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ABSTRACT We propose automatic contrast-limited adaptive histogram equalization (CLAHE) for image
contrast enhancement. We automatically set the clip point for CLAHE based on textureness of a block.
Also, we introduce dual gamma correction into CLAHE to achieve contrast enhancement while preserving
naturalness. First, we redistribute the histogram of the block in CLAHE based on the dynamic range of each
block. Second, we perform dual gamma correction to enhance the luminance, especially in dark regions
while reducing over-enhancement artifacts. Since automatic CLAHE adaptively enhances contrast in each
block while boosting luminance, it is very effective in enhancing dark images and daylight ones with
strong dark shadows. Moreover, automatic CLAHE is computationally efficient, i.e., more than 35 frames/s
at 1024 × 682 resolution, due to the independent block processing for contrast enhancement. Experimental
results demonstrate that automatic CLAHE with dual gamma correction achieves good performance in
contrast enhancement and outperforms state-of-the-art methods in terms of visual quality and quantitative
measures.

INDEX TERMS CLAHE, luminance enhancement, contrast enhancement, gamma correction, dark image,
over-enhancement.

I. INTRODUCTION
Image contrast enhancement is the key technology to improve
visual quality of digital images. It has been widely used
in computer vision, pattern recognition, medical imaging,
remote sensing imaging and computational photography.
Poor image quality is caused by many factors: Poor image
sensors, non-uniform exposure, short shutter cycle, and weak
ambient light (weather conditions such as heavy clouds, fog,
and lack of sunlight or night scenes). Images captured under
these circumstances contain contrast distortions, color fading,
and low intensity. Above all, captured images under low
light condition often have the characteristic of poor dynamic
range, low contrast, and strong noise. In practice, the low light
condition would result in confusions of textures and objects,
poor performance of detection, segmentation and annoying
visual experience. For better image quality, it is required to
enhance the contrast of dark images.

In general, image enhancement methods are classified
into three categories [1]: Non-linear transfer function-based
schemes, histogram-based techniques, and frequency domain

methods. Non-linear transfer functions, such as gamma cor-
rection and logarithm mapping, directly modify the pixel val-
ues based on regulation [2]. Due to their easy adjustment and
efficient implementation, non-linear transfer functions are
commonly used for contrast enhancement. Among the non-
linear transfer functions, gamma correction, which effectively
represents the properties of the human visual system (HVS),
has been widely used in the past several decades. Gamma
correction modifies the digital values of dark images to be
comfortable for human eyes. Histogram modification trans-
forms a uniform distribution of the gray levels for image
contrast enhancement [3], [4], which achieves good perfor-
mance with low computational complexity. The histogram
of an image indicates the relationship between gray levels
and their corresponding frequency. The histogram of a gray
image P( j) is expressed as follows:

P(j) =
nj
Num

, j = 0, 1, . . . ,L − 1 (1)

where j denotes the gray level of an image, nj is the number of
pixels in the gray level j, and Num is the total number of the
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image pixels. It is obvious that the histogram is the probability
distribution function of j. Based on P(j), histogram equaliza-
tion (HE) is performed as follows:

sk = T (k) = (L − 1)
∑k

j=0
P(j) (2)

where sk stands for the mapping function T (k) and maps
each pixel value k of the input image into sk ; L is the
dynamic range of the output image. The inherent shortcoming
of HE is over-enhancement in images with large smooth
area, which results in unnaturalness and wash-out appear-
ance. Dark images captured under low light condition contain
large smooth area with a narrow dynamic range, and thus
HE causes over-enhancement after contrast enhancement.
During a couple of decades, several refinement approaches
have been proposed, e.g. brightness preserving bi-histogram
equalization (BBHE) [5], equal area dualistic sub-image
histogram equalization (DSIHE) [6], and minimum mean
brightness error bi-histogram equalization (MMBEBHE) [7].
To overcome the problems of conventional HE, Celik and
Tjahjadi [8] used a Gaussian mixture model (GMM) to model
the intensity distribution.

GMM plays a role in obtaining different intervals corre-
sponding to different regions of the input image. Cheng and
Huang [9] proposed a method based on histogram modifica-
tion and bilateral Bezier curve (BBC). This method utilized
Bezier curve to modify the CDF for smoother results. How-
ever, if the slope of the CDF at dark regions was excessively
small, under-enhancement in dark regions was inevitable due
to the property of the Bezier curve. Instead of using the
first-order statistics, some researchers investigated exploiting
the spatial information in images. Contextual and variational
contrast enhancement (CVC) [10] applied a 2-D histogram
to adjust different images, and thus images with high con-
trast were enhanced not as much as those with low contrast.
Shu and Wu [11] employed a joint probability with spa-
tial information to overcome the limitation of the histogram
in contrast enhancement. These two methods [10], [11]
achieved better performance in contrast enhancement, but
caused under-enhancement in dark regions. Thus, they are not
suitable for image enhancement of non-uniform illumination.

A pivotal issue is to preserve both naturalness and
features in image enhancement without under(over)-
enhancement. Multiple segmentation approaches divide the
histogram of the input image into several non-overlapping
sub-histograms using mean or median values as thresh-
old [12]–[15]. Exposure-based sub-image histogram equal-
ization (ESIHE) [12] and median-mean based sub-image
clipped histogram equalization (MMSICHE) [13] redis-
tributed the histogram by setting clip points, while segment-
selective dynamic histogram equalization (SSDHE) [14]
and segment dependent dynamic multi-histogram equaliza-
tion (SDDMHE) [15] adjusted the dynamic range by an
expansion strategy. In practice, they successfully performed
contrast enhancement, but noise was also enhanced.

Contrast limited adaptive histogram equalization (CLAHE)
overcomes the over-enhancement problem of HE by

minimizing noise-like artifacts in homogeneous regions.
In CLAHE, the image is partitioned into equally-sized
rectangular blocks, and HE is performed in each block.
Based on CLAHE, many studies have been done for image
contrast enhancement [16]–[18]. Artur et al. [1] proposed
low light image enhancement based on the statistics of
the wavelet coefficients. In their method, they performed
CLAHE for contrast enhancement in the low-pass sub-band.
They achieved good visual quality with enhancement of low
light images. However, the entire luminance of the enhanced
image still looks very dim especially in dark regions. For the
low light image enhancement, the key factor is to enhance
the whole luminance while preserving details. Thus, it is a
promising solution to combine non-linear transfer function
and histogram modification for boosting the intensity while
increasing the local contrast. Huang et al. [19] proposed
the adaptive gamma correction with weighting distribution
(AGCWD). They calculated the gamma parameter using
the probability density function (PDF) which denotes the
histogram of the image. AGCWD achieves better results than
simple HE-based methods or gamma correction schemes.
However, the tone of dark regions was not preserved well.
Building off the adaptive gamma correction (AGC), Huang
and Chen [20] designed hardware architecture with low
complexity. Chhaya and Neeraj [21] combined AGC with
range limited bi-histogram equalization (RLBBHE). They
firstly performed RLBBHE to enhance the contrast as well as
preserve the luminance. Then, for luminance enhancement,
they conducted adaptive gamma correction based on the
adjusted histogram. However, the same problem exists in
AGC-based methods because they are not robust when the
input image contains various objects with different gray
levels. Thus, it is required that we perform gamma correction
to adjust the overall luminance and use local HE to enhance
the local contrast.

In this paper, we propose automatic CLAHE for image
contrast enhancement with dual gamma correction. We adap-
tively set the clip points based on block textureness in
an image. Also, we introduce dual gamma correction into
CLAHE to compensate for contrast distortions. The combi-
nation of CLAHE and dual gamma correction successfully
achieves good perceptual quality. First, we redistribute the
block histogram in CLAHE using the clip limit points. Sec-
ond, we enlarge the luminance of image blocks by applying
the first gamma correction γ1. Third, when the image block
contains a large dynamic range, we select the second gamma
correction γ2 to compensate for dark regions while avoiding
over-enhancement at bright regions. Since automatic CLAHE
adaptively enhances the contrast and details of each block in
images, it is very effective in enhancing dark images and day-
light ones with strong dark shadows. Compared with existing
methods, our main contributions are as follows:

1) We introduce dual gamma correction in CLAHE for
luminance and contrast enhancement;

2) We adaptively set the clip points in CLAHE based on
the dynamic range of each block in images;
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FIGURE 1. Whole framework of CLAHE.

FIGURE 2. Histogram redistribution and bilinear interpolation within
blocks. (a) Clip point and redistribution. (b) Bilinear interpolation.

3) We achieve low computational complexity using
the independent block processing for contrast
enhancement, i.e. more than 35 frames/sec at 1024 ×
682 images. The rest of this paper is organized as fol-
lows. Section II briefly reviews CLAHE. In Section III,
we describe the proposed method in detail. We provide
our experimental results and compare them with those
of some state-of-art methods in Section IV. Finally,
we make conclusions of this paper in Section V.

II. CLAHE
As shown in Fig. 1, the CLAHE pipeline contains 5 main
procedures. First, the image is decomposed into equally-sized
rectangular blocks, and histogram adjustment is performed
in each block. Histogram adjustment includes histogram cre-
ation, clipping, and redistribution. Then, the mapping func-
tion is obtained by the cumulative distribution function (CDF)
of the clipped histogram. Finally, bilinear interpolation is
performed between the blocks to remove possible block arti-
facts. CLAHE is different from the traditional HE in limiting
the contrast by a clip point to cut off the peak value in the
histogram of each block. The clipped pixels are redistributed
to each gray level. The higher the clip point is, the more the
contrast is enhanced as shown in Fig. 2(a). The clip point is
calculated as follows:

β =
M
N

(
1+

α

100
Smax

)
(3)

where M is the number of pixels in each block, N is the
dynamic range in this block, Smax is the maximum slope,
and α is the clip factor. When α is closed to 0, the clip point
would be M /N so that the pixel in this block would be a
constant. As α is approaching to 100, the contrast is enhanced
in a large degree. Thus, the clip point is the key factor to adjust
the contrast enhancement. Based on CDF, we get a mapping

function to remap gray levels of image blocks as follows:

cdf (l) =
∑l

k=0
pdf (l) (4)

T (l) = cdf (l)× lmax (5)

where T (l) is the remapping function; l is the pixel gray level,
and lmax is the maximum pixel value in the block. Based on
CDF of the redistributed histogram in each block, we get
different remapping functions. To prevent blocking artifacts,
each pixel value is interpolated from the mapping functions
in the surrounding blocks as shown in Fig. 2(b). Points a, b,
c, and d are the center pixels of the four blocks, where p is
an arbitrary pixel surrounded by the four blocks. We get the
remapped pixel p by bilinear interpolation as follows:

T (p(i)) = m · (n · Ta · p(i)+ (1− n) · Tb · p(i))

+ (1− m) · (n · Tc · p(i)+ (1− n) · Td · p(i)) (6){
n = (xb − xp)/(xb − xa)
m = (yc − yp)/(yc − ya)

(7)

where T (·) denotes the remapping function; p(i) is the value
of an arbitrary pixel i with coordinate (x, y). The interpola-
tion step removes blocking artifacts. Due to the independent
processing of blocks, CLAHE achieves low computational
complexity for contrast enhancement.

FIGURE 3. CLAHE results according to different clip points where
α = 100, Smax = 1,2,3,4,5,6 (left to right, top to bottom).

III. PROPOSED METHOD
Although CLAHE has a good performance in contrast
enhancement, it is limited by strong cast shadows when we
are processing dark images. Fig. 3 shows the results by
CLAHEwith different clip points. As the clip point increases,
the luminance is enhanced more. However, this luminance
enhancement causes over-enhancement in contrast. Thus,
the global clip point is not suitable for the enhancement of
dark regions. On the other hand, blocks with uniform gray
level distribution, i.e. homogeneous regions such as sky and
ground, are likely to be processed with a low clip point
by (19). Thus, once they are enhanced, halo artifacts appear
around image details. On the contrary, the non-uniform block
needs the higher clip point so that the texture and details
would be effectively enhanced. In image enhancement, it is
required to keep its tone. Obviously, CLAHE is not robust
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enough in boosting the pixel values. Hence, adaptively setting
the clip point is of importance in image enhancement. In (21),
lmax is set to a fixed value, i.e. 255 (8 bits). In this case,
the very dark regions cannot be effectively enhanced in this
way. Thus, it is required that lmax be set a larger value in
certain dark blocks. To adjust the dynamic range of each
block, we adopt gamma correction for lmax. In this work,
we propose automatic CLAHE for image contrast enhance-
ment that performs gamma correction on each block while
adaptively setting the clip point according to the content.

A. CONTENT ADAPTIVE CLIP POINT
In (3), the clip factor α and the maximum slope Smax are
used to determine the clip points. We adaptively set different
blocks to appropriate clip points, in the manner of assigning
homogeneous regions to low clip points and texture blocks to
high ones.

The average gray value and standard deviation represent
textureness of a block. Based on them, the block with a larger
dynamic range is assigned to a higher clip point value. Thus,
we set the clip point adaptively as follows:

β =
M
N

(
1+ P

lmax

R
+

α

100

(
σ

Avg+ c

))
(8)

where σ is the standard deviation of the block; Avg is mean
value; and c is a small value to avoid division by 0. The more
textural the block is, the bigger σ /Avg is, which is related to a
large clip point; lmax is the maximum value in the block and
R represents the entire dynamic range of the image, e.g. 8 bit
images, R = 28 − 1 = 255; P and α are parameters to
control the weights of the dynamic range and entropy terms,
respectively. Fig. 4 shows different pixel patches and their
corresponding clip points in the histogram. Notice that the
textural region is assigned to a large clip value, and thus is
enhanced in a large degree, and the vice versa.

FIGURE 4. Content adaptive histogram adjustment.

B. DUAL GAMMA CORRECTION
Just-noticeable difference (JND) is the minimum difference
to be perceived by HVS. We cannot perceive details in dark
regions due to the high JND threshold at low intensity [22].
Gamma correction, which is constrained by the parameter

γ (0 < γ < 1) stretches the difference between gray levels
in dark regions. In this case, details in dark regions are
enhanced. Gamma correction is formulated as follows:

T (l) = lmax

(
l

lmax

)γ
(9)

In (9), T (l) enhances the low intensity pixels, and the
smaller γ is, the more the pixel values are improved. How-
ever, when the pixel values are transformed by gamma cor-
rection, pixels in different regions exhibit the same change
by the fixed parameter. Although local gamma correction is
used, it causes contrast distortions. In this work, we propose
dual gamma correction, and introduce it into the CLAHE
framework to compensate for contrast distortions. We first
define an enhancement weight for the global gray levels of
blocks by gamma correction, i.e. γ1, as follows:

Wen =

(
Lmax

Lα

)1−γ1
(10)

where Lmax is the maximum gray value of the image; and
Lα is the reference gray value. Similar to the median value
in [13], we empirically set Lα to the gray level where the
cumulative density function is 0.75. Next, we obtain the
enhancedmaximum local l ′max by theweighting functionWen.
We replace lmax in (21) with l ′max to adjust the dynamic range
of the block. Thus, we get the output mapping function T1(l)
as follows:

l ′max = lmax ×Wen (11)

T1(l) = l ′max × cdf (l) (12)

We combine the first gamma correction into the CLAHE
framework to prevent tone distortions and over-enhancement.
After conducting the first gamma correction in CDF of
CLAHE, the image luminance is boosted while the original
image features are preserved. It is very effective in enhancing
dark regionswith textures. However, when the image contains
large portion of very dark regions and bright regions together,
the under-enhancement problem happens in dark regions. The
reason is that γ1 mapping curve-based CLAHE increases the
contrast without considering content information. To over-
come this shortcoming, we perform the second gamma cor-
rection for contrast enhancement.

The second gamma correction, i.e. γ2, acts as the mini-
mum threshold for contrast enhancement as shown in Fig. 5.
We define the second gamma correction function and the final
mapping function as follows:

Gamma (l) = Lmax ×

(
l

Lmax

)
2

If r > Dthreshold ,T = max (T1 (l) ,Gamma (l))

else,T = Gamma(l) (13)

where T1(l) is CLAHE with γ1 mapping function, Toutput (l)
is the final mapping function; r denotes the dynamic range
of the image block, e.g. when the dynamic range of a block
is [70 ∼ 150]; and Dthreshold is the predefined threshold.
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FIGURE 5. Dual gamma correction. (a) Adjusted transform function by
dual gamma correction. (b) Mapping curve adjustment and correction
results in different regions by (a).

When the dynamic range of the image block is larger than
Dthreshold , we perform CLAHE with dual gamma correc-
tion. In this step, when the automatic CLAHE curve with
γ1 mapping is lower than γ2 mapping curve, we select γ2
mapping curve for contrast enhancement. We increase the
contrast in dark regions by luminance enhancement while
constraining the contrast enhancement in bright regions.
In [19], AGCWD provides an idea to automatically adjust
gamma, which defines a weighting distribution (WD) func-
tion to adjust the histogram as follows:

pdf ω(l) = pdf max ×
pdf (l)− pdf min

pdf max − pdf min
(14)

where pdfmax and pdfmin are the maximum and minimum
values of the histogram, respectively. Thus, the CDF with
weighting distribution is obtained as follows:

cdf ω(l) =
∑l

j=0
pdf ω(j)/

∑
pdf ω(l) (15)

where
∑
pdf ω(l) is the sum of pdf ω. Finally, AGCWD is

formulated as follows:

TAGCWD(l) = lmax(l/lmax)1−cdf ω(l) (16)

In (16), cdfω(l) is non-decreasing, and thus 1-cdfω(l) is
monotonically decreasing. That is, the dark regions may have
larger gamma than the bright regions. In the step of tone

mapping, the smaller the gamma is, the more the intensity
is improved. Obviously, in dark regions, the uncontrollability
of gamma may cause under-enhancement. It would be better
if gamma is an increasing function, and thus we reassign
γ1 and γ2 as follows:

γ1 =
ln (e+ cdf (l))

8
(17)

γ2 =
1+ cdf ω(l)

2
(18)

where e is a constant. In this function, γ1 and γ2 are increased
by l, and thus are limited in a appropriate scope to avoid
the under-enhancement in dark regions. In bright regions,
γ2 is slowly close to 1, which makes the result avoid over-
enhancement in bright regions. Thus, this setting for γ1 and γ2
is more suitable for images with non-uniform illumination.
Fig. 5 shows the adjusted transform function by the dual
gamma correction and their results in different regions by
adjusting the transform function. As shown in the figure,
γ1 boosts the CLAHE mapping curve (the blue line), while
γ2 acts as a threshold. The mapping part below γ2 mapping
function is replaced by γ2 curve. In the very low levels,
γ2 mapping function is very effective in dealing with the
under-enhancement problem, while in the relatively high
value regions, γ2 mapping function can smooth the trans-
form curve. Thus, the image blocks with dark intensities
are successfully enhanced while preserving tones in bright
regions. As shown in Fig. 5(b), in the patch of the car plate
number (first row), the histogram is uniformly distributed,
and CLAHEwith γ1 is selected to enhance the contrast. In the
patch of the sculpture region (second row) whose histogram
is concentrated to the low intensities, γ2 mapping function
is selected to boost the pixel values. In the relatively high
intensity, i.e. bright region, the CLAHE mapping curve is
selected, and we get the good contrast. In the sky with cloud
region (third row), γ2 mapping function is selected to prevent
over-enhancement, i.e. if the CLAHE curve is used, it would
cause over-enhancement. In the patch of dark tiled roofs with
bright sky (fourth row), the histogram is divided into the
extremely low and high intensities. In the low intensity, i.e.
dark regions, the CLAHE curve is selected to enhance the
contrast, while the luminance remain unchanged by γ2 map-
ping function in the high intensity, i.e. bright regions. The
main purpose of the dual gamma correction is to enhance the
contrast without introducing any artifacts. The γ2 mapping
curve is an efficient supplemental function to adjust contrast
while removing over-enhancement artifacts.

IV. EXPERIMENTAL RESULTS
We perform experiments on a PC with Core Duo 2.33 GHz
CPU and 4G RAM using Visual Studio 2010 and Windows 7
operation system. For the tests, we use 5 dark images with a
very dark tone (Carnival, Car, Basketball, Campus, Memo-
rial Church), and two daylight images with strong shad-
ows (DSCN and Alley). All test images are normalized to
8 bits, i.e. 0 ∼ 255. The test images have the size from
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FIGURE 6. Test images for experiments: Carnival, Car, Basketball,
Campus, Memorial Church, Alley, and DSCN.

720 × 480 to 1368 × 1824 as shown in Fig. 6. We com-
pare the proposed method with five other methods: CLAHE,
AGCWD [19], ESIHE [12], MMSICHE [13], and channel
division (ChDiv) [23]. We select CLAHE and AGCWD for
comparison because the proposed method improves CLAHE
by introducing adaptive gamma correction. Similar to the
proposed method, ESIHE and MMSICHE also redistribute
the histogram by setting clip points. ESIHE and MMSICHE
set the clip point based on mean or median value. Thus,
we select them for performance comparison. Moreover, we
select ChDiv because it also utilizes a ‘‘divide mechanism’’
which decomposes the dynamic range into three channels of
dark, middle and bright. In the proposed method, the block
size in CLAHE is 32 × 32. We empirically set P = 1.5 and
α = 100 in (8); and Dthreshold = 50 in (13).

A. VISUAL COMPARISONS
Fig. 7 shows visual comparisons between contrast enhance-
ment results by the six methods. CLAHE enhances both

pixel values and contrast of images, but causes halo arti-
facts. Halo artifacts are from over-stretching of the his-
togram, which are very obvious along the strong edges
(see Figs. 7(a), 8(a), 9(a), 10(a), and 13(a)). They are
caused by under (over)-enhancement on low (high) val-
ues when image blocks contain strong edges. Fortunately,
in the proposed method, dark regions in images are
successfully enhanced, and halo artifacts are effectively
removed by γ2 correction. Moreover, CLAHE produces over-
enhancement results in smooth regions (see the ground
in Figs. 8(a), 11(a) and 12(a)) due to the improper clip points
in blocks. However, the proposed method adaptively set the
clip points based on textureness of each block, thus avoiding
the over-enhancement problem. Moreover, our method pro-
duces a natural-looking color tone in contrast enhancement.
AGCWD yields relatively good results, which is very robust
because of using weighting distribution on the gamma correc-
tion. ESIHE and ChDiv have almost the same performance
in visual quality although they have different mechanisms.
If there is difference, ESIHE focuses more on the contrast
enhancement compared with ChDiv (see Figs. 8(c) and 8(e)).
MMSICHE enhances contrast of images, but is not appli-
cable to dark images. Dark regions are under-enhanced, i.e.
the details of building in Fig. 7(d) are invisible and the
plant in Fig. 8(d) is almost completely degraded. MMSICHE
makes the result look unnatural due to the excessively sharp
contrast (see Fig. 8(d)). Also, in Fig. 9(d), background regions
become unnatural due to the over-enhancement while the
basketball and teddy bear (foreground) are not perceivable.
However, the proposed method produces a natural-looking
color tone in the results. CLAHE produces unnatural results
degraded by halo artifacts, but the other four methods out-
perform CLAHE in keeping details in dark regions. Note that
much tone distortion is not acceptable in image enhancement.

FIGURE 7. Experimental results in Carnival. (a) CLAHE. (b) AGCWD. (c) ESIHE. (d) MMSICHE. (e) ChDiv. (f) The proposed method.
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FIGURE 8. Experimental results in Car. (a) CLAHE. (b) AGCWD. (c) ESIHE. (d) MMSICHE. (e) ChDiv. (f) The proposed method.

FIGURE 9. Experimental results in Basketball. (a) CLAHE. (b) AGCWD. (c) ESIHE. (d) MMSICHE. (e) ChDiv. (f) The proposed method.

The four methods achieve a good balance between con-
trast enhancement and naturalness. However, in terms of the
robustness on both daylight scenes with dark shadows and
dark images, the proposed method outperforms the others.
As shown in Figs. 7(b), 8(b), 8(c), and 8(d), AGCWD,
MMSICHE, and ChDiv are not effective because the entire
intensity of the original image is low, i.e. dark images.
In general, the proposed method produces visually-pleasing
color appearance after contrast enhancement by achieving
artifact-free contrast enhancement. Compared with the five
other methods, the proposed method performs good contrast
enhancement especially when the test images contain com-
plex objects and light conditions.

B. QUANTITATIVE MEASUREMENTS
For more quantitative measurements, we choose four image
quality metrics (IQM): Total variation (TV) [24], abso-
lute mean brightness error (AMBE) [25], EME [26],
and CQE [27].

(1) TV measures the statistics of noise in an image. Once
the contrast of images is enhanced, noise is also amplified,
especially in dark images. Thus, it is required to evaluate
noise exposures. In our evaluation procedure, we obtain
l1-based TV as follows:

TV=
1

(m−1)(n−1)
(|I(x,y)−I(x+1,y)|+|I(x,y)−I(x,y+1)|) (19)
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FIGURE 10. Experimental results in DSCN. (a) CLAHE. (b) AGCWD. (c) ESIHE. (d) MMSICHE. (e) ChDiv. (f) The proposed method.

FIGURE 11. Experimental results in Memorial Church. (a) CLAHE. (b) AGCWD. (c) ESIHE. (d) MMSICHE. (e) ChDiv. (f) The proposed method.

FIGURE 12. Experimental results in Campus. (a) CLAHE. (b) AGCWD. (c) ESIHE. (d) MMSICHE. (e) ChDiv. (f) The proposed method.

where m, n are the height and width of image I ; (x, y) is the
pixel coordinate. An image with strong noise has a high score
in terms of TV, i.e. lower TV indicates lower noise.

(2) AMBE reflects the change of gray levels between the
input image and the enhancement result. We obtain AMBE

as follows:

AMBE = |Xµ − Yµ| (20)

where Xµ and Yµ are the means of the original image and
its enhanced result, respectively. AMBE is a measure of
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FIGURE 13. Experimental results inAlley. (a) CLAHE. (b) AGCWD. (c) ESIHE. (d) MMSICHE. (e) ChDiv. (f) The proposed method.

TABLE 1. Objective evaluation results in terms of TV, AMBE, EME, and CQE.

luminance change and directly related to average luminance.
In some cases, lower AMBE indicates better performance
because high values might be caused by an excessive change
of gray levels. Such excessive change causes unnatural look-
ing results. However, for dark images, it is required to boost
the entire gray levels, which means that we need proper
AMBE that reflects a balance between enhancement and
perception. In our experiments, AMBE is normalized by the
maximum value of 255.

(3) EME is a measure of image enhancement which finds
the average ratio of the maximum to the minimum intensi-
ties in decibels. We replaced LTG with EME because many

parameters need to be manually set in LTG, which is not
very objective. When EME takes the average ratio in each
block over the entire image, it considers the fact that the
relationship between stimulus and perception is logarithmic,
which is suitable for human visual perception.

EME =
1

k1k2

k2∑
l=1

k1∑
k=1

20 log
IWmax;k,l

IWmin;k,l + c
(21)

where the image is divided into k1 × k2 blocks; c is a small
constant to avoid dividing by 0; IWmax;k,l and I

W
min;k,l are the

maximum and minimum values in (k,l) block, respectively.
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TABLE 2. Runtime of the proposed method.

In our experiments, we set k1 = k2 = 32 and c = 0.0001.
Higher EME indicates higher image quality.

(4) CQE [27] is a no reference color image quality measure
metric consists of colorfulness, sharpness, and contrast as
follows:

CQE = m1 × col + m2 × shar + m3 × con (22)

col = 0.02× log
(

σ 2
α

|µα|
0.2

)
× log

(
σ 2
α

|µβ |
0.2

)
(23)

con =
1

k1k2

∑k1

l=1

∑k2

k=1

(
log

(
Imax,k,l+Imin,k,l

Imax,k,l−Imin,k,l

))−0.5
(24)

shar =
∑3

c=1
λc

1
k1k2

∑k1

l=1

∑k2

k=1
log

(
Imax,k,l

Imin,k,l

)
(25)

where m1, m2, and m3 are parameters in the model; α and β
are opponent red-green and yellow-blue spaces, respectively;
µ and σ stand for the mean and variance of α and β, respec-
tively; λc is the constant in the color channel; k1 and k2 are
the number of blocks in each direction [27].

Among the four measures, EME and CQE are consistent
with the properties of the human visual system (HVS). EME
considers the logarithmic relationship between the gray level
and its perception, and thus is able to measure human visual
perception. CQE uses colorfulness, sharpness, and contrast
for image quality assessment that HVS captures visual atten-
tion. Table 1 shows objective evaluations results in terms of
TV, AMBE, EME, and CQE. Although the proposed method
does not provide the best performance in Carnival, Alley, and
Car in terms of TV, it achieves the best average performance
among six methods, i.e. 7.6679. In general, lower AMBE
indicates better performance. However, if we want to see
whether dark regions are perceived well in HVS or not,
higher AMBE is needed to evaluate dark images. On the
other hand, excessively high AMBE is not allowed in image
enhancement. Thus, an optimal trade-off between enhance-
ment and perception is needed. The average AMBE value
of the proposed method (0.1121) is much lower than that of
CLAHE (0.1905) and higher than the other methods, which
indicates that CLAHE causes strong distortion in luminance
while the other methods are not effective in enhancing dark
regions. Thus, the AMBE evaluation results show that the
proposed method successfully enhances dark regions in an
imagewithout excessive luminance change.Moreover, higher
EME reflects better visual quality. Although the proposed
method does not get the highest score in DSCN and Basket-
ball, it achieves the highest average score. In terms of CQE,
ESIHE and MMSICHE performs better than the proposed
method inMemorial andBasketball, but the proposedmethod

outperforms the others in the other images. The proposed
method achieves good performance in color reproduction.
Table 2 shows the average runtime of the proposed method.
On 1024 × 682 image, the proposed method achieves the
speed of 28 msec/image, i.e. more than 35 frames/sec.
This is because the proposed method performs independent
block processing and minimizes the redundancy for contrast
enhancement.

V. CONCLUSIONS
In this paper, we have proposed automatic CLAHE for
image contrast enhancement with dual gamma correction.
We have introduced dual gamma correction into CLAHE to
enhance contrast in an image without tone distortion and
over-enhancement. First, we have redistributed the block his-
togram based on the dynamic range of each block in the
CLAHE framework. Second, we have performed the first
gamma correction γ1 to boost the entire luminance in the
image block. Then, we conduct the second gamma correc-
tion γ2 to adjust the contrast in very dark regions. The
proposedmethod adaptively enhances both contrast and lumi-
nance in local regions, and thus is very effective in enhancing
dark images and daylight ones with strong dark shadows.
Also, its computational complexity is very low due to the
independent block processing for contrast enhancement, i.e.
more than 35 frames/sec at 1024× 682 images. Experimental
results demonstrate that the proposed method outperforms
state-of-the-arts in terms of visual quality and quantitative
measurements.
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