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ABSTRACT Most robot controllers are proprietary and, therefore, they have a closed architecture, and it is
typical for robot vendors not to provide support for old control units; hence, when a deprecated robot requires
an update or even a simple preventive maintenance, the manufacturer tends to recommend disposing such
a unit and to acquire a new one. In this paper, the development of a field programmable gate array-based
motion control system is described as part of an open-architecture and vendor-independent control system
tested on a Fanuc S420F. As a way to measure the performance of the developed system, an experimental test
is carried out to achieve a path tracking RMS error lower than 20 mm at a Cartesian velocity of 500 mm/s.
Results demonstrate that the proposed system achieves the same feed rates as the original controller with the
significant advantage of being modular, flexible, scalable, and reconfigurable.

INDEX TERMS Control-retrofit, FPGA, industrial-robot, motion-controller, open-architecture,
servo-control.

I. INTRODUCTION
The mechanical part of industrial robots has not evolved at
the same rate as its electronics. Nowadays, robot control
systems are faster, smaller, and even they incorporate sensory
information such as force and vision. These technological
advances have permitted the number of applications of such
machinery to become widespread [1]; however, the closed
architecture of their control systems involves a continu-
ous dependency of the end-user on the (particular) robot
vendor [2].

The above problem surfaces when maintenance, update,
or the incorporation of new functionality to a working—and
usually deprecated—unit is required. This is because most of
the robot manufacturers do not provide support to deprecated
control units and their controllers have limited scalability.
A modular, open-architecture [3] and vendor-independent
control system is required to solve this problem.

Nowadays, there is still not a standard robot control archi-
tecture; there are some formal proposals for standardizing
robot control architectures, but in practice there is no de facto
standard and each control system has a unique architecture,
as is the case with most home-made or customized low-
performance CNC machinery systems and 3D printers [4];

however, a robot control system as the one mentioned above
implies basically the development of three main components:
a hardware platform, an operating system (OS)-based mod-
ule, and a software application as Hong et al. describe in [5].
The hardware platform comprises as a minimum the fol-

lowing instances: robot (mechanical systems) and actuators,
power amplifiers, data acquisition boards, servo control com-
ponents, and a master device for coordination of tasks as it is
addressed in [6].

Computer controlled hardware requires a way to com-
municate with the computer. OS modules are conceived as
hardware drivers. It is mandatory that such drivers have a real-
time (RT) behavior for specific applications such as robot
trajectory generation since it is planned on the fly [7]. Those
drivers are responsible for performing data acquisition, com-
puting interpolation and solving inverse kinematics; on top
of these drivers, the application software serves as a human-
machine interface that enables the user to coordinate with the
robot controller by entering commands using both a friendly
interface and a specific-purpose programming language.

Servo control is the most critical part in a robot control in
the sense that its failure to maintain a closed-loop behavior
may lead to a halt in the production process, the destruction
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of the robot itself or, in the worst-case scenario, the loss
of human lives. Therefore, most researchers have imple-
mented robot control systems with mainly three kinds of
servo control solutions, namely: standard/industrial PC with
data acquisition boards, digital signal controllers (DSC), field
programmable gate arrays (FPGA), or any combination of
them such as the programmable system on a chip (SoC)
technology.

II. RELATED WORK
Since the decade of the 90s, researchers have been devel-
oping customized robot controllers to avoid the problems
mentioned above. For instance, Ferretti et al. [8] implemented
a methodology [9] to extend the functionality of a Comau
C3G-9000 robot controller. They incorporated sensor boards
to the system which are connected to the main control units
through a common bus. Both units, robot controller and servo
control, include several microprocessors and digital signal
processors (DSP). The objective of the authors was to perform
rubbing tasks; however, they do not report any results of
the developed robot controller performance. Furthermore,
the cost of a multi-processor based solution is considerably
higher compared with the reconfigurable logic technology.
A simplified solution for the same robot controller is found
in [10]. This latter research work deals with the implemen-
tation of a robot controller within the Linux RTAI OS [11];
however, as in the case above, the authors do not include
information about the system performance.

Another similar hardware architecture is described in [12]
to control an ABB industrial robot for spot and arc welding
applications. Here, the authors propose a complete architec-
ture for efficiently programming robotic systems. Neverthe-
less, given that the hardware architecture is also based on a
hybrid multi-processor and DSP system, the proposed archi-
tecture is focused only on software layers, which does not
allow the controller to exploit reconfigurable logic hardware
techniques. Besides, the authors do not prove in a quantitative
way that the suggested architecture streamlines the program-
ming process.

In [5] Hong et al. implemented a PC-based robot controller
following the OSACA approach [13]; the hardware module
of the robot control system comprises a standard PC running
Windows NT and a Delta Tau PMAC [14] motion controller
card, and the other two components are hardware drivers and
the application software. In contrast with previous research
works, Hong et al. do include information related to the
system performance; nevertheless, the software interface only
supports off-line programming because the operating system
has no RT capabilities and, therefore, it is necessary to com-
pute the coordinate transformations for the whole trajectory
before its execution.

In [15], a group of undergraduate students carried out a
hardware retrofit of aUnimate PUMA 560 robot by replacing
the VAL II control system with a standard computer and a
data acquisition board. The software architecture was based
on MATLAB/Simulink and ran under Windows 2000 and

WinCon for RT performance. However, the WinCon plat-
form does not guarantee RT task scheduling, and hence,
a more demanding application cannot be successfully per-
formed. Another similar work is described in [16]. The
authors replaced the VAL II of a PUMA robot with a PC
based controller; however, as in the case above, the developed
system does not involve an RTOS and only can be used with
robots actuated by DC brushed motors.

In [17] a visual servoing system is implemented on an
FPGA to control a four DoF robot. Same case as above,
the motors of this robot are DC brushed motors and they
do not require any kind of external commutation; therefore,
this solution can not be used for industrial robots such as the
Fanuc S420.

In this sense, most authors affirm that an industrial robot
controller must have an RT behavior. In [7], they devel-
oped a robot control system (ROACS) for a PUMA 560 to
cut fish slices, and claim that within an uncertain envi-
ronment, the robot control system must be able to change
its path according to feedback sensory information. The
ROACS is software-based using the QNX real-time operating
system (RTOS).

In [18] Visioli and Legnani experimented with a SCARA
industrial robot. They implemented several control schemes
with the aid of a standard PC and the QNX RTOS; nev-
ertheless, their controller only concerns to position control,
and they do not include any other feature of a whole robot
controller.

Similarly, Chang et al. [19], using a Texas Instruments
TMS320C3X from the DSP family, implemented a position
control loop with a digital filter in the input to avoid vibra-
tion due to slewing motion for a linear motor. Although the
DSP platform presents several processing advantages over a
standard PC, the TMS320C3X device family only has two
encoder quadrature interfaces; therefore, an industrial robot
with six degrees-of-freedom (DoF) requires at least three
devices which increases the cost of the solution and its hard-
ware complexity.

An interesting control architecture is described by
Shao and Sun [20], involving a mixed DSP-FPGA digital
platform for the motion control of a two DoF Yamaha robot;
they report that their system exhibits a better performance
than the original control system. Similar work can be found
in [21] and [22]. In both research works, the complexity
of interpolation and kinematics is delegated to the DSP;
a standard PC with an RTOS replaces the DSP which leads to
having a system with a higher degree of openness [23].

Modern motion control implementations are based on
FPGAs because of the advantages they have over DSPs
and micro-controllers [24]. In [25] an FPGA-based motion
controller is developed to control the position of an
XY table actuated by permanent-magnet synchronous
motors (PMSM); however, this research work only deals with
two axes, and the amount of logic elements it utilized makes
it difficult to implement such motion controller in most low-
density FPGA families. Furthermore, the usage of the Nios
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TABLE 1. Former robotic research projects.

microprocessor limits its implementation to only a few device
families.

Most of the related research work deals with small-size
robots such as the SCARA, PUMA, and others mostly actu-
ated by direct current (DC) brushed motors as it is summa-
rized in Table 1. In contrast, the brushless motors of bigger
robots require external commutation which leads to a major
complexity in the motion control system.

Up to date, there is no evidence of the development of
a functional control system suitable for robots such as the
Fanuc S420F. The aim of this paper is to contribute to this
gap with an FPGA-based motion controller for industrial
robots actuated by PMSM and servo amplifiers with external
commutation.

III. METHODOLOGY
The industrial robot used in this research work was disposed
from a factory and acquired by Universidad Autónoma de
Querétaro as a second-hand industrial system, and no control
unit was included with the purchase; therefore, the aim of this
project was to design a new control system with modern tech-
nology in order to reassemble an operational robotic cell for
arc welding processes. The control system had to accomplish
three primary requirements: low cost, open architecture, and
a path tracking error lower than 2% at a Cartesian velocity
of 500 mm/s.

The proposed robot control architecture comprises a stan-
dard PC and an FPGA-based interface which involves a lower
cost. Additional cost saving is achieved by using the open-
source Linux OS in addition with the real-time application
interface (RTAI) patch for RT scheduling of tasks.

The FPGA is responsible for decoding feedback position
data, computing the control output and commutation signals,
and transmitting such data to the actuators, whereas the PC
interpolates movements, computes kinematics solutions, and
transmits the position reference for each joint while it receives
its current position. The entire system is illustrated in Fig. 1.

Themodules within the system have been arranged accord-
ing to their RT requirements as shown in Fig. 2, being
the most critical tasks implemented in hardware, whereas
non-critical tasks such as user-interface and robot animation
remain as simple threads in the user-space of the Linux
kernel.

FIGURE 1. Robot controller hardware setup.

FIGURE 2. Robot control system layers.

A. INSTRUMENTATION
A reverse engineering process was carried out in order to
identify the signals in the feedback encoder for each of
the robot motors. Quadrature and phase control signals are
available in the PCB of the feedback encoder as illustrated
in Fig. 3a.

The quadrature signals are decoded for position feedback
whereas phase control signals are used for commutation.
With the aim of preserving the integrity of the signals on
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FIGURE 3. Instrumentation of the feedback device: (a) original device and
(b) modified version.

the transmission line, an additional PCB with a couple of
DS34C87TM RS-422 line drivers has been attached to the
feedback device as depicted in the Fig. 3b. On the other hand,
a PCB with DS34C86 RS-422 line receivers is connected to
the FPGA board.

The Fanuc S-420F is actuated by AC permanent mag-
net synchronous motors (PMSM); therefore, six Advanced
Motion Controls servo amplifiers with external commuta-
tion [26] are utilized as power stage.

These servo drivers require two analog current references
for two of the motor coils while the third one is computed
internally. Current references are given as voltage, i.e., a set-
point of +10V represents a current of +30A at a given
motor coil. Two instances of the Analog Devices digital to
analog converter DAC5668 are used to generate such current

FIGURE 4. Architecture of the motion controller circuit.

references; however the DAC output ranges from 0V to 5V;
therefore, another PCB includes a set of operational ampli-
fiers to rearrange the output from −10V to +10V.

B. HARDWARE DESCRIPTION
The motion controller circuit includes mainly a master inter-
face circuit, several instances of a servo controller module and
a digital to analog converter driver as illustrated in Fig. 4.
The Master Interface module serves as an interface

between the PC and the motion controller. On the PC side,
it has a parallel bus with an eight-bit width, and it is designed
to be used with the LPT port due mainly to the following
reasons:
• Synchronization of the PC and the FPGA. By using this
port, it is possible to assure that the transfer of a word is
always done at the required time instant.

• The parallel port is more reliable under high electrical
noise conditions as in this case.

• A baud rate of 1.2Mbps is achieved with the enhanced
parallel port (EPP), which is fast enough to send and
receive the reference and position data of the six robot
joints.

• And finally, because of its simplicity and versatility as it
is documented in [27].

There are other and more common ways to link an external
system to a PC, but this is done as a proof of concept show-
ing the modularity of our proposed architecture. Moreover,
in [28], the EPP, UART, and Ethernet ports are evaluated,
obtaining the fastest baud rate with the parallel port.

Additionally, to the DIO data bus, there are four control
signals, namely, CS (chip select), PS (port select), RD (read),
and WR (write) as illustrated in Fig. 5.

It is necessary to enable CS to start a data transaction. The
signalPS indicates the type of transaction; there are two types
of transactions: data and command transactions—the data
transactions are referred to the values of the registers, while
command transactions determine whether it is a read or write
process and the destination address. The PC or master device
transfers a byte each time the RD or WR are asserted.
Given that theMaster Interfacemodule has a shift register

internally for reading and writing operations, up to four bytes
may be transferred in one single data transaction.
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FIGURE 5. Block diagram of the Master Interface module.

On the other hand, there are three buses and one control
signal. MISO and MOSI have 32 bits of width, and they are
used for data interchange. The bus ADDR is used to select
the Servo Controller instance and the register. The signal
ALE (address latch enable) acts as a trigger for the data
interchange, i.e., the register with the specified address stores
data when this signal is asserted.

The above process is possible since each Servo Controller
instance has a unique address. The three most significant bits
of the ADDR bus indicate the number of Servo Controller
instance while the last four indicate the parameter to be
accessed.

FIGURE 6. Block diagram of the Servo Controller module.

The Servo Controller module is composed of an encoder
quadrature interface, a summing block, a proportional-
integral-derivative (PID) controller, a sinusoidal commutator,
and several registers used to store reference and controller
parameters as illustrated in Fig. 6.

The Encoder Quadrature Interface decodes the mechan-
ical position of each joint from A and B quadrature signals.
The output of this module has a width of 32 bits. The position
signal (POS) is subtracted to the set point signal (REF), and it
is adjusted to 16 bits of width. The above to avoid saturation
in forward computations. The resulting signal represents the
position error, and it is labeled as ERR in Fig. 6.

The PID Controller is implemented as a fourth-order
infinite-impulse-response (IIR) filter as that one described
in [29] but without a derivative low-pass filter. The imple-
mented formula is

u(k)=Kp
{
e(k)+

Ts
Ti

k∑
i=1

e(i)

+
Td
Ts

[e(k)+3e(k − 1)−3e(k − 2)−e(k−2)]
}
, (1)

where Kp, Ti, Td , and Ts are the proportional gain, inte-
gral time, derivative time, and sampling time, respectively.
To avoid the storage of the error samples from time t = 0s
until t = kTss and with the help of the relationship 1u(k) =
u(k)− u(k − 1), a suitable function may be written as:

u(k) = q0e(k)+ q1e(k − 1)+ q2e(k − 2)

+ q3e(k − 3)+ q4e(k − 4)+ u(k − 1), (2)

where

q0 = Kp
(
1+

Ts
Ti
+

Td
6Ts

)
,

q1 = −Kp
(
1−

Td
3Ts

)
,

q2 = −Kp
Td
Ts
,

q3 = Kp
Td
3Ts

,

q4 = Kp
Td
6Ts

.

These coefficients are given in a fixed point 16.16 format
whereas the error and output signal has 16 bits of width.
The PID Controller computes the control signal UOUT with
the aid of a multiplier-accumulator (MAC) unit as illustrated
in Fig. 7. The control frequency is fixed at 1 KHz.

Most of the dynamic parameters of the robot are unknown;
hence, it is not possible to tune-up the controller with an
analytical approach. Methods such as the Ziegler-Nichols
require taking the system to the stability limit, which is not
recommended for a robot since it could be seriously damaged.
Therefore, an empirical method is used to tune-up the PID
controller for each joint. First, the proportional gain is set
in order to reach the set-point within a short time; then,
the derivative time is increased to provide a well damped
response; and finally, the integral time is decreased to achieve
a null or very close to zero error at steady state. Table 2 enlists
the obtained values for each joint.
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FIGURE 7. Block diagram of the PID controller.

FIGURE 8. Block diagram of a Sinusoidal Commutator.

TABLE 2. PID parameters for each robot joint.

The Sinusoidal Commutator module reads the control
output (UOUT) and the phase control signals (COM) to
compute the phase current for each motor coil. Moreover,
the phase currents have a sine waveform, and their amplitude
depends on the value of the control signal. The frequency
of these signals, commonly called commutation frequency,
varies according to the motor velocity.

The computation of the phase currents requires the knowl-
edge of the position of the poles with respect to the stator
fluxes. The feedback device has an absolute encoder for this
purpose, and its signal is labeled as COM in Fig. 8. The phase
control signal has four bits of width, and it is used along with
a look-up table to generate sixteen points of a sine wave.

The decoded sine value has eighteen bits, and it is given
in a 2.16 format as listed in Table 3. The phase currents
(PHA and PHB) are computed by multiplying the sine value
times the filter output, which is internally extended also
to eighteen bits. The second phase current PHB is shifted
112.5 electrical degrees. Both signals, PHA and PHB, are
saturated and trimmed to sixteen bits.

TABLE 3. Sine look-up table for commutation signals.

Finally, the current references PHA and PHB are sent to the
DAC through a serial peripheral interface (SPI) with a serial
clock frequency of 25 MHz. This module, labeled as DAC
Driver, is at the end of the data path depicted in Fig. 4.

C. INTERPOLATION AND KINEMATICS SOLUTION
A robot control system needs a way to describe the instruc-
tions provided to the robot. Of course, the instructions given
to the robot are directly related to the actions the robot
can perform, so describing a robot programming language
is equivalent to describing the variables that influence the
operation of the robot to be controlled, positions, speeds and
accelerations of the described paths.

There are different types of paths that a robot can perform
according to the purpose being sought; in general terms, there
are two types of displacements: (a) those intended tomove the
end-effector from one point to another without performing
useful work but merely to bring it to a point of interest,
and (b) motions destined to do some useful work such as
welding or painting a surface. The first type of motion can be
performed in a coordinated way in the Cartesian coordinate
system (usually as linear interpolation), or in a coordinated
way in the space of the robot joints; the second type of
movement is always coordinated in Cartesian coordinates
following a well-defined trajectory that can be linear, circular,
some particular type of trajectory (e.g., elliptical or parabolic)
or interpolated (e.g., Bézier curves or splines); depending
on the type of trajectory, it is possible to re-parameterize
the curve to obtain a concordance between the velocities
and accelerations specified by a previously chosen velocity
profile (triangular, trapezoidal, trigonometric, etc.). Note that
the paths that describe the movement of the robot occur in 6
dimensions because the orientation must also be specified in
addition to the position; our control system uses the same
speed profile for both position and orientation.

The desired trajectory for testing the system is a straight
line over the space at a given maximum linear velocity ωmax;
hence, a trapezoidal velocity profile is utilized as interpolator
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according to the acceleration equation:

α(k) =


+a, 0 ≤ kTs ≤

T
3
,

0,
T
3
< kTs ≤

2T
3
,

−a,
2T
3
< kTs ≤ T ,

(3)

where a > 0 is a constant acceleration, T is the duration of
the motion, and Ts is the sampling period. The motion period
is computed as

T =
3θf

2ωmax
, (4)

where θf and ωmax are the distance and maximum speed,
respectively. On the other hand, the acceleration is obtained
as

a =
3ωmax
T

. (5)

For the computation of the velocity function, the backward
rectangular method (BRM) of numeric integration is used by
setting

ω(k) = ω(k − 1)+ α(k)× Ts. (6)

Analogously, the position at any given time t = kTs is
computed as

θ (k) = θ (k − 1)+ ω(k)× Ts. (7)

An RT task within the kernel-space of the OS executes
the computations for the six velocity profiles. These profiles
describe dimensionless quantities; therefore, they may repre-
sent either angles or distances, it depends on the coordinate
system used as described on Table 4.

TABLE 4. Corresponding trapezoidal velocity profile function for each
coordinate system.

For Cartesian coordinates the first three velocity profiles
describe the position coordinates while the last ones represent
the orientation angles. Every single tool-center-point (TCP)
[p] and orientation matrix [Q] is mapped to joint coordinates
by solving the position inverse kinematics problem.

A set of coordinate frames Fi are attached to the
robot joints as Fig. 9 shows, according to the Denavit-
Hartenberg (DH) convention [30]; Table 5 enlists those
parameters. We describe vectors [ai]i in the Fi frame which
represent the coordinates of the origin for the Fi+1 frame as

[ai]i =

ai cos θiai sin θi
bi

. (8)

TABLE 5. Denavit-Hartenberg parameters for the Fanuc S420F robot.

FIGURE 9. Coordinate frames attached to the robot joints.

In order to compute the forward kinematics it is necessary
to perform a vector sum

∑6
i=1 ai; however, these vectors

are described in different coordinate frames and, therefore,
a homogeneous transform matrix

[Qi]i =

cos θi − cosαi sin θi sinαi sin θi
sin θi cosαi cos θi − sinαi cos θi
0 sinαi cosαi

 (9)

is used to map vectors from the (i + 1)-th frame to the
i-th frame.

By substituting the DH paramenters for each position vec-
tor above, the solution for the forward kinematics of position
is obtained by computing equations

[c] = [a1]1 + [Q1]1([a2]2 + [Q2]2([a3]3 + [Q3]3([a4]4)))

(10)
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and

[p] = [c]+
( 5∏
i=1

[Qi]i
)
[a6]6, (11)

where [c] is the wrist center of the manipulator, while the
attitude is given by

[Q] =
6∏
i=1

[Qi]i. (12)

In the opposite direction, the complete solution for the
inverse kinematics is computed as follows:
• Step 1. Compute wrist center [c] = [p]−[Q][a6]7, being
[c] =

[
Xc Yc Zc

]T and [a6]7 =
[
0 0 b6

]T .
• Step 2. θ1 = Arg(Xc,Yc).
• Step 3. sinφ = φn/(2.38994 × 106) where φn = X2

c +

Y 2
c + (Zc − b1)2 − 2 a1(c1Xc + s1Yc)− 2.5× 106, c1 =

cos θ1 and s1 = sin θ1.
• Step 4. cosφ = ±

√
1− sin2 φ.

• Step 5. θ3 = Arg(cosφ, sinφ)− 0.204781, and let c3 =
cos θ3 and s3 = sin θ3.

• Step 6. Solve the equation:[
cos θ2
sin θ2

]
=

[
a2 + a3c3+ b4s3 a3s3− b4c3
−a3s3+ b4c3 a2 + a3c3+ b4s3

]−1
×

[
c1Xc + s1Yc − a1

Zc − b1

]
.

• Step 7. Let θ2 = Arg(cos θ2, sin θ2).
• Step 8. Using θ1, θ2, and θ3, compute

[R] = [Q3]T3 [Q2]T2 [Q1]T1 [Q] =

r11 r12 r13
r21 r22 r23
r31 r32 r33


• Step 9. Compute s5 =

√
1− r233, c5 = −r33, and θ5 =

Arg(c5, s5), and
• Step 10. analogously, s4 = sign(θ5)r23, c4 =

sign(θ5)r13, and θ4 = Arg(c4, s4),
• Step 11. and finally, compute s6 = sign(θ5)r31, c6 =
sign(θ5)r31, and θ6 = Arg(c6, s6).

D. IMPLEMENTATION AND EXPERIMENTAL SETUP
The motion controller has been implemented in a Xilinx
Spartan-3 XC3S1000 [31] device. The number of ocuppied
slices is around 39% which corresponds to the logic of the
position control for the six robot joints and the peripherals
for data exchange, detailed above in Table 6. Special care has
been taken given that this particular device has only twenty-
four 18 × 18 multipliers. Two multipliers are used for the
computation of the position control signal and another two
for the commutation, being four multipliers per axis; thus,
the design fulfills the multipliers capacity of the chip.

The Digilents Spartan-3 starter kit board includes a crystal
oscillator of 50 MHz. On the other hand, the timing report
from Table 6 suggest that the maximum clock frequency

TABLE 6. Synthesis report summary for the motion controller design.

FIGURE 10. Experimental setup.

allowed is 82.143 MHz; therefore, timing constraints are
successfully met.

The experimental setup comprises an industrial Fanuc
S420F robot (bottom of Fig. 10) actuated by six PMSM;
each motor has an attached optical encoder for position and
commutation feedback. The power cabinet (top-left corner of
Fig. 10) has six AMC servo amplifiers with external commu-
tation, three of them rated at 30A of continuous current for the
arm joints and the other three rated at 15A for the wrist joints.
The system is powered directly with a 3-phase line at 220V.
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FIGURE 11. Main screen of user interface application software.

Given that the robot motors are rated at 150V, a transformer
is used to step down the line voltage.

A Spartan-3 starter kit board is included in the con-
trol cabinet (top-right corner of Fig. 10). Several PCBs are
connected to the FPGA for conditioning the commutation
signals, electrical translation of the encoder signals, acti-
vation/deactivation of servo amplifiers, deactivation motor
breaks, and for coupling the master interface signals.

As mentioned earlier, a standard desktop PC with an
Intel R© CoreTM i7-4770 CPU at 3.40GHz is utilized to coor-
dinate and to execute the robot trajectories. The PC runs the
LTS Ubuntu 12.04 OS with the RTAI 3.6 patch. A Qt-based
application, which is depicted in Fig. 11, has been devel-
oped to serve as a human-machine interface. This application
has two main operation modes: manual and automatic; both
modes perform movements either with joints or Cartesian
coordinates.

IV. RESULTS AND DISCUSSION
Given that the purpose of this robotic system is the arc
welding application, one of the tests of interest is a straight
line trajectory in the Cartesian space. Thus, as a test, a point
to point displacement using a linear interpolation is pro-
grammed into the software. The initial point has the coordi-
nates p1 =

[
2000 500 1000

]T while the final one is p2 =[
1000 500 1000

]T , and the orientation for both points is
given according to the Euler angles

[
0 0 0

]T where the first
angle represents a rotation about the Z axis, while the sec-
ond and third ones are rotations about the Y and X axes,
respectively.

The total displacement of the TCP along the X axis is
θf = 1000mm and the maximum velocity is set at ωmax =

500mm/s. Thus, by following a trapezoidal velocity profile,
the period of the movement is T = 3s and the acceleration
rate is a = 500mm/s2.
The Cartesian response of the system is depicted in Fig. 12.

The data series in this Fig. are collected from the profile
generator output and from the encoder measurement every

FIGURE 12. Cartesian response of the system at a feedrate of 500mm/s.

FIGURE 13. Tracking error: (a) position and (b) orientation.

millisecond; thus, we obtain three thousand data points for
the test. The data obtained from incremental encoders is
converted to joint angles, and then the forward kinematics
solution is applied to each point in order to get the current
Cartesian position of the robot.

The tracking RMS error for the position is illustrated
in Fig. 13a. This curve represents the distance from the
commanded position to the measured one, i.e., the norm
of the error vector at a given time. The RMS track-
ing error is 13.7827, and the maximum position error is
around 18.2425mm. Likewise, the orientation error is shown
in Fig. 13b, where the three curves corresponding to the error
for the three Euler angles are displayed.
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FIGURE 14. System response at a feedrate of 500 mm/s.
(a) Joints 1,2, and 3; (b) Joints 4,5, and 6.

Lastly, Figs. 14a and 14b depict the individual response
for joints 1, 2, 3, 4, 5, and 6, respectively. Another important
feature is that the joints 2 and 3 are decoupled, i.e., the motion
of joint 2 does not alter the angle of joint 3; however, for the
sake of simplicity of plots, the results are given as if those
joints were coupled.

V. CONCLUSIONS
An open-architecture controller is proposed in this article;
moreover, experimental data demonstrates that this architec-
ture is completely functional and may be adopted as a starting
point to develop a more sophisticated solution.

Every year a great number of robotic units are disposed
from factories; hence, authors believe that a low-cost solution
as the one presented in this paper may represent, for small and
medium-sized industries, the opportunity of incorporating
this sort of machinery to their processes and thus, increment
their competitiveness.

The developed system achieves almost the same perfor-
mance as the original controller, but this new version has
major advantages such as modularity, given that it is possible
to use H-bridges instead servo amplifiers, for example. In a
similar manner, the resulting system is flexible in the sense
that it may be implemented for a different robot architecture
for instance, or simply, it is possible to connect a feedback
device with a higher resolution without any modification.
Besides, the usage of reconfigurable logic permits to change

the control-law if an improved system is desired. Further-
more, the proposed system is scalable because the number
of servo control instances may be adjusted according to the
number of DoF of the robot to be controlled.

Furthermore, authors are convinced that the future of
industrial controllers is aimed at the usage of programmable
SoC, i.e., the implementation of software and hardware on
a single silicon device. This may bring some benefits such
as reducing system complexity, reduced time delays in data
transfers between PC and FPGA, greater robustness to exter-
nal electrical interference, and of course, higher cost savings.
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