analyzing the load quantization
and the energy balancing constraint, the optimal cluster sizes
can be obtained without complex computations. Moreover,
we prove that the clusters close to the BS have smaller cluster
size than that far from the BS. Then, the network is partitioned
into several grid clusters with obtained unequal cluster sizes.
Each selected CHs collects the packets from CMs and then
forwards them to the BS with the help of other CHs.

III. MODELS PRESENTATION
A. NETWORK MODEL
It is assumed that the monitored IIoT area is a rectangular. N
sensor nodes are uniformly distributed in the monitored IIoT
area. The BS is near the monitored area with a fixed location.
The parameters and situations of the network are assumed as
follows:

1. All sensor nodes with a unique ID are static and their
transmission radii are adjustable.

2. The network is divided into n-levels clusters based on
the load analysis, and named as q1, q2, . . . , qn in sequence.
3. The shape of the cluster is square with the length of li.
4. Each sensor node generates packets at the speed of k bits

in a period of t seconds and sends the packets to its CH.
5. The packets dealt with by the CHs at the qi+1th-level are

uniformly forwarded to the CHs at the qith-level.

FIGURE 1. Demonstration of the network model.

A demonstration of the network model is shown in Fig. 1.
The grid cluster is used in this study.

Table 1 lists the description of the parameters and the
notations used in this section.

As all sensor nodes are distributed uniformly in the moni-
tored area, the network node density ρ is given by

ρ =
N

L ×W
(1)

B. ENERGY MODEL
The energy model assumed in this study has been adopted
widely inmany researchworks, such as in [29], [36], and [37].
The energy consumption of sensor nodes generally consists
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TABLE 1. Parameters and notations.

of three parts: transmission energy consumption Et , receiv-
ing energy consumption Er and sensing energy consumption
Es. Es is usually too small and is thus ignored, such as
in [26], [29], and [36]. Et and Er comprise the major portion
of energy consumption in this study accordingly.Et is defined
as follows when sensor node i transmits a packet with b bits
to nodej:

Et =
{
bEelec + bεfsd2, if d < d0
bEelec + bεampd4, if d ≥ d0

(2)

Et is dependent on the transmission distance d between node
i and node j. According to the value of d , the propagation
loss can be modeled as a free-space model or muti-path
attenuation model, where Eelec is the electronic energy and
depends on factors such as digital coding, modulation, and
filtering of the signal, εfs and εamp denote the amplifier energy
and depend on the required receiver sensitivity and receiver
noise figure. Reception energy consumption Er is defined as
follows when sensor node i receives a packet with b bits from
node j.

Er = bEelec (3)

C. LOAD ANALYSIS MODEL
The network in this study is divided into several grid clusters
with the length of li. Based on the preceding description of
the parameters, the load can be formulated as follows.

The number of sensor nodes at the qith-level cluster is Ni,

Ni = l2i ρ (4)

where li is the length of the qith level cluster, and ριs the
node density of the network. Each sensor node in the network
generates one packet with k bits within a time period (e.g.
each node generates a packet with k bits per 5 sec). Thus,
the total number of bits generated by the qith-level cluster
within a time period can be expressed as

P = Ni × k (5)

The number of CHs at the qith-level is

Si =
W
li

(6)

The packets handled by the qi+1th-level cluster are for-
warded to the qith-level cluster. The CH at the qnth level only
deals with the generated packets. Thus, the total number of
bits Pn dealt with by the CH at the qnth-level is

Pn = l2nρk (7)

The total number of bits dealt with by the CH at the
qn−1th-level can be expressed as (8), which consists of the
packets generated by the sensor nodes at the qn−1th-level
cluster and the packets received from the qnth-level cluster.
The packets at the qnth level are distributed equally to the
CHs at the qn−1th level,

Pn−1 ≈
Sn × Pn
Sn−1

+ l2n−1ρk =
W
ln
× l2nρk
W
ln−1

+ l2n−1ρk

= lnln−1ρk + l2n−1ρk = (ln + ln−1)ln−1ρk (8)

Moreover, the total number of bits Pn−2 dealt with by each
CH at the qn−2th-level can be expressed as

Pn−2 =
Sn−1 × Pn−1

Sn−2
+ l2n−2ρk

=

W
ln−1
× (ln + ln−1)ln−1ρk

W
ln−2

+ l2n−2ρk

= (ln + ln−1)ln−2ρk + l2n−2ρk

= (ln + ln−1 + ln−2)ln−2ρk (9)

Thus, the total number of bits handled by each CH at the
qith-level is

Pi =
Si+1 × Pi+1

Si
+ l2i ρk

= (ln + ln−1 + · · · + li)liρk

= liρk
n∑
j=i

lj (10)

According to (10), once the parameters (such as node den-
sity and packet-generated speed) of the network are fixed,
the number of packets dealt with by the clusters at each level
is related to the cluster size.

IV. CLUSTER SIZE OPTIMIZATION
The network lifetime will be prolonged if the total energy
consumption is minimized. Energy analysis is achieved using
the clustering approach proposed in this study. The phe-
nomenon of energy consumption imbalance typically appears
among CHs. because their load is difference. The energy con-
sumption of each CH Ech consists of three parts: (1) receiving
energy consumption Erch when a CH receives packets from
other CHs, (2) Ercm when the CH receives packets from its
CMs and (3) transmission energy consumption Et when the
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CHs forward the packets they receive and those that they
generate by themselves. Thus, Ech can be expressed as

Ech = Erch + Ercm + Et (11)

The energy consumption of CH E ich at the qith level can be
expressed as

E ich = E irch + E
i
rcm + E

i
t

≈
Si+1 × Pi+1

Si
Eelec + l2i ρkEelec + Pi(Eelec + εfsd

n
i )

= Pi(2Eelec + εfsdni ) (12)

In (12), the first part represents the receiving energy con-
sumption when the CHs at the qith level receive the packets
from the qi+1th level, the second part represents the receiving
energy consumption when the CHs at the qith level receive
the packet from it CMs, and the last part represents the trans-
mission energy consumption when the CHs at the qith level
transmit all its receiving packets to the qi−1th level. n is
related to the d0, if di is less than d0, n is set as 2 for the free
space model, otherwise, n is set as 4 for the multipath model.

The objective of balancing energy consumption is achieved
if

E ich ≈ E jch, 1 ≤ i ≤ n, 1 ≤ j ≤ n (13)

is satisfied.
Theorem 1:Equation (13) is satisfied only if the cluster size

li shortens as the CH becomes close to the BS.
Proof: Equation (12) shows that the energy consumption

of CH is related to the number of bits Pi it deals with and
the transmission distance. According to (10), the number
of bits handled by the CH at the qith-level increases as
the CH is close to the BS. Thus, Equation (13) is satisfied
only if transmission distance di shortens as the CH becomes
close to the BS. The transmission distance di is the distance
between two CHs during data transmission and it is related
to the cluster size li of the cluster at each level. Accordingly,
Equation (13) is satisfied only if the cluster size li shortens as
the CH becomes close to the BS. Nevertheless, arranging the
location of CHs cannot influence the value of di.
The total energy consumption can be expressed as

Etotal = E1
ch × S1 + E

2
ch × S2 + · · · + E

i
ch

×Si + · · · + Ench × Sn (14)

Moreover, Etotal can be expressed as

Etotal = E1
ch × S1 + E

1
ch × S2 + · · · + E

1
ch

×Si + · · · + E1
ch × Sn

= E1
ch ×W × (

1
l1
+

1
l2
+ · · · +

1
ln
)

= P1 × (2Eelec + λεfsdn1 )×W ×
n∑
i=1

1
li

= N × k × (2Eelec + εfsdn1 )× l1 ×
n∑
i=1

1
li

(15)

where, d1 is the average distance between the CH at the q1th
level and the BS. This variable is related to the size of clusters
at the q1th level. The length of cluster size li is satisfied as
follows:

l1 + l2 + l3 + · · · + ln = L (16)

The value of Etotal should be the minimum and the optimal
cluster size li can be obtained with{

E1
ch ≈ E2

ch ≈ E3
ch ≈ · · · ≈ Ench

l1 + l2 + l3 + · · · + ln = L
(17)

The optimal solution is defined as an array {l1, l2, . . .
ln, n}. Many approximate optimal solutions can be obtained
by solving the Equation (17) with least square method, and
then one of approximate optimal solutions who satisfies the
equation (18) will be the optimal solution. That is to say,
the cluster size li and the number of level n is determined
finally.

Min(Etotal) (18)

V. GCA ALGORITHM FOR IIOT
Clusters are formed after the cluster sizes are obtained, and
data transmission is then performed. Clustering-based routing
protocols generally consist of three parts: cluster formation,
data transmission and cluster maintenance. In the cluster for-
mation phase, the network is partitioned into several clusters,
and each cluster has a CH. In the data transmission phase,
two transmission modes are intra-transmission and inter-
transmission respectively. In the cluster maintenance phase,
each CH judged whether the CH rotation process should be
run.

A. CLUSTER FORMATION
At the beginning, the BS broadcasts a short packet that cov-
ers the monitored area. Sensor nodes calculate the location
information based on the strength of the receiving signal.
According to the analysis in Section 3, once the cluster size
is determined, the network is partitioned into grid clusters
with the same length at the same level and different lengths at
different levels. Since the cluster size of cluster at each level is
different, and the same as the number of cluster at each level
which is equal to dw/lke. Obviously, one case that there is one
cluster at each level is not a square may be happened. Thus,
once the cluster formation is achieved, a cluster merging
process is adopted to judge if the cluster which is not square
should be merged. The merging condition is related to the
number of nodes in that cluster.

In the CH selection process, an optimal CH is selected
in each cluster. A detailed analysis on optimizing cluster
size in terms of minimizing communication overhead was
presented in [39]. The authors investigated the effects of sev-
eral parameters on optimizing cluster size. These parameters
include cluster size, number of BS, position of CH, and node
density. The authors concluded that the optimal CH position
is at the center of the cluster. Compared with CHs at random
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locations or those close to the BS, a CH near the cluster
center spends approximately 15% less energy. In this study,
the selected CH is the sensor node that closes to the center of
the cluster.

In the first round, all the nodes have the same energy, thus,
the CM with the minimum distance to the cluster center to
which it belongs is the CH. The CH broadcasts a notification
packet to notify CMs in its cluster and other CHs in other
clusters. If some sensor nodes do not receive any notification
packet from its CH within a certain period, the sensor node
sends a request packet to find a CHwith a minimum distance.
In this manner, the cluster is formed.

FIGURE 2. Data transmission phase.

B. DATA TRANSMISSION PHASE
Data transmission is achieved during this phase in two ways:
intra-cluster transmission and inter-cluster transmission.
In the former, the CMs of a cluster transmit their packets to
the CH. For example, a sensor node ‘‘a’’ transmits its packets
to its CH ‘‘b’’ as shown in Figure 2. The transmission radii
of the CMs are equal to the cluster length, which ensures that
CMs can communicate with the CH in one hop. That is

R = li (19)

In inter-cluster transmission, the packets are forwarded to
the BS with the help of the CHs at different levels. The CH
chooses one of its neighbors with theminimumdistance to the
BS and the most energy. As shown in Figure 2, the CH ‘‘b’’
at the q2th level forwards its packets to the CH ‘‘c’’ at the
q3th level with the minimum distance to the BS and the most
energy. Simultaneously, CHs forward their packets uniformly
to the CHs at the adjacent levels by considering load balance.
In this manner, the data packet is forwarded to the BS.

C. CLUSTER MAINTENANCE
CH rotation is an essential process ensures to balance the
energy consumption of nodes. The rotation frequency and
rotation strategy are the key points. This process may be
extremely complex in some routing protocols. Negotiation
among sensor nodes is typically used to select a new CH
with higher remaining energy. Exchanging control packets
among nodes will cause extra energy depletion. The CH is the
manager of a cluster and can obtain the energy information of
its CMs. Thus, in this study, the rotation process starts once

the remaining energy of the CH becomes less than a threshold
f . The value of threshold f can be expressed as

f = T × Eavgc (20)

where, Eavgc is the average remaining energy of cluster mem-
bers in the cluster c, T is a factor related to the rotation
frequency.

There are two strategies usually used to choose a head in a
cluster, which are the CM has most remaining energy or the
CM close to its CH. However, both of these strategies are not
optimal. The former will cause more intra transmission cost,
and the latter will cause the unbalance energy depletion in a
cluster. In this study, both the energy and location information
are considered to elect a new CH, the current CH specifies
a new CH and sends a notification packet to notify the new
CH. Once the new CH receives the notification packet, it
broadcasts the notification packet to notify other CMs and
other CHs at other levels. This process is similar to the cluster
formation phase. In this manner, the complexity of the GCA
is O(1).

D. THE PSEUDOCODE OF GCA
The pseudocode of GCA algorithm is illustrated in Algo-
rithm 1. Before the CH formation process begins, the network
is partitioned into n levels and dw/lke clusters. The state of
node i is the CM in the beginning. Each node chooses the clus-
ter to which it belongs based on its location information. Once
the node is chosen as the CH, then it broadcasts head_msg
to notify other CHs and all of CMs in its cluster. The CM
updates its state and sends join_msg to the CH, and the other
CHs update their neighbor table, which is used in the data
transmission phase. The cluster maintenance process begins
when the energy of the CH is less than a threshold. A new CH
near the cluster center is selected by the old CH in its cluster
with the most energy. The state of the old CH is changed to
be CM. The new CH receives the notify_msg from the old
CH and changes the state into CH, and broadcasts head_msg.
The following cluster maintenance process is similar to the
cluster formation process.

VI. SIMULATION RESULTS
The algorithms RUHEED [24], ACT [30], and ER-HEED
[40] are chosen to evaluate their performancewithGCA.Both
the GCA algorithm and the ACT algorithm use the energy
analysis to form unequal clustering. As to ACT algorithm,
there is a slightly error in the energy analysis model. For
example, the packets generated by the kth-level clusters are
initially forwarded to the k-1th-level. Then, the received
packets and those packets generated by the k-1th-level clus-
ters are forwarded to the k-2th level together. However,
the number of packets is calculated in a different manner
in ACT. In this previous study, the packets transmitted from
the kth level to the k-1th level and those transmitted from
the k-1th-level to the k-2th-level are accumulated when the
receiving load in the k-2th-level is calculated. In this man-
ner, the number of packets calculated is greater than that
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Algorithm 1 Grid-Based Clustering Algorithm
Begin
1 Initialization

The optimal cluster size lk of each level is obtained
based on (17) and (18).

The network is partitioned into [w/lk] clusters at each
level.

Node i judges the cluster ckj to which it belongs based
on its location information.
2 Cluster formation

If node i near the center of the cluster, it will be chosen
as the CH.

State[i]←cluster head.
node i broadcasts Head_msg.
else
node j receives Head_msg
if node j is CH

Updates neighbor table
else State[j]←cluster member
Sends join_msg

end
end

3 cluster maintenance
If the energy of the CH i is below a threshold f .
State[i]←cluster member.
Chooses a node k near the cluster center with the most

energy in its cluster.
Sends notify_msg to node k
End
Node k receives notify_msg.
State[k]← cluster head.
node i broadcasts Head_msg.
end.

obtained in the usual manner. That is, the calculation of
the received load by the CH is not exact, and this error
directly affects the accuracy of the cluster size arrangement.
As for RUHEED, unequal cluster mechanism is achieved
based on competition radius as in [14], that is, the number
of cluster is more than that far away from the BS, multi-
hop transmission is adopted between CHs. As for ER-HEED,
it employs equal cluster mechanism to achieve cluster pro-
cess. The CH rotation process is used in both RUHEED and
ER-HEED. The CH chooses the CM in its cluster with most
remaining energy to be the new CH. The four algorithms
are simulated and the comparison among them is shown as
follows.

A. SIMULATION SETUP
A total of 96 sensor nodes are distributed uniformly in a
120m×80m rectangle area. The BS is located at the coordi-
nate of (0, 40). The initial energy of each node is 0.5J, except
for that of the BS, which has unlimited energy. The initial
transmission radius of each node is set to 30m, and the BS
has a maximum transmission radius that is equal to the length

TABLE 2. Radius or length of the cluster.

of the network. The radius or the length of the cluster in each
level is presented in Table 2. As for GCA and ACT, the size of
cluster is different in each level. The cluster size in RUHEED
is range from 21 to 30. The cluster size is equal to 30 in ER-
HEED. The number of levels is 3 for ACT and 4 for GCA
based on calculations. R0 is set as 30m in both RUHEED
and ER-HEED. In this study, the lifetime indicates the round
when the first dead node appears, that is, the node exhausts its
energy. For cluster-based protocols, the lifetime is defined as
the number of rounds. The definition of round in this study is
a completed data transmission process that begins with data
generation and ends when data are received by the BS. The
goal in this study is to balance the energy consumption and
prolong the network lifetime, if the round when the first dead
node appears is delayed effectively, then our goal is achieved.

FIGURE 3. The value of T .

The optimal value of T is obtained based on Figure 3,
it shows the round when the first dead node appears with the
value of T set from 0.1 to 0.9. It is obviously that the round
when the first dead node appears is latter than others when T
is 0.5. The value of T is related to the CH rotation frequency.
The smaller the value of T , the slowest the CH rotation
frequency, it will cause the phenomenon of unbalance energy
consumption and it will cause more extra control packets
generated and more energy depletion on the contrary. Thus,
the optimal value of T is set as 0.5 in the whole simulation.

B. PERFORMANCE EVALUATION
The average remaining energy is compared among the four
algorithms in Figure 4. The average remaining energy of
sensor nodes in GCA is superior to the other three algo-
rithms. The difference amongACT, ER-HEED andRUHEED
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FIGURE 4. Average remaining energy of nodes.

is small, but the performance of ER-HEED is always the
worst. The result presents that unequal cluster mechanism
outperforms equal mechanism with the simulation situation
in this study. In GCA, the network is partitioned based on
energy analysis which redistributes the network load, and
the CH rotation process pays attention to both the energy
information and location information, thus, the energy con-
sumption balancing is achieved better in GCA than that in
the other algorithms. GCA is better than ACT, because load
analysis is more precise in the former than that in the latter.
There is an intersection of the ACT and RUHEED. Since the
CH rotation process in RUHEED cost more energy than that
in ACT with the operation of the algorithms.

FIGURE 5. The number of dead nodes.

We use the number of dead nodes shown in Figure 5 to
evaluate the characteristic of energy consumption balancing.
The dead node appears the first in ACT, and it appears later in
ER-HEED and RUHEED than that in ACT. In GCA,
it appears the latest among the four algorithms. The result
shows that GCA prolongs the network lifetime effectively.
When the round is 500, there are only 18 dead nodes, which
less than the other three algorithms, As shown in Figure 4,
when the round is 500, the average remaining energy is close
to 0.1J, that is, when 10 percent energy is remained, most

FIGURE 6. The cost of CH election.

of nodes are alive, it is verified the effectiveness of GCA
proposed in this study. Meanwhile, the balance characteris-
tic of energy consumption is the best in GCA, as verified
in Figure 4, which indicates the energy analysis in GCA is
more accurate than that in ACT.

The CH rotation process is different in four algorithms.
In GCA, when the remaining energy of CH is less than half
of the average remaining in its cluster the rotation process
begins. As for ACT, the rotation process begins when the CH
of energy is less than 15% of initial energy. It is different
in ER-HEED that the rotation process works in each round,
the same as RUHEED. Thus, the energy consumption of CH
election in ER-HEED and RUHEED is more than that in
GCA and ACT as shown in Figure 6. When the first dead
node appears, the CH election process is running among all
of nodes. The more the number of clusters, the more energy
the CH election costs, vice versa. Accordingly, it appears
fluctuations when first dead node appears in ER-HEED and
RUHEED. On the contrary, the cost of CH election is less
in GCA and ACT, the rotation process begins only when the
condition is satisfied.

FIGURE 7. Average remaining energy of CHs.

As shown in Figure 7, the average remaining energy of the
CHs in ER-HEED and RUHEED is greater than that of GCA
and ACT. Since the node with the most energy is chosen as
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the new CH in a cluster in ER-HEED and RUHEED. In GCA,
the location information is considered and it pays no attention
to energy information in ACT. The fluctuations appear in four
algorithms due to the rotation process is adopted.

FIGURE 8. The number of CHs.

The number of CHs is investigated among the four algo-
rithms in Figure 8. According to the clustering mechanism
in each algorithm, the number of clusters is decided once
the optimal radius or length of the cluster is obtained in
ACT and GCA. Thus, the number of clusters is always the
same in the whole lifetime. As to ER-HEED and RUHEED,
the number of clusters is changed once the first dead node
appears, the new CHs are elected among all of nodes, and the
number of CHwill reduce with the remaining of energy or the
number of nodes is decreased.

An ideal cluster head is considered as close to the center of
a cluster, and the average distance between the CH and it CMs
will be the minimum. It will spend approximately 15% less
energy which is verified in [39]. But the energy information
should be used as a reference when rotating the CH just as
in GCA. However, in ER-HEED and RUHEED, it only pays
attention to the energy information, and in ACT, the location
information is the only parameter considered for CHs selec-
tion. Based on the above analysis, Figure 9 shows that the
distance between the CH and CM is bigger in ER-HEED than
the other three algorithms. The number of CH in RUHEED
is more than that in ER-HEED as shown in Figure 8, thus,
the distance in RUHEED is smaller than that in ER-HEED.
The same result can be found between GCA and ACT. The
distance between the CH and its CM is the minimum in GCA
and hence the energy consumption of intra transmission is the
least among the four algorithms.

In IIoT, the requirement of node density is inconsistent
according to different production modes. In the following
experiments the node density is observed with the size of
the monitored area fixed. The number of nodes is added
to 100, 200 and 300 gradually. As Figure 10 shown, with
the increasing of the number of nodes, the network lifetime
shortens. Because the number of packets increases with the

FIGURE 9. The average distance between CM and CH.

FIGURE 10. The round when the first dead node appears with changing
the number of nodes.

number of nodes added, the energy consumption of nodeswill
speed up. It is obviously that the network lifetime of GCA
is superior to the other three algorithms. But the difference
among the other three algorithms is not clearly. But when
the node increases, the network lifetime of ER-HEED and
RUHEED drops fast, because the cost of the CH election will
increase with the number of nodes grows.

Figure 11 shows the number of dead nodes in each algo-
rithm when the number of nodes is changed. In each case,
the number of dead nodes in GCA is much less than that
in the other three algorithms. And the round when the dead
node appears is ahead when the number of node increases as
the CH undertakes more packets. Similarly, when the number
of nodes increases, the performance of ACT is superior to
that of ER-HEED and RUHEED as shown in Figure 11. The
remaining energy of CH is shown in Figure 12, the perfor-
mance of ER-HEED and RUHEED outperform GCA and
ACT regardless of the number of node. In ER-HEED and
RUHEED, they choose a new CH with most energy among
nodes at higher frequency. With the algorithms running, the
difference among GCA, ER-HEED and RUHEED is small,
because the energy consumption of nodes in GCA is more
uniform.
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FIGURE 11. Number of dead nodes when the number of nodes is
changed.

FIGURE 12. The average remaining energy of the CH when the number of
nodes is changed.

For showing the variation tendency obviously, we present
the cost of the CH election from the 200 rounds to 300 rounds
in Figure 13. The variety of energy consumption fluctuates
obviously. For each algorithm, the cost of cluster election
increases with the number of node grows. Clearly, the CH
rotation frequency in ER-HEED and RUHEED is higher
than that in GCA and ACT. As for considering the energy
information and distance information, the elected new CH
in GCA is more ideal than that in other algorithms, thus,
the rotation frequency in GCA is the lowest among the four
algorithms.

In the IIoT, the scale of network is changing with the
industrial production scale. Thus, the size of the monitored
area is extended gradually with node density fixed in the

FIGURE 13. The cost of CH election when the number of nodes is
changed.

FIGURE 14. The round when the first dead node appears with changing
the size of the area.

FIGURE 15. The average remaining energy of nodes when the area is
changed.

following experiments. The network lifetime is shown
in Figure 14. The initial energy of node is set as 2J. There
is no doubt that the network lifetime shortens when the size
of the monitored area extends. The network lifetime of GCA
is always superior to the other three algorithms, but the dif-
ference lessens gradually with the size of the area extends.
Thus, as to large scale of network, the performance of GCA
needs to be improved further.

Figure 15 illustrates the remaining energy of nodes when
the size of the area extends. As the node density is fixed,

13126 VOLUME 6, 2018



J. Zhang et al.: GCA via Load Analysis for IIoT

the number of nodes tends to grow at an exponential rate.
Thus, the speed of energy consumption is fast when the size
of area increases gradually. However, the remaining energy
of GCA keeps advantage among the four algorithms. At the
same, the performance of ER-HEED and RUHEED drops
fast as the size of area extends. The result indicates that the
CH rotation process influence the performance of algorithm
distinctly with the number of nodes increases.

VII. CONCLUSION
IIoT is seen as the next industrial revolution that will improve
the industrial productivity greatly. In this study, we focus on
the problem of energy usage imbalance that occurs in cluster-
based routing protocols in IIoT and present a new solution
to this problem. Numerous works based on optimizing the
number of CHs, fuzzy sets, or completive radii have been pro-
posed to achieve balancing energy consumption. However,
load distribution fundamentally affects energy consumption.
We present a precise load analysis model to guide cluster size
adjustment in this study and prove that the cluster near the BS
should be smaller than that far from the BS. We also analyze
the total energy consumption of a network. The comparison
among GCA, ACT, ER-HEED and RUHEED is shown in
Section 6. The death time of the first sensor node is delayed
effectively in GCA. The performance of GCA is superior to
the other three algorithms when the node density increases
and the size of the monitored area extends. When it comes to
large scale network, there is still much room for improvement
in GCA. Our strategy is not only suitable for IIoT but also
for numerous applications that require sensor nodes to collect
data periodically, such as in environmental monitoring. Our
future work will focus on the type of event trigger for IIoT.
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