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ABSTRACT This paper delivers a customer voluntary demand response (CVDR) program to help the load
serving entity (LSE) curtail peak demand and cutoff carbon emission. LSE provides financial incentives to
customers who are willing to curtail energy consumption during peak demand hours. A bilevel problem is
proposed to determine the optimal power curtailment and financial incentives to achieve equivalent minimal
cost for LSE and maximal utility function for customers simultaneously. The effects of the CVDR program
are examined with two benchmark radial systems: 3-bus and the IEEE 8500-Node networks. All simulations
are carried out with General Algebraic Modeling System and MATLAB. Numerical studies unveil that
CVDR enhances customer’s willingness in demand response program and achieve economic savings and
peak shaving for LSE.

INDEX TERMS Customer voluntary demand response (CVDR), financial incentives, network losses (NLs),
willingness.

I. INTRODUCTION
Demand Side Management (DSM) refers to a set of mea-
sures implemented by utility companies to motivate changes
in electricity use at the customer side of the meter [1].
During the recent years, DSM has emerged as an effec-
tive means of regulating the available energy consumption,
thus to defer the installing of power distribution compo-
nents [2]. The implementation of DSM elevates emission
reductions, mitigates dependency on the grid and conserves
natural resources [3]. All DSM techniques should result in
one of the following demand reduction scenarios as shown
in Fig. 1. (1) Peak clipping, in Fig. 1(a), prevents the load
from exceeding the supply capacity of distribution sub-
stations, or the thermal limit of transformers and feeders.
(2) Valley filling, in Fig. 1(b), aims at promoting off-
peak energy consumption through energy storage devices,
such as battery energy storage system (BESS) and plug-in
hybrid electric vehicles (PHEVs) [4]. (3) Load shifting, in
Fig. 1(c), targets to reduce demand from the peak and increase
demand on the off-peak periods. Load shifting assembles
peak clipping and valley filling scenarios without reducing
the users’ total energy consumption within a day [5]. (4)
Energy conservation, in Fig. 1(d), denotes that energy con-
sumption of consumers is reduced at all times. The well-
known technology in this category is conservation voltage
reduction (CVR) [6], [7]. CVR is implemented via the volt-
age reduction on the feeders that run from the substation to

consumers. Since this paper focuses on scenarios when the
Load Serving Entity (LSE) encounters Locational Marginal
Pricing (LMP) spikes, peak clipping is utilized to reduce the
network losses (NLs) of LSEs.

DSM techniques are implemented alongside electronic
control, metering, and monitoring of the customers’
energy consumption characteristics. Amongst those tech-
niques, the most frequently employed one is demand
response (DR) [8], [9]. Li et al. [10], Zhong et al. [11],
Fang et al. [12], Fang et al. [13], andVivekananthan et al. [14]
proffered coupon induced demand response (CIDR) pro-
grams in transmission and distribution systems. CIDR
attempts to boost flexibility for customers on a voluntary
basis, in which coupon values can be optimized. Compared
with fluctuating real-time pricing (RTP) which imposes on
customers, CIDR maintains a flat rate on the consumers
and offers coupon incentives to the DR end users. How-
ever, the coupon rebates paid to customers usually have a
pre-determined fixed value, which cannot satisfy different
operating conditions. Traditional CIDR program mentioned
above does not consider customers’ participation willingness
factor. In this paper, the effects of incorporating an elastic and
customer voluntary demand response (CVDR) program is
proposed. The objective of CVDR is to promote reduced elec-
tricity consumption during increased LMP tariffs [15]. Simul-
taneously, a bilevel problem (BP) is projected to ascertain the
LSE-customer demand dispatch optimality. Recently, many
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FIGURE 1. Four typical DSM scenarios: (a) peak clipping; (b) valley filling;
(c) load shifting; (d) energy conservation.

complementary models consisting of mathematical programs
with equilibrium constraints (MPECs) were implemented
for strategic interactions between two levels of decision-
making [16]. MPECs are currently implemented to model
various scenarios, such as optimal active and reactive power
dispatch [17], vulnerability analysis under multiple contin-
gencies [18], transmission expansion planning to achieve
maximal average social welfare [19], and BESS profitable
planning [20].

The main contribution of this paper are two folders:
(1) Bilevel CVDR program with financial incentives mech-
anism is developed to minimize the NLs of LSE and achieve
customers’ utility function (CUF) simultaneously. (2) An
efficiency incentives allocation algorithm is proposed. The
computational complexity of this CVDR program grows lin-
early with the number of financial incentives intervals.

This paper is organized as follows. Section II outlines
the bilevel problems and defines the Karush-Kuhn-Tucker
optimality condition. Meanwhile, CVDR optimal demand
allocation algorithm is given to distribute incentives among
aggregators in CVDR program. In Section III, a 3-bus and the
IEEE 8500-Node radial systems are studied to demonstrate
the benefits of the proposed model. All simulations are car-
ried out with General Algebraic Modeling System (GAMS)
and MATLAB via GDXMRW. Section IV illustrates the
benefits of the CVDR program. Section IV concludes the
contributions in this research and discusses possible future
work.

II. PROBLEM FORMULATION
Load flow and monetary interactions among wholesale mar-
ket, LSE and customers are shown in Fig. 2. LSE collects
demand reduction from its consumers and adjusts power pro-

FIGURE 2. System model illustration of ISO/RTO, LSEs, and customers.

FIGURE 3. Aggregators participation in CVDR program to dispatch load.

curement from the wholesale market. This bilateral process
is denoted with a bilevel interaction between LSE and cus-
tomers in Fig. 3. LSEs purchase electricity from the whole-
sale market at price λt,b, which is modeled as an upper-level
(UL) problem. Meanwhile, LSEs provide electricity service
to customers with a retail rate ξt,b. When customers agree to
curtail demand Xt,b, in the lower-level (LL), LSEs provide
financial incentive Rt,b to customers. Accordingly, the incen-
tive value represents the levels of customers willingness to
curtail. To enhance the readability of this paper, the adopted
notations are tabulated in Table 1.

A bilevel expression of CVDR program is organized. The
general formulation of a bilevel optimization problem is the
following:

minx∈X F (x, y(x)) (1)

s.t. G (x, y(x)) ≤ 0 (2)

H (x, y (x)) = 0 (3)
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TABLE 1. Nomenclature.

where

y (x) = argminy∈Y f (x, y) (4)

s.t. g (x, y) ≤ 0 (5)

h (x, y) = 0 (6)

In this general bilevel formulation, (1)–(3) represents the
UL problem, and (4)–(5) denotes the LL problem.

A. UL PROBLEM FORMULATION
As an example, in Fig. 3, UL problem in CVDRprogram aims
to minimize the NLs of LSEs. The NLs problem in CVDR
program is interpreted as:

min
4UL

NLs :=
∑
t∈T

∑
b∈B

[
Gt,b · λt,b − Dt,b · ξt,b

+

(
Dbaset,b − Dt,b

)
· Rt,b

]
(7)

Subject to: Gmin ≤ Gt,b ≤ Gmax (8)

Rmin ≤ Rt,b ≤ Rmax (9)

Ft,l = (θ t,o(l) − θt,r(l))/xl (10)

Fminl ≤ Ft,l ≤ Fmaxl (11)

− π ≤ θt,o|r(l) ≤ π (12)

Gt,b −
∑

l|o(l)=b

Ft,l +
∑

l|o(r)=b

Ft,l = Dt,b (13)

where Equation (7) is the objective function of the
UL problem which aims to minimize the total NLs of LSE
in CVDR program. (Dbaset,b − Dt,b) represents demand reduc-
tion Xt,b. Constraints in (8) – (9) define the load dispatch
constraints. The purchased power from wholesale market and
customers financial incentives meet the minimum and maxi-
mum requirement. The value of Rt,b indicates the willingness
of LSE in CVDRprogram to avoid sufferingNLs. Constraints
(10) – (12) compute the power flows and enforce the power
flow limits by using a DC load flow model. The nodal power
balance constraint is enforced by (13).

B. LL PROBLEM FORMULATION
The LL objective function is to achieve maximal CUF. Price
elasticity of demand denotes the relationship between a
change in the demand of a commodity and the change in its
price. The price elasticity of the kth aggregator is described
as:

βk =
1Qk/Qk

1Pk/Pk
(14)

If the elasticity ratio is constant for the entire aggregator k ,
then (14) can be written as:

Qk = ωk · (Pk )
βk

(15)

where the coefficient ωk can be easily calculated from cus-
tomer base demand Dbaset,b and base price Pbaset,b (retail rate
ξt,b). Fig. 4 shows customers load demand and LSE supply
curves variations before and after implementation of CVDR
program. The solid line shows the price demand relationship
without the application of CVDR. After applying CVDR
program, customers reduce power demand Xt,b. CUF is the
summation of customers surplus (CS) and financial incen-
tives from LSE. Customer surplus is defined as the area
beneath the demand curve between the lowest demand Dmin,
and the actual demand Dt,b in Fig. 4.
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FIGURE 4. Illustration of CUF in CVDR program. The shaded area is CS.

The total CUF is described as:

max
4PLL

CUFPLL :=
T∑
t=1

B∑
b=1

[∫ Dt,b

Dmin

(
Qt,b
ωk

)1/βk

dQt,b − ξt,b

·
(
Dt,b − Dmin

)
+ (Rt,b − Rmin)

× (Dbaset,b − Dt,b)
]

(16)

Subject to:

Dmin ≤ Dt,b ≤ Dmax : (ρmint,b , ρ
max
t,b ) (17)

In Eq. (16), the first two parts indicate customers surplus,
and the third part is the rewards from LSEs after the curtail-
ment of Xt,b. Customers electricity demand after joint in the
CVDR program is constrained with Eq. (17). Dual variables
of each constraint are given in the parentheses after a colon.

The first reformulation of the problems from (7) – (17)
consisting of replacing the LL problem (14) – (17) by its
Lagrangian multipliers which results in a single-level opti-
mization problem. The LL problem for a given UL vector
Dt,b. The Lagrangian expression of LL problem is given as:

L(Dt,b,Rt,b)

=

T∑
t=1

B∑
b=1

[
∫ Dt,b

Dmin

(
Qt,b
ωk

) 1
βk

dQt,b − ξt,b

·
(
Dt,b − Dmin

)
+
(
Rt,b − Rmin

) (
Dbaset,b − Dt,b

)
+ ρmint,b ·

(
Dt,b − Dmin

)
+ ρmaxt,b ·

(
Dmax − Dt,b

)
] (18)

where

∂L(Dt,b,Rt,b)
∂Dt,b

=

(
Dt,b
ωk

)1/βk

− λt,b − Rt,b + Rmin

+ ρmint,b − ρ
max
t,b = 0 (19)

0 ≤ Dt,b − Dmin⊥ρmint,b ≥ 0 (20)

0 ≤ Dmax − Dt,b⊥ρmaxt,b ≥ 0 (21)

where ρmint,b and ρmaxt,b are dual constraints of (17).
(20) and (21) represent complementarity constraints.
Operator ‘⊥’ denotes the inner product of two vectors equal
to zero. There is at most one vector that is greater than

zero, correspondingly the other will be zero. Therefore, the
BP (7) – (21) can be recast as a single-level MPEC prob-
lem. The equivalent single-level minimization problem is
nonlinear because the following nonlinearities appear in the
problem: (i) products of continuous UL (Dt,b) and contin-
uous LL (Rt,b) decision variables in objective function (7).
(ii) products of UL (Dt,b) and LL (ρmint,b , ρ

max
t,b ) decision

variables in (20) and (21).
These two nonlinearities are converted into an equivalent

mixed-integer linear expression with ‘Big-M’ method [20].

0 ≤ Dt,b − Dmin ≤ M1 · umint,b (22)

0 ≤ ρmint,b ≤ M1 · (1− umint,b ) (23)

0 ≤ Dmax − Dt,b ≤ M2 · umaxt,b (24)

0 ≤ ρmaxt,b ≤ M2 · (1− umaxt,b ) (25)

−M3 ·
(
1− vt,b,j

)
≤ Dt,b · R̃t,b,j − Rt,b (26)

M3 · vt,b,j ≥ Rt,b (27)
N∑
j=1

vt,b,j = 1 (28)

where (22) – (23), (25) – (26) give the linearization of (20)
and (21), respectively. (28) constraints that at each time inter-
val only one financial incentive R̃t,b,j is chosen.

C. MIXED-INTEGER LINEAR PROGRAMMING
FORMULATION
Using the linearized methods from (22) – (28). the single-
level mixed-integer linear programming (MILP) formulation
is given as follows:

min
4UL

NLs :=
∑
t∈T

∑
b∈B

[
Gt,b · λt,b − Dt,b · ξt,b

+

(
Dbaset,b − Dt,b

)
· Rt,b

]
(29)

Subject to

Gmin ≤ Gt,b ≤ Gmax (30)

Rmin ≤ Rt,b ≤ Rmax (31)

Ft,l = (θ t,o(l) − θt,r(l))/xl (32)

Fminl ≤ Ft,l ≤ Fmaxl (33)

− π ≤ θt,o|r(l) ≤ π (34)

Gt,b −
∑

l|o(l)=b

Ft,l +
∑

l|o(r)=b

Ft,l = Dt,b (35)

Dt,b = ωk ·
(
λt,b+Rt,b−Rmin − ρmint,b + ρ

max
t,b

)βk
(36)

Dmin ≤ Dt,b ≤ Dmax (37)

0 ≤ Dt,b − Dmin ≤ M1 · umint,b (38)

0 ≤ ρmint,b ≤ M1 · (1− umint,b ) (39)

0 ≤ Dmax − Dt,b ≤ M2 · umaxt,b (40)

0 ≤ ρmaxt,b ≤ M2 · (1− umaxt,b ) (41)

−M3 ·
(
1− vt,b,j

)
≤ Dt,b · R̃t,b,j − Rt,b (42)
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M3 · vt,b,j ≥ Rt,b (43)
N∑
j=1

vt,b,j = 1 (44)

The proposed bilevel problem in (7) – (17) is recast as
a MILP problem in (29) - (44). MILP is solvable by using
branch-and-cut solvers in commercial software.

Algorithm 1 Optimal Financial Incentives Allocation
Method

procedure: PRE-PROCESSING PROCEDURE

R̃t,b,j← R̃initialt,b,j
NLs ({b, k})← 0
while R̃t,b,j ≤ Rmax do

Dt,b← ωk ·
(
λt,b + R̃t,b,j − Rmin

)βk
, ∀b ∈ B

NLs ({b, k}) :=
∑

t∈T
∑

b∈B
[
Gt,b · λt,b − Dt,b

·ξt,b + (Dbaset,b − Dt,b) · R̃t,b,j
]

ϕ ({b})← NLs ({b, 1})
if ϕ ({b}) > NLs ({b, k}), ∀k 6= 1
ϕ ({b}) = NLs ({b, k})

end if
R̃t,b,j← R̃t,b,j + Rstep

end while
return: R∗b = argminR̃t,b,jϕ ({b})
return: D∗b ← ϕ ({b})

end procedure

Amulti-iteration CVDR adjustment process is presented in
Algorithm 1. The computational complexity of CVDR grows
linearly with the number of financial incentives intervals.
CVDR program converges to the global optimal solution with
a time of O

(
Rmax−Rmin

2

)
.

III. NUMERICAL STUDY
Simulations of 3-bus and IEEE-8500 Node radial network are
implemented with GAMS [21]. All calculations are executed
running MATLAB R© for handling input and output data via
GDXMRW. The optimization problem was formulated and
solved in GAMS˙ BUILD 24.8.1 employing the CPLEXTM

12.7.0.0 solver [22] for MILPs on a 64-bit MS Windows˙

7with 8GBRAMand Core-i3, 3.9GHz (4-core) CPU clocked
at 3.90GHz. Additionally, the benchmark systems in this
paper are executed in OpenDSS [23] to extract reactance
matrix.

A. 3-BUS DISTRIBUTION NETWORK
The block diagram for a 3-bus test system is shown in Fig. 5.
Customer loads affiliated to Bus 1 and Bus 2 which are
fully occupied by residential customers are denoted as
Aggregator 1. Aggregator 1 is composed of load capacity
30kW and 40 kW respectively. The daily demand profile for
Aggregator 1 is shown in Fig 6. (a). Aggregator 2 is a small
commercial customer with load capacity 70kW for which the
24 h demand profile is exhibited in Fig.6 (b). The retail rate
offered to each customer is 100$/MWh, as shown in Fig. 7.

FIGURE 5. 3-bus radial network single-line diagram.

FIGURE 6. Baseline profiles for the 3-bus distribution system. (a) 24 h
demand profile for Aggregator 1 (residential customers). (b) 24 h demand
profile for Aggregator 2 (commercial customers).

The financial incentives vary from 1$/MWh to 100 $/MWh
with 2$/MWh incremental step, thus Rmax = 100 $/MWh,
and financial incentives sets at each time interval are:

R̃t,b,j = {1, 3, . . . , 100} , ∀t ∈ {19, 20, 21} ,

j ∈ {1, 2, . . . , 50} (45)

The time scale for this numerical study is 24 h, with
a time granularity of 1 hour. Thus, the time sets will be
T = {1, 2, . . . , 24}. Three scenarios of CVDR program are
performed:
(1) Scenario#1: Without applying for CVDR program;
(2) Scenario#2: With applying for CVDR program;
Fig. 8 displays 3-bus operation factors variation with finan-

cial incentives. Fig. 8(b) shows that when incentive value
increases, LSE needs to pay more rebates to customers.
Fig. 8(c) – (d) show LSE purchasing cost and selling revenue
are decreasing along with the increment of incentive value.
Fig. 8(e) demonstrates that LSE cost reaches the optimal
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FIGURE 7. 24 h LMPs and flat retail rate profile of 3-bus distribution
system from PJM on July 20th, 2015 [24]. The shaded area is the total NLs
of LSE.

TABLE 2. LSE and customer cost during peak demand for 3-Bus system
without CVDR program.

TABLE 3. Comparison of CVDR program and base case for 3-Bus system
during peak demands.

value when incentive value is 67$/MWh. Fig. 8(e) shows the
whole system demand consumption for the optimal incentive
value 67$/MWh. When peak appears at 19:00, power reduc-
tion is 41.14 kW. Peak demand reductions are 39.44 kW and
35.32 kW at 20:00 and 21:00.

Table 2 gives the hourly demand and cost of each Aggre-
gator for the peak period before applying for CVDR pro-
gram. It can be determined that Aggregator 2 which is only
preoccupied with commercial loads consumes almost dou-
ble the demand than Aggregator 1. The price elasticity of
Aggregator 1 and Aggregator 2 are set as -0.45 and -0.3, thus
β1 = −0.45 and β2 = −0.3. Comparison of CVDR program
with base case during peak demand is tabulated in Table 3.
LSE cost reduces 12.21% when customers’ demands reduce
by 145.28 kW. LSE pays 20.6% less to bourse market and
incurs 34.41% electricity selling revenue reduction from
customers.

Fig. 9 shows peak demand comparison for both aggrega-
tors in the scenarios of without and with CVDR program.
Fig. 9(a) shows residential customers power reduction where
peak demand curtailment is 18.42 kW at 19:00. Aggregator
1 continuously reduces 20.61% power consumption at hour
20:00 and 21:00. Correspondingly, in Fig. 9(b) commercial

FIGURE 8. Situations of the 3-bus distribution system in scenarios of
financial incentives varying from 0$/MWh to 100$/MWh. (a) Total peak
demand variation with incentive value; (b) Financial incentives payment
variation with incentive value; (c) Selling revenue variation with incentive
value; (d) Purchasing cost variation with incentive value; (e) LSE total cost
variation with incentive value; (f) 3-bus system 24 h power consumption
profile at optimal incentive value 67$/MWh. Energy Savings during peak
can be calculated by the shaded area.

customers curtail 22.72 kW, 22.30 kW, and 21.05 kW con-
sumption respectively during LMP spikes appearance.

B. 8500-NODE RADIAL DISTRIBUTION NETWORK
The IEEE 8500-Node radial system represents the general
topology of distribution systems used in North America [25].
The peak power is 9.23 MW. The 8500-Node system consists
of 100% residential customers. There are 1244 residential
customers in this network. The 8500-node system is divided
into three aggregators and one non-participation load (NPL).
For each aggregator, its composition is tabulated in Table 4.
Aggregator 1 has 749 customers, which owns 60.24% of the
total capacity. Aggregator 2 and 3 consume 2.19 MW and
1.19 MW. The number of non-participation load accounts for
39, which are mainly consisted of fixed loads, such as light-
ing, stoves, and home computers. 24 h power consumption
profiles for each aggregator and non-participation customers
are shown in Fig. 10(a). Due to a shortage of photovoltaic
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FIGURE 9. Power consumption comparison of without CVDR program and
with CVDR program during peak demand from 19:00 to 21:00. (a)
Aggregator 1 demand profile comparison of without CVDR program and
with CVDR program; (b) Aggregator 2 demand profile comparison of
without CVDR program and with CVDR program.

TABLE 4. Fundamental composition of different aggregators.

FIGURE 10. 8500-Node 24 h power demand and LMP on April 6th,
2017 from PJM [32]. (a) 24 h load profile for each aggregator and
non-participation load. (b) Corresponding LMP (spike occurs at 19:00)
and a flat rate for the 8500-Node distribution network.

generation during the night from 19:00, LMP increases dra-
matically. Customers procure power from LSE with a flat
retail rate, as shown in Fig. 10(b). The price elasticity of
Aggregator 1, Aggregator 2 and Aggregator 3 are set as
−0.45, −0.42 and −0.40.

The optimal financial incentive is 15$/MWhwhen the NLs
of LSE no longer decrease. Table 5 represents the changes

TABLE 5. Different factors for each aggregator in 8500-node network

FIGURE 11. Power consumption comparison of without CVDR program
and with CVDR program during peak demand at 19:00 and 20:00 for each
aggregator in the 8500-Node distribution network.

of impact factors, such as peak demand reduction (PDR),
purchasing cost reduction (PCR), and selling revenue reduc-
tion (SRR) for each aggregator during peak demand. It can
be determined that the NLs of LSE can be alleviated with
the application of offering financial incentives to customers.
Fig. 11 depicts the actual power demand for each aggregator
at peak hour 19:00 and 20:00. With the application of CVDR
program for 3-bus and IEEE 8500-Node distribution system,
it can be concluded that CVDR program can simultaneously
help LSE to reduce unexpected losses and defer the power
system construction investment.

IV. DISCUSSION
Incentives induced CVDR program aims at reducing high
risks of the NLs when a contingency occurs. DR policy-
making strategies should achieve the following principles:
(1) Firstly, LSE should make remedies during uncertain
circumstances which target at reducing monetary losses.
(2) Secondly, customers need compensations while taking
actions.

In this proposed CVDR program, electricity demand under
CVDR program is determined as:

Dt,b = ωk ·
(
λt,b + Rt,b − Rmin

)βk (46)

It can be determined from (46) that customers load reduc-
tion is only related to financial incentive value. The param-
eters λt,b, Rmin, and βk are all known for specific customers
cluster. Because (λt,b + Rt,b − Rmin) > 1 is always true in
this CVDR program, customers with higher |β| value behave
as dominant players to help LSE reduce NLs. Thus, it will
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be reasonable and effective to allocate higher proportion
financial incentives to dominant aggregators.

V. CONCLUSION
This paper introduces an innovative DSM method, CVDR
program, which provides an elastic and voluntary participa-
tion for end-users in the smart grid. Simultaneously, a bilevel
scheme is proposed to ascertain the LSE-customer demand
dispatch optimality. The effects of the CVDR program are
examined with a 3-bus and the IEEE 8500-Node radial sys-
tems. All simulations are carried out with CPLEX under
GAMS and MATLAB via GDXMRW. Numerical studies
unveil that CVDR program can enhance customers willing-
ness in demand response and achieve economic savings and
peak shaving for LSE.

The appearance of peak LMP is primarily caused by the
soaring penetration of renewable generation in power sys-
tem. The intermittent of enormous distribution generations
(DGs) aggravate fluctuation of the power supply and intraday
pricing. The future work will focus on integrating BESS
with renewable energy-based distribution generation to flat-
ten power generation and customer consumption, which will
further reduce the NLs of LSE.
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