
Received October 31, 2017, accepted December 23, 2017, date of publication January 24, 2018, date of current version March 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2797418

Cross-Correlation of Large-Scale Parameters
in Multi-Link Systems: Analysis Using the
Box-Cox Transformation
GHASSAN DAHMAN 1, JOSE FLORDELIS 2, FREDRIK TUFVESSON 2
1École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
2Department of Electrical and Information Technology, Lund University, 221 00 Lund, Sweden

Corresponding author: Ghassan Dahman (ghassan.dahman@lacime.etsmtl.ca)

ABSTRACT Spatially distributed transmission points connected to the same source, known as distributed
antenna systems, can improve system performance compared with single-link traditional systems. However,
the anticipated gain depends heavily on the cross-correlation properties of the large-scale parameters (LSPs)
of the different links. Usually, measured LSPs—except the large-scale fading—have non-Gaussian distri-
butions. Therefore, in order to study their multi-link cross-correlation properties, scenario- and parameter-
specific ad-hoc transformations are applied, such that the LSPs have Gaussian distributions in the transform
domain [1], [2]. In this paper, we propose using the Box-Cox transformation as a general framework for
homogenizing this conversion step. The Box-Cox transformation is, by nature, not distribution specific;
therefore, it can be used regardless of the empirical distributions of the studied LSPs. We demonstrate the
applicability of the proposed framework by studying multi-link fully-coherent propagation measurements
of four base stations and one mobile station in a suburban microcell environment at 2.6 GHz. The inter-
and intra-link cross-correlation of four LSPs—the large-scale fading, the delay, azimuth, and elevation
spreads—are analyzed and their distributions are modeled. Based on our analysis, it is found that for the
investigated environment: 1) the LSPs of the different links can be modeled using unimodal and bimodal
Gaussian distributions; and 2) the inter- and intra-link cross-correlation coefficients of the different studied
LSPs can be modeled using the Truncated Gaussian distribution. The proposed models are validated using
the Kolmogorov–Smirnov test, and their parameters are provided.

INDEX TERMS Distributed antenna systems, inter-link cross-correlation, intra-link cross-correlation, large-
scale parameters, multi-link systems.

I. INTRODUCTION
Multi-link communications are at the core of many recently
introduced concepts aiming at improving the performance of
future communication systems. Using multiple links enables
the exploitation of the spatial distribution of the communica-
tion nodes over the geographic area of interest. This in turn
allows the system to process the signals of the multiple links
jointly and to improve the quality of communications, where
the performance of multi-link systems is conditioned upon
the parameters of the individual links as well as their joint
statistical properties [3], [4]. Modeling the multi-link cross-
correlation characteristics is a key element for understanding
the joint behavior of the parameters of the different links and
it is therefore essential for the development and evaluation of
new wireless communication systems.

A. RELATED WORK
The inter-link and intra-link correlations of the LSPs have
been investigated in several studies. It was found in [5]–[8]
that the inter-link correlation of the large-scale fading (LSF)
may vary anywhere from very small negligible values to
significant positive values. On the other hand, the inter-link
correlation of the delay spread was reported to be insignif-
icant [7]. It was also found that there is negative correla-
tion between the LSF and the angular spread of the same
link [9], [10]. In [10] and [11], it was reported that, in gen-
eral, the inter-link LSP correlation decreases with increasing
base station (BS) separation angle and/or relative distance.
In [12], the effect of BS antenna heights and distance ranges
on the cross-correlation properties of different links have
been reported. In our previous work [8], the cross-correlation
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properties of the LSF among different links were studied and
a preliminary model was proposed.

Generating channel realizations that have specific cor-
relation characteristics is implemented using different
approaches. In the COST 2100 channel model [13], the con-
cept of common clusters is introduced in order to model the
correlation properties among different links. Where common
clusters—representing the effect of the common interacting
objects among the different links in the propagation environ-
ment—contribute to more than one link and may cause these
links to exhibit a certain correlation [4]. In the WINNER
channel model [1], [2], the correlation of the LSPs is sim-
ulated by generating independent Gaussian random pro-
cesses representing the LSPs and then establishing their
dependence through correlating them. Since, almost all mea-
sured/modeled LSPs (except the LSF, as will be clarified
later) have non-Gaussian distributions, the WINNER model
proposes, after generating the correlated Gaussian realiza-
tions, to transform each LSP using a specific scenario- and
parameter-specific transformation. All the results and meth-
ods of this work are proposed having in mind the WINNER’s
model approach of simulating the correlation among the dif-
ferent links, i.e., generating correlated random processes to
model the dependence of the LSPs of the different links.

B. CONTRIBUTIONS
In our previous work [8], the cross-correlation properties of
the LSF among different links were studied and a preliminary
model was proposed. The LSF has a Gaussian distribution
(in the log domain) [14]. This property makes modeling
its multi-link cross-correlation properties a simple and a
straightforward task.1 However, in [8], we failed to pro-
pose models characterizing the distributions and the cross-
correlation of the other measured LSPs (namely, the delay,
azimuth, and elevation spreads) due to the fact that their
estimates have unknown distributions. This work extends the
results of [8] in two main aspects.
Firstly, we provide a general framework that simplifies

the modeling of the distributions as well as the inter-link
and intra-link cross-correlation properties of the LSPs. The
proposed framework uses the Box-Cox transformation as a
tool for measurement-based statistical modeling of LSPs.
The motivation behind our framework is the simplicity of
modeling such properties when the studied parameters have
Gaussian distributions. Therefore, we propose to apply the
Box-Cox transformation in order to transform the mea-
sured non-normally distributed LSPs to another domain
where they have approximately Gaussian distributions. Then,
in the transform domain, we study the distributions and the
cross-correlation properties of the LSPs of interest. In the
WINNER model [1], these steps are implemented based
on using scenario- and parameter-specific transformations

1Modeling the LSF as a log-normal distribution is a special case of
applying the general transformation we are proposing, i.e., the Box-Cox
transformation as can be seen in (1).

where: 1) to map the LSPs realizations, the inverse of the
cumulative distribution function (CDF) of the Gaussian ran-
dom variable is applied to the Log-Gumble, Log-Logistic and
Log-Normal distributions, and 2) in cases when the required
mapping is unknown, this transformation step is implemented
based on applying the Q-function to the empirical CDF of
the modeled LSP. The framework we propose in this paper is
simpler and more general as the Box-Cox transformation is
by nature not distribution specific.
Secondly, based on exhaustive multi-site fully-coherent

wideband propagation measurements with four BSs, we pro-
vide: 1) Gaussian models (unimodal and bimodal) to capture
the distributions of four different LSPs (LSF, delay, azimuth,
and elevation spreads), and 2) Truncated Gaussian models
that capture the inter-link and intra-link cross-correlation
behavior of the four studied LSPs. All proposed models
are verified using the Kolmogorov-Smirnov (KS) test and
their parameters are provided. We emphasize that, although
the proposed modeling framework is general, the extracted
parameters from our measurements can only be used to
model scenarios that have similar propagation characteris-
tics, i.e., suburban microcell environments as detailed in
section III. On the other hand, some of our findings —in
particular, the effect of interacting objects located close to BS,
which give rise to a bimodal behavior on the LSPs dis-
tributions—carry over to general multi-link scenarios with
full or partial blockage of the signal.

C. ORGANIZATION
The remainder of this paper is organized as follows.
In section II, the formulation of the Box-Cox transformation
is introduced. In section III, the measurement setup and the
measurement scenario are described. In section IV, the meth-
ods used to estimate and prepare the LSPs for further analysis
are detailed. Results on modeling the distributions of the
LSPs of the different links, the inter-link and intra-link cross-
correlation properties of the LSPs are reported in section V.
Finally, the main findings are summarized in section VI.

II. USING THE BOX-COX TRANSFORMATION
To simplify the study and the modeling of the distributions
and the cross-correlations of the different LSPs, we would
like to first find a simple way to transform them to a
domain where they have Gaussian distributions. Then, in the
transform domain, we estimate the parameters of the cor-
responding Gaussian distributions and the cross-correlation
coefficients of the transformed LSPs. In this work we suggest
to utilize the Box-Cox transformation in order to simplify
these modeling steps. The Box-Cox transformation belongs
to the family of power transformations and is defined by [15]:

g(x)(3) =


x3 − 1
3

if 3 6= 0

log(x) if 3 = 0
(1)

where x is the LSP under transformation, 3 is the power
parameter of the Box-Cox transformation indicating the
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power to which all data should be raised. g(x) is the corre-
sponding value of x in the transform domain with approxi-
mately Gaussian distribution.

It is important to mention that the Box-Cox transforma-
tion does not guarantee successful transformation to nor-
mality. Instead, it searches for the best value of the power
parameter (3) such that the transformed data has the high-
est likelihood of being normally distributed. In this work,
successful transformation to normality is verified by using
the KS test [16], a statistical nonparametric test to check
the goodness-of-fit of the transformed data against unimodal
as well as bimodal Gaussian distributions. The KS statistic
quantifies a distance (DLSP) between the empirical CDF of
the sample under test and the CDF of the suggested model.
More explicitly,

DLSP = maxx |F(x)− ZLSP(x)| (2)

where, F(x) is the CDF of the proposed model, and
ZLSP(x) is the empirical CDF of the LSP of interest.

If DLSP is found to be less than a certain defined crit-
ical value that depends on a predefined significance level
of the KS test, then F(x) is considered to successfully pass
the KS test at the specified significance level. In this work,
we perform the KS test at significance level α = 0.05. The
corresponding critical values for DLSP are 1.36/

√
N , where

N is the number of the independent sets of the sample under
test.

III. MULTI-LINK PROPAGATION MEASUREMENTS
Themeasurement campaigns were carried out with the RUSK
LUND channel sounder [17] at 2.6 GHz and a measurement
bandwidth of 40 MHz. The measurements took place at the
campus of the faculty of Engineering, LTH, Lund University,
Lund, Sweden. The measurement environment can be best
characterized as a suburban microcell environment. The cho-
sen setup consists of four transmit BSs, each equipped with a
single vertically polarized antenna element.

The sounding signal is brought to each of the remote BS
locations using radio-over-fiber transceivers. After having
been amplified to a power of 30 dBm, the signal is broad-
casted from each BS antenna element. The signal broadcasted
by the BSs is received by amobile station (MS) equippedwith
64 dual-polarized antenna elements arranged in a cylindrical
configuration. The 512 (4 BSs × 128 MS antenna elements)
transmit-receive channels are sounded in a time-multiplexed
fashion. The data resulting from this operation is referred to
as a snapshot. Please refer to [18] for more details about the
equipment used. The transmit antennas were located outside
the windows at the second and third floors of four different
buildings, which correspond to 5 to 12 m above the ground
level (10 to 20m below the rooftop of surrounding buildings).
The distances among the different antenna sites are between
60 to 200m. The area in themiddle of the selected buildings is
an open area with a small lake surrounded by trees, as shown
in Fig. 1. The measurements took place along a predefined
route circulating the lake, with a total length of about 490 m,

FIGURE 1. Aerial photo of the measurement area. Base station locations
are indicated by labels BS-E (Latitude: 55.711131, Longitude: 13.210225),
BS-S, BS-F and BS-M. The measurement route is plotted in blue color.

TABLE 1. Differences between the two measurement setups.

at a very low walking speed (<0.5 m/s). Depending on the
propagation campaign, the sounder was wheel triggered at
one snapshot per either one or half a wavelength as detailed
in Table 1. In this work, given that we use a distance-
depending triggering mechanism, the collected snapshots are
used to study the spatial variability of the characteristics of
the LSPs as the MS moves on its trajectory and no discussion
on the temporal behavior of the channel is addressed.

The propagation data was collected in two measurement
campaigns. All the reported results and proposed models in
this work are based on analyzing the data of the two cam-
paigns collectively. Both campaigns took place in the same
area, with the same BS locations, and the same MS measure-
ment route. Themain differences between the setup of the two
campaigns are listed in Table 1. The propagation conditions
between the BSs and the MS can be described as obstructed
line-of-sight (OLOS), or non-line-of-sight (NLOS) due to the
trees in the measurement area. It should be noted that the
intensity of the tree blockage varies from one MS position
to another. Line-of-sight (LOS) propagation condition may
occur when the MS is sufficiently close to one of the BSs.
When theMS is far from the BSs, there were still possibilities
of getting the optical LOS cleared between the MS and the

2In Campaign 2, only one Tx element is considered for the analysis in this
work.

3Distance-based trigger. λc is the wavelength at the center frequency.
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different BSs. However, by detailed inspection, it was found
that the first Fresnel zone at these locations was not cleared.
The BSs are named BS-E, BS-S, BS-F and BS-M (see Fig. 1);
and their corresponding links with the MS are named E-Link,
S-Link, F-Link, and M-Link, respectively.

IV. DATA ANALYSIS
A. PREPROCESSING
The raw data obtained from the measurements consist of
the single-input multiple-output (SIMO) transfer functions
of the different links’ channels. After compensating for the
differences in gain among the different links, the links impulse
response estimates (Link-IREs) are obtained. To mitigate
the effect of noise, thresholding based on [19] is applied,
where multipath echoes are declared valid in a specific
delay bin with a probability of false-alarm of one per
5000 snapshots per link. Also, the Link-IREs are sub-
jected to a delay-gating filter, which is implemented using
a 700 m delay-window. This filter eliminates all multipath
components that are 700 m in excess of the Tx-Rx sepa-
ration. Following the recommendations of [20], Link-IREs
with dynamic ranges less than 18 dB are discarded from
any further processing, and the rest are declared as valid
Link-IREs. Then, Space-AlternatingGeneralized Expectation-
Maximization (SAGE) algorithm [21], [22], is applied to each
valid Link-IRE in order to extract the angle-of-arrival (both
azimuth and elevation), complex amplitude, and delay of each
multipath component.

B. ESTIMATION OF THE LSPs FOR EACH LINK
The multipath components resulting from SAGE are used to
estimate the LSPs of the different links using these steps:

1) The measurement route is divided into consecutive
non-overlapping segments. In order to extract and study
the LSPs, we have first to eliminate the effect of small-
scale fading on the extracted parameters. This is done
by averaging the channels’ power profiles over spa-
tial windows (i.e., segments) each with a length of
few/several wavelengths, where the appropriate length
of the averaging window depends on the characteristics
of the measured propagation environment. Based on
the analysis detailed in [23], we found that, for our
measured environment, choosing the segments length
to be 5 wavelengths at the carrier frequency (thus, each
segment corresponds to 5 snapshots of Campaign 1,
or 10 snapshots of Campaign 2, see Table 1) is appropri-
ate to estimate the LSPs of each link. At each segment,
the group of Link-IREs that belong to a specific link
are called a Link-Segment.

2) For each segment, if all the Link-IREs pertaining to the
same Link-Segment are valid (i.e., each has a dynamic
range greater than 18 dB), then it is defined as a
valid Link-Segment. For each link, the total number of
measured Link-Segments is 1685. The total number
of the valid Link-Segments for the E-Link, S-Link,

F-Link, and M-Link are 1331, 1232, 1605, and 985,
respectively.

3) For each valid Link-Segment, the SAGE multipath
components that belong to each link are used to obtain
one set of average power profiles, each consisting of:
an Average Power Delay Profile (APDP), an Average
Power Azimuth Profile (APAP), and an Average Power
Elevation Profile (APEP). This step results in 1331,
1232, 1605, and 985 sets of average power profiles for
the E-Link, S-Link, F-Link, and M-Link, respectively.
Then, each set of average power profiles is used to
estimate one set of the LSPs consisting of: LSF, rms
delay spread (τrms), rms azimuth spread (φrms), and rms
elevation spread (θrms). The procedure of extracting the
LSPs is detailed in the next paragraphs.

The LSF is defined as the power fluctuation over a large
area where the small-scale fading is averaged out. To extract
the LSF for each link, the following steps are followed.
First, for each Link-Segment, its average received power
is estimated by integrating the power of its APDP over all
the delay bins. Then, the obtained average received power
values are plotted against the distances from the MS to the
corresponding BS in double logarithmic scale. Then, for each
link, and for each measurement campaign, a linear regression
is performed according to

Pr(d)dB = Pr(d0)dB − n10log10(d/d0), (3)

where Pr(d)dB is the distance-dependent mean received
power at distance d , d0 is a reference distance, and Pr(d0)dB
is the received power at d0.
The power decay exponent that minimizes the distance

between the data samples and the line in the least squares
sense is n = 3.89. Due to the height difference among the
different BSs, a different offset (i.e., different value for the
term Pr(d0)dB) is calculated for each link in order to find the
best fit according to (3). Fig. 2 depicts the received power esti-
mates from Campaign 1 and their best linear fit for each link.
Please notice that in Fig. 2, because the measurement route
has a round shape, there are two black curves representing
the received power of each link instead of a single curve (i.e.,
for each BS, there are two MS positions within the route that
have the same BS-MS distance).

Finally, the LSF is estimated as the difference, in dBs,
between the received power (with the small-scale fading
averaged out) and Pr(d)dB, (3). Fig. 3 illustrates the obtained
LSF values from Campaign 1 for the four different links
throughout the whole measurement route plotted in color
scale. τrms (ns), φrms (deg.), and θrms (deg.) are calculated
as the second-order central moments of their corresponding
average power profiles [24, p. 113 and 122]. This step results
in 1331, 1232, 1605, and 985 sets of LSPs for the E-Link,
S-Link, F-Link, and M-Link, respectively.

V. RESULTS
The results of this paper are organized as follows.
In section V-A, the values of the power parameter (3) of the
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FIGURE 2. Received power as a function of distance for the four different
BS links extracted from Campaign 1. (a) E-link, (b) S-Link, (c) F-Link, and
(d) M-Link. Received power (black), and linear regression line (red).

FIGURE 3. LSF estimates for the four different links throughout the whole
measurement route extracted from Campaign 1. Each ring represents the
LSF estimates of a single link. Missing points correspond to the invalid
Link-Segments. Base station locations are indicated by labels BS-E, BS-S,
BS-F and BS-M. The gray ellipse represents a group of big trees that
affects the M-Link behavior as will be discussed in section V-A.

Box-Cox transformation that is applied to the different LSPs
are estimated. Then, the empirical CDFs of the transformed
LSPs of the different links are modeled. In section V-B,
models for the inter-link and intra-link cross-correlation of
the LSPs are proposed. In section V-C, the steps suggested to
use the proposed models are listed.

A. MODELING THE EMPIRICAL CDFs OF THE LSPs OF
INDIVIDUAL LINKS
The estimation procedures in the previous section result
in 1331, 1232, 1605, and 985 sets of LSPs estimates for the
E-Link, S-Link, F-Link, and M-Link, respectively. Each set
of LSPs includes estimates of the LSF, τrms, φrms, and θrms for

FIGURE 4. Empirical CDFs of the estimated LSPs of the different links.
(a) LSF, (b) τrms, (c) φrms, and (d) θrms.

a particular valid Link-Segment. Fig. 4 depicts the empirical
CDFs of the LSPs of the different links.

It is clear from Fig. 4 that the distributions of any LSP
vary significantly from one link to another. However, for
simplicity it is widely practiced to collect all the estimates of a
specific LSP from all different links andmodel its distribution
using one set of parameters. Our aim is to find appropriate
models that describe the empirical CDFs of the different LSPs
following two approaches.
• Approach 1: modeling the empirical CDF of the LSP of
interest pertaining to all links, where the estimates of the
LSP of interest from the four different links are gathered
and modeled collectively.

• Approach 2: modeling the empirical CDF of the LSP of
interest of each individual link separately.

It is obvious that Approach 1 reduces the number of
modeling parameters; however, Approach 2 can capture the
differences among the different links, if any. The Box-
Cox-transformed delay, azimuth, and elevation spreads are
denoted g(τrms), g(φrms), and g(θrms), respectively. The val-
ues of their corresponding Box-Cox power parameters are
denoted3τ ,3φ , and3θ . See Table 2. Please notice that there
is no need to perform the Box-Cox transformation for the
LSF because calculating the LSF (following the steps detailed
in section IV-B) is a special case of applying the Box-Cox
transformation with 3LSF = 0.

Figs. 5–8 illustrate the empirical CDFs of the trans-
formed LSPs: LSF, g(τrms), g(φrms), and g(θrms), along with
their unimodal and bimodal Gaussian fits. Subfigures (a) in
Figs. 5–8 correspond to Approach 1, where the estimates
of the LSPs collected from all links are modeled together
using one Gaussian distribution. The rest of the subfigures in
Figs. 5–8 correspond to Approach 2, where the LSPs of
each link are modeled individually. With both approaches,
the empirical CDF of each LSP is modeled as follows.
First, the transformed LSP is modeled using a unimodal
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TABLE 2. The values of the power parameter (3) used in the Box-Cox
transformation.

FIGURE 5. Empirical CDFs of the LSF and their unimodal and bimodal
Gaussian fits. (a) the four links together, (b) E-link, (c) S-Link, (d) F-Link,
and (e) M-Link.

FIGURE 6. Empirical CDFs of g(τrms) and their unimodal and bimodal
Gaussian fits. (a) the four links together, (b) E-link, (c) S-Link, (d) F-Link,
and (e) M-Link.

Gaussian distribution, and then the KS test is performed.
If the unimodal Gaussian distribution passes the KS test, then
the unimodal Gaussian distribution is adopted as a suitable
model. Otherwise, the transformed LSP is modeled using

FIGURE 7. Empirical CDFs of g(φrms) and their unimodal and bimodal
Gaussian fits. (a) the four links together, (b) E-link, (c) S-Link, (d) F-Link,
and (e) M-Link.

FIGURE 8. Empirical CDFs of g(θrms) and their unimodal and bimodal
Gaussian fits. (a) the four links together, (b) E-link, (c) S-Link, (d) F-Link,
and (e) M-Link.

the bimodal Gaussian distribution,4 and again the KS test is
performed. It is found that, in all cases, the bimodal Gaus-
sian distribution passes the KS test. Throughout this work,
we perform the KS test at significance level α = 0.05. The
corresponding critical values for DLSP are 1.36/

√
N , where

N is the number of the sets of LSPs of each link which are
assumed to be independent since N represents the number of
the disjoint segments. Consequently, the values of DLSP are:
0.0373, 0.0387, 0.0339, and 0.0433 for the E-Link, S-Link,
F-Link, and M-Link, respectively. The detailed parameters
of the unimodal and bimodal Gaussian models are listed
in Tables 3-4.

4In this case, the LSP is modeled as a mixture of two normally distributed
random variables, where: the probability of selecting the first (second)
random variable is p1 (1-p1), and the mean and standard deviation of
the first (second) random variable are µ1 (µ2), and σ1 (σ2), respectively.
See Tables 3-4

13560 VOLUME 6, 2018



G. Dahman et al.: Cross-Correlation of LSPs in Multi-Link Systems

TABLE 3. The parameters of the unimodal and bimodal gaussian models
for approach 1 (all links together).

TABLE 4. The parameters of the unimodal and bimodal gaussian models
for approach 2 (individual links).

By studying the plots in Figs 5–8 and the models’ param-
eters in Tables 3-4, the following can be concluded:

1) It is clear from subfigures (a) in Figs. 5–8 that if
Approach 1 is used, i.e., collecting the estimates of
the transformed LSP of interest from all links and
modeling those collected values together, then: a) the
LSF, as expected, is modeled as a zeromean log-normal
distribution with a standard deviation equals to 4.7,
b) g(φrms) is modeled as a unimodal Gaussian distribu-
tion, c) both g(τrms) and g(θrms) are modeled as bimodal
Gaussian distributions. The parameters of these uni-
modal and bimodal models are listed in Tables 3.

2) It is clear from subfigures (b) to (e) in Figs. 5–8 that the
same LSP of the different links might have empirical
CDFs with widely different behaviors. These differ-
ences suggest to model the LSP of each link individ-
ually, which is expected to provide better description
of their behavior.

Of course the different values of the power parameter of
the Box-Cox transformation (i.e., 3τ , 3φ , and 3θ ) have
a direct impact on the model parameters. However, in the
following two examples, the same value of the power param-
eter of the Box-Cox transformation is used, yet the behav-
iors of the measured links are found to be totally different,
which indicate that these links have different propagation
characteristics. Example 1: from Table 2, it is found that
3θ = 0.65 is used to get g(θrms) for the E-Link, F-Link, and
M-Link, yet their models have totally different parameters
(see Fig. 8 (b), (d), and (e), as well as Table 4). Example 2: the
LSF estimates can be looked at as a special case of applying
the Box-Cox transformation to all links with 3LSF = 0.
LSF is usually modeled as a unimodal log-normal distribu-
tion; however, from Fig. 5 (e) and Table 4, it is clear that

the LSF of the M-Link should be modeled as a bimodal log-
normal distribution (the same behavior exists, although less
pronounced, in the F-link). When investigating the propaga-
tion conditions of the M-Link, the bimodal distribution of
its LSF values can be explained as follows. At the vicin-
ity of the BS-M there is a group of big trees (represented
by the gray ellipse in Fig. 3). These trees are about 35 m
northwest of BS-M and they cause severe attenuation of the
transmitted signal for about 40% of the traveled distance. The
Link-Segments that experience this attenuation correspond
to the points below the regression line in Fig. 2(d), and also
correspond to the Link-Segments of the inner ring in Fig. 3
that are either plotted in dark blue or identified as invalid
Link-Segments. This heavy obstruction affecting a significant
portion of theM-Link gives rise to the bimodal behavior to all
of its LSPs. See last four rows of Table 4. A similar behavior
can be expected in situations where there is partial obstruc-
tion/shadowing in a geographical area by large objects.

B. MODELING THE CROSS-CORRELATION OF THE LSPs
Simulations of wireless channels are usually performed
as series of segments. Each segment represents a quasi-
stationary period during which all LSPs are constant and
its size can be at most a few meters [2]. In this section,
we utilize our measurements in order to extract models that
describe the cross-correlation of the LSPs for inter- and intra-
link scenarios. To achieve this goal, the following steps are
performed. First, the whole measurement route is divided into
equal-length and disjoint local areas of 11.5 m (thus, each
local area is 20 segment long). At each local area and for
each link, time series of 20 estimates for each considered
LSP are collected. Then, the inter-link and intra-link cross-
correlation coefficients at a specific local area are estimated
by calculating the correlation coefficient between the two
concerned time series.

1) INTER-LINK CROSS-CORRELATION OF THE LSPs
For all considered LSPs and for all link pairs, it is found
that the inter-link cross-correlation estimates can be modeled
as a Truncated Gaussian (TG) distribution that is bounded
by ±1. If the random variable X has a Gaussian distribution
with meanµ, and standard deviation σ , then X conditional on
a < X < b has a Truncated Gaussian distribution defined as:

TG(x;µ, σ, a, b) =


1
σ
ϕ

(
x − µ
σ

)
8
(
b−µ
σ

)
−8

( a−µ
σ

) , if a < x < b

0, otherwise
(4)

where 8(·) and ϕ(·) denote the cumulative distribution func-
tion and density function of the standard Gaussian distri-
bution, respectively. To simplify notations, the limits of the
cross-correlation coefficient values (i.e., a = −1 and b = 1)
will be dropped and the truncated distribution of interest will
be denoted as TG(µ, σ ).
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TABLE 5. Model parameters of the inter-link cross-correlation.5,6

TABLE 6. Model parameters of the intra-link cross-correlation.5,6

In all cases, the suggested model passes the KS test at
0.05 significance level. Table 5 lists the parameters for the
suggestedmodel for all considered LSPs and link pairs, where
in the measurement setup, we have four BS links denoted as:
BS-E, BS-S, BS-F, and BS-M, resulting in 6 link pairs: ES,
EF, EM, SF, SM, and FM. The results reported in Table 5
can be roughly approximated by selecting µ and σ of the
suggestedmodels uniformly from the intervals [−0.25, 0.25],
and [0.25, 0.60], respectively.

2) INTRA-LINK CROSS-CORRELATION OF THE LSPs
The same approach, i.e., using the Truncated Gaussian dis-
tribution, is used to model the intra-link cross-correlation of
the LSPs. The parameters of the proposed model are listed
in Table 6, where it is clear that the LSF has negative corre-
lation with the rest of the considered LSPs, and any two of
g(τrms), g(φrms), and g(θrms) have positive correlation. Thus,
our results are in line with the findings of [9] and [10], and
extend them to other LSPs.

3) SHAPES OF THE DISTRIBUTIONS MODELING THE
INTER-LINK AND INTRA-LINK CROSS-CORRELATION
OF THE LSPs
It is important to notice that in order to simplify the usage of
the herein reported results for simulation purposes, we report

5The reported values in these tables are the means and the
standard deviations of the corresponding Gaussian distribution, before
truncation.

6Please see section V-C for the details on the steps suggested to uti-
lize the provided models, where after generating instances based on a
Gaussian model using the herein reported parameters, truncation should be
applied.

FIGURE 9. Modeling the inter- and intra-link cross-correlation of the LSPs
using the Truncated Gaussian distribution. (a) Examples of the different
shapes which the Truncated Gaussian distribution takes depending on
the values of µ and σ . (b) and (c) Examples of the empirical CDFs of the
inter- and intra-link cross-correlation and their model.

in Tables 5 and 6 the means and the standard deviations
of the corresponding Gaussian distribution, before trunca-
tion. The results of Table 6 indicate that the intra-link cross-
correlation of the LSPs have different behavior depending
on the considered LSPs. Despite the fact that the parameters
in Table 6 correspond to a Gaussian model, depending on
the selected pair of parameters (i.e, µ, and σ ), the actual
resulted distributions (i.e., after truncation) that describe the
generated cross-correlation values have different shapes. For
example, selecting (µ = −2, σ = 1), (µ = 0, σ = 1),
and (µ = 2, σ = 1)7 will result in probability distribution
functions (PDFs) that look like exponential PDF, truncated
bell shape PDF, and reverse exponential PDF, respectively,
as depicted in Fig. 9(a). Fig. 9(b) and (c) illustrate examples
of the empirical CDFs of the LSPs estimates and the CDFs
of their proposed Truncated Gaussian model. As mentioned
earlier, in all cases, the proposed model passes the KS test at
0.05 significance level and Fig. 9(b) illustrates the case with
the largest DLSP, see equation (2), among all studied cases
Selecting values for µ and σ within the aforementioned

intervals produces values of the cross-correlation coeffi-
cients that take into consideration observed variations across
links. For example (following the procedure detailed in
section V-C), if µ = −0.25 and σ = 0.25 are used to model
the inter-link cross-correlation of one link pair, then the corre-
sponding probability of having ρ > 0.5 is almost zero. How-
ever, for another simulated link pair, if µ = 0.25 and σ =
0.60 are assumed, then the probability of having ρ > 0.5 will
be 0.26.

7Please note that even though the values of µ might be outside the inter-
val [−1, 1]; however, after truncation is applied, the remaining correlation
coefficient values have absolute values not exceeding 1. See Fig. 9.(a).
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C. USING THE PROPOSED MODELS
Let’s assume that we want to generate two correlated time
series to simulate S successive segments, each consisting ofN
LSP data points (i.e., realizations). Therefore each generated
time series should have a length of SN data points. The
proposed models can be used as follows8 ,9:
Step 1: Generating instances of the cross-correlation coef-

ficients (characterizing the correlation between
the two targeted time series over individual seg-
ments)

• Depending on the simulated LSPs, use Tables 5 or 6
and select values for µ and σ to model their cross-
correlation properties. Alternatively, the results of
Table 5 can be simplified by drawing µ and σ
uniformly from the intervals [−0.25, 0.25] and
[0.25, 0.60], as suggested in section V-B. Also,
the results of Table 6 can be simplified by drawing
µ and σ uniformly from the intervals defined by
the minimum and the maximum values reported at
each raw in the table.

• Generate cross-correlation instances according to
the distribution ρ∼G(µ, σ ), where G(µ, σ ) is the
Gaussian distribution with mean, µ, and standard
deviation, σ . After this step, some values of ρ
might lie outside the [−1, 1] interval.

• Omit the cross-correlation instances that have
absolute values exceeding 1. The remaining cross-
correlation instances follow the targeted distribu-
tion, i.e., TG(µ, σ ).
The above three steps should be used to gener-
ate S values each of which represents the cross-
correlation between the corresponding time series
during one segment.

Step 2: Generating correlated time series of the LSPs (in
the Box-Cox transform domain)
Generate two independent Gaussian time series
for the simulated LSPs each with SN data points.
For each segment of N consecutive data points,
use the cross-correlation instances resulted from
Step 1 to generate correlated time series [25]. The
resulting correlated time series describe the LSPs
of interest in the transformed domain (i.e., LSF,
g(τrms), g(φrms), g(θrms)).

Step 3: Applying inverse Box-Cox transformation
Use the values of 3 reported in Table 2 in order
to calculate the inverse Box-Cox transformation
of the g(τrms), g(φrms), and g(θrms) generated time
series (no inverse transformation is needed for the
LSF). Alternatively, the results of Table 2 can be

8A detailed discussion on the integration of the cross-correlation instances
resulting from the proposed model within a complete multiple radio links
simulation framework can be found in [2, Chapter 3].

9The proposed procedure in this section is general and applicable to any
multi-link scenario; however, the parameters provided in the tables herein are
limited to scenarios with similar propagation characteristics, i.e., suburban
microcell environments as detailed in section III.

simplified by drawing3 uniformly from the inter-
vals defined by the minimum and the maximum
values reported at each column in the table.
The result of this step is the targeted correlated
LSPs time series.

To simulate more than two correlated time series, only the
cross-correlation coefficient instances (generated in Step 1)
that result in positive semi-definite correlation matrices are
considered to be valid. Then, the sought correlations among
the simulated time series are realized via generating coloring
matrices (in Step 2) by applying the Cholesky decomposition
to these valid correlation matrices [25].

VI. SUMMARY AND CONCLUSION
In this paper, the statistical properties of four large-scale
parameters (LSF, as well as the delay, azimuth, and eleva-
tion spreads) are studied based on propagation measurements
performed in a suburban microcell environment at 2.6 GHz
with four BSs and one MS. The Box-Cox transformation is
proposed as a general framework allowing to transform the
measured large-scale parameters to a domain where they can
be modeled as Gaussian distributions. Then, in the transform
domain, the distributions and cross-correlation properties of
the studied large-scale parameters are modeled. The main
results of this paper can be summarized as follows. 1) Despite
the fact that the overall propagation conditions of the differ-
ent links are similar (e.g., comparable antenna heights, and
same propagation environment), the unique distribution of
the interacting objects in the environment results in different
behavior for each link. Furthermore, some of the interacting
objects that are close to the BSs might give rise to the bimodal
behavior for the distribution of the large-scale parameters.
2) The Truncated Gaussian distribution is found to be a
suitable model to describe both the inter-link and intra-link
cross-correlation coefficients of the different links. 3) Finally,
modeling parameters characterizing the distribution and the
cross-correlation properties of the studied large-scale param-
eters are provided. All provided models are verified using the
Kolmogorov-Smirnov test at significance level α = 0.05.
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