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ABSTRACT Co-regulatory networks, which consist of transcription factors (TFs), micro ribose nucleic
acids (miRNAs), and target genes, have provided new insight into biological processes, revealing compli-
cated and comprehensive regulatory relationships between biomolecules. To uncover the key co-regulatory
mechanisms between these biomolecules, the identification of co-regulatory motifs has become beneficial.
However, due to high-computational complexity, it is a hard task to identify co-regulatory network motifs
with more than four interacting nodes in large-scale co-regulatory networks. To overcome this limitation,
we propose an efficient algorithm, named large co-regulatory network motif (LCNM), to detect large co-
regulatory network motifs. This algorithm is able to store a set of co-regulatory network motifs within
a G-tries structure. Moreover, we propose two ways to generate candidate motifs. For three- or four-
interacting-node motifs, LCNM is able to generate all different types of motif through an enumeration
method. For larger network motifs, we adopt a sampling method to generate candidate co-regulatory motifs.
The experimental results demonstrate that LCNM cannot only improve the computational performance in
exhaustive identification of all of the three- or four-node motifs but can also identify co-regulatory network
motifs with a maximum of eight nodes. In addition, we implement a parallel version of our LCNM algorithm
to further accelerate the motif detection process.

INDEX TERMS Micro ribose nucleic acids (miRNAs), transcription factor, co-regulatory network motif,
G-trie, parallel processing.

I. INTRODUCTION
In recent years, biological regulatory networks, including
protein-protein interaction networks (PPIN) [1], [2], signal
transduction networks (STNs) [3], [4], gene regulatory net-
works (GRN) [5]–[7], and metabolic networks (MN) [8],
have become a hot area of research in computational biol-
ogy. With the development of high-throughput technologies,
the study of micro ribose nucleic acids (miRNAs), TFs,
genes, and the regulatory relationships between these entities
has produced a large amount of data [9]–[12]. Specifically,
the co-regulatory network that combines miRNAs, TFs, and
genes has become a popular research focus [13]–[16]. In con-
trast to a regulatory network that involves only one type
of regulator, co-regulatory networks with multiple types of
regulators are enriched with intricate biological regulatory
relationships.

One approach to study biological regulatory networks is
through network motif analysis. Network motifs are sub-
graphs that are statistically more significant within a given

network than expected for a random network [17]. In gen-
eral, if a subgraph g appears much more frequently in a
given network G than in random graphs with similar degrees
of distribution to G, the subgraph is considered a network
motif. In colored networks involving multiple interacting
node types, the topological structure of graph is ignored,
but the node type and edge type are taken into considera-
tion. The network motif containing node type and edge type
information is called a colored network motif [18]. In this
paper, we mainly focus on the discovery of co-regulatory
motifs (colored network motifs in co-regulatory network) in
large human co-regulatory networks of TFs and miRNAs
to reveal their co-regulatory mechanisms. Co-regulatory net-
work motifs discussed here are motif patterns that involve at
least one TF, one miRNA and one target gene.

The general framework of the network motif identifica-
tion algorithm consists of three main steps, that involve
several graph theory methods, such as subgraph enumer-
ation, graph isomorphism and random network shuffling
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algorithm [16], [19], [20]. The identification of network
motifs is a computationally intensive task. Even if the net-
works only contain a few thousand nodes, it may require
several days to identify network motifs. Specifically, in co-
regulatory networks, it would require significantly more time
due to the increased information of node types and edge types.

Several studies related to co-regulatory network motif
discovery have been published [16], [21]. These studies
note that feedback loops (FBL), feed-forward loops (FFL),
auto-regulation loops (ARL), bi-fans and single-input
motifs (SIM) play important roles in molecular adjustment
to ensure a stable physiological environment within humans.
There are various methods designed to identify network
motifs. For example, FANMOD [19] is one of the most
widely used software programs to discover network motifs.
This software is based on the ESU algorithm [22], which
is very efficient and is able to avoid double enumeration of
certain subgraphs. Moreover, FANMOD is capable of find-
ing colored network motifs by adopting an edge-switching
algorithm to generate randomized networks from the original
network. However, Megraw et al. [21] traced the randomiza-
tion process and discovered a large number of failed switches,
which may result in insufficient network shuffling. There-
fore, the author proposed the WaRSwap algorithm, which
only maintains the network degree distribution. In contrast,
FANMOD is required to keep the degree distribution of each
node in the original network.

Network motif identification in a large-scale co-regulatory
network is time consuming, as the process must enumerate a
large number of co-regulatory subgraphs and determine graph
isomorphism. Furthermore, the addition of the color attribute
indicates that there are more classes of subgraphs and, there-
fore, the progress of co-regulatory motif identification will be
more time-consuming. For this reason, previous exhaustive
searching methods only focus their attention on co-regulatory
motifs consisting of 3 or 4 nodes [16], [18]. This limitation
prevents further investigation of the regulatory mechanism
within the cell, especially for the intricate interplays between
multiple types of regulators in gene regulation.

In this paper, we adopt a G-trie structure [23] to efficiently
identify co-regulatory network motifs. A G-trie is a prefix
tree data structure that is able to store a set of graphs; its
efficiency benefits from reusing the information of subgraphs
with common prefixes. We extend the G-trie structure to
identify network motifs with sizes larger than 4 nodes in large
co-regulatory networks. Specifically, we propose two
sampling methods to generate candidate subgraph pat-
terns: random walking and quick sampling. Moreover,
we design a parallel version to further improve the com-
putational efficiency of the large co-regulatory network
motif (LCNM) algorithm. To determine the potential bio-
logical significance contained in co-regulatory motifs,
we also analyze the cluster characteristic of the identified
co-regulatory motifs.

The rest of the paper is organized as follows: section 2
presents a co-regulatory network motif identification

algorithm based on G-trie structure, section 3 shows the
experimental result, and section 4 presents conclusions and
future directions.

II. METHOD
A. PRELIMINARIES
To identify co-regulatory network motifs in TF-miRNA
co-regulatory networks, we first introduce the basic graph
terminology. Here, G(V ,E) is defined as a co-regulatory
network that involves miRNAs, TFs, and target genes
together with the regulations among them. We define V =
{Vm,Vt ,Vg} as the node set of the co-regulatory network,
where Vm, Vt and Vg represent miRNAs, TFs and the
target gene set, respectively. T (u) represents the type of
node u. Here, we simply use an integer to denote the
miRNA, TF, and target gene vertex types. E⊆(V×V ) is the
set of directed edges. Each directed edge e(u, v)⊆E repre-
sents a regulation between two biological molecules, such
as miRNA→TF , miRNA→gene, TF→miRNA, TF→TF , or
TF→gene. T (u, v) represents the edge types of e(u, v).
In addition, a co-regulatory subgraph Gk is a subgraph
of size k . Gk is considered to be reduced from G,
if V (Gk )∈V (G), E(Gk )∈E(G) and any pair of vertices u and
a vertex set of the subgraph have all the edges that the same
vertex set has in the complete graph G.

In the co-regulatory network, we adopt the definition of
graph isomorphism from [24]. Two subgraphs G and H
induced from a co-regulatory network are considered to dis-
play isomorphism if and only if there exists a one-to-one
mapping f : V (G)→V (H ). ∀u, v∈V (G), if edge 〈u, v〉∈E(G),
then there is an edge 〈f (u), f (v)〉∈E(H ) and the node type
of u, v is the same as that of node f (u), f (v). In this paper,
we follow the same definition of network motifs as proposed
in [17] and use three standard statistical measures to eval-
uate the significance of the co-regulatory network motif m,
i.e., observed frequency, Zscore, and Pvalue.

Zscore(m) =
fG(m)− ¯fR(m)

σ (m)
(1)

where

σ (m) =

√√√√1
n

n∑
i=1

(fG(m)− fRi (m))2

Pvalue =
1+

∑n
i=1 C(n)

1+ n
(2)

where

C(n) =

{
1 if fR(m) ≥ fG(m)
0 otherwise

Here, n denotes the number of randomized graphs gener-
ated. As in the previous study, we generated 1000 randomized
networks to evaluate the significance of the co-regulatory
network motifs. fG(m) denotes the frequency of subgraph m
in the original graph G. ¯fR(m) and σ (m) denote the average
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and standard deviation of frequencies in these 1000 random-
ized networks, respectively. The cutoffs for the frequency,
Pvalue and Zscore are set to 5, 0.01 and 2, respectively, as
suggested in [17].

B. A NOVEL METHOD FOR LARGE CO-REGULATORY
MOTIF DISCOVERY
Most existing motif discovery algorithms enumerate all sub-
graphs of a given size from a given network G and an ensem-
ble of randomized graphs with the same degree distribution
asG, which is feasible in small-scale networks. Nevertheless,
these algorithms are not applicable to large-scale networks
due to their high computational complexity, which limits
discovery of larger motifs. As a matter of fact, in our pre-
vious study [16], we mainly searched for co-regulatory net-
work motifs containing only three or four nodes. In addition,
in a large co-regulatory network, the subgraph patterns grow
exponentially as the subgraph scale increases. However there
are only a minority of subgraph patterns that are motifs.
Moreover, a frequent subgraph is not always a motif. In other
words, previous motif identification algorithms usually waste
much time on non-motif subgraph patterns.

Inspired by [25], we propose two methods to identify
co-regulatory network motif in this paper: exhaustive count-
ing and subgraph sampling.
• Exhaustive counting generates all subgraph patterns.
In our previous work, the CoMoFinder algorithm was
able to exhaustively generate all subgraph patterns with
the given size.

• To obtain candidate subgraphs, with subgraph sampling,
two sampling methods are adopted. The first approach,
random walk, picks a node at random and takes a ran-
dom walk until the subgraphs reach as many nodes as
given. The second approach, quick sampling, is the ESU
sampling algorithm [22]. However, we only generate
10 randomized networks and choose the graph patterns
with larger Z-score, which have greater probability to be
a motif.

C. G-TRIE STRUCTURE IN CO-REGULATORY NETWORKS
Now, the candidate subgraphs are prepared. To evaluate the
significance of the set of candidate motifs, the next step is to
construct the G-trie structure to store the subgraphs, as has
been done in [23]. However, in this paper, the motif stored in
G-trie is the co-regulatory network motif. Thus, the workflow
to construct the G-trie should be modified to adapt to the new
problem.

The G-trie data structure was first proposed by
Ribeiro et al. [26] and is an efficient data structure to store
a set of graphs, as shown in Figure 1. The G-trie is derived
from a prefix tree structure. In this section, we use the terms
node and vertex represent the nodes in the G-trie and graph
vertices, respectively. A path from the root node to a leaf node
represents a subgraph. The G-trie structure stores a set of
graphs that share common subgraphs. As a result, the sub-
graph representation can be compressed, using less memory

FIGURE 1. A G-trie structure storing 10 co-regulatory motifs.

to store maximum number of subgraphs. In addition, unlike
previous algorithms that identify motifs one by one, the
G-trie structure reuses the information of a common prefix
subgraph. Therefore, the G-trie structure can substantially
improve computational efficiency.

Motifs were inserted into the G-trie structure one by one.
Because we want to construct a co-regulatory G-trie with
fewer nodes, we give preference to the vertices with small ver-
tex type label when calculating the canonical label. In other
words, the algorithm ordered the vertex by miRNA, TF, and
gene.

As mentioned above, the candidate co-regulatory sub-
graphs were generated in two ways: exhaustive enumera-
tion and sampling. The G-trie structure was used to store
these subgraph patterns. The G-trie construction process is
detailed in Algorithm 1. In short, we selected graphs in the
set SG (line 2) and executed a series of procedures for each
graph. The first procedure obtains a canonical form for the
graph (line 3). The next procedure generates the symmetry-
breaking condition role (lines 4). As mentioned in [27],
we adopted conditions to generate the algorithm, which
ensures that each subgraph is counted only once. In addition,
we considered the node type when generating conditions.
The AddNode function is an almost straightforward recursive
procedure, which follows the path that corresponds to the
graph being inserted and creates new G-trie nodes as needed
(lines from 9 to 24).

D. USING G-TRIES IN CO-REGULATORY NETWORKS
Subgraphs with G-tries are queried by a recursive back-
tracking procedure. Algorithm 2 provides the details of the
subgraph census process. Initially, we follow all G-trie root
children and start with an empty partial match (line 1 and 2).
We then find all candidate vertices to fill the position of that
G-trie node (line 6). In this line, a set of candidate vertexes are
generated, and the vertexes that meet the symmetry condition
are designated with a node type.When located at a G-trie leaf,
we can find a complete match to a subgraph and increment its
frequency (line 9). If not, we continue as before, recursively
following all possible G-trie paths from that point.

E. NETWORK RANDOMIZATION
As shown in our previous work [16], generation of ran-
domized networks has a significant impact on motif
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Algorithm 1 Creating a G-Trie From a Set of Co-Regulatory
Subgraphs
Input: Candidate co-regulatory graph set SG
Output: Co-regulatory G-trie T
1: T = empty co-regulatory G-trie
2: for G in SG do
3: Str = canomical form of G
4: Cond = sysmmetry breaking condition of G
5: AddNode(T .root , Str , Cond , 0, |V (G)|)
6: end for
7: Filter Condition of T
8: return T
9: Function AddNode(Node, Str , Cond , k , size)
10: Add relevant conditions of Cond to Node
11: Set the insert graph vertices type as the node type
12: if k = size then
13: mark this Node as leaf node of G-trie
14: else
15: for all children c of Node do
16: if if c.connections = k-vertex of Str then
17: AddNode(c, Str , Cond , depth+ 1, size)
18: return
19: end if
20: end for
21: c = new G-trie node
22: c.connections = k-vertex of Str
23: AddNode(c, Str , Cond , depth+ 1, size)
24: end if

Algorithm 2 Census of Subgraph of G-Trie T in
Co-Regulatory Network G
Input: G-trie T , co-regulatory network G
Output: The frequency of each subgraph
1: for all children c of T .root do
2: Cencus(c, ∅, G)
3: end for
4: return the frequency of each subgraph
5: Function Cencus(Node, Vused , G)
6: Vcand = candidates of V (G) that respect node type and

condition of Node
7: for all v ∈ Vcand do
8: if Node is the leaf node of G-trie then
9: Node.frequency++
10: end if
11: for all children c of Node do
12: Cencus(c, Vused

⋃
v, G)

13: end for
14: end for

identification. To improve the accuracy of our algorithm,
we adopted the same edge exchange strategy proposed in our
previous paper [16], whichmaintains the number of each type
of regulation invariant. It has proven efficient to generate ran-
domized networks from an original network. Experimental

results show that the network randomization method adopted
in [16] is able to avoid either ’under-shuffling’ or ’over-
shuffling’ events during the randomization process.

F. PARALLEL IN COUNTING
Network motif identification is a computationally hard
problem. The execution time of a sequential algorithm
grows exponentially with increased motif size, especially in
co-regulatory networks. Though computational complexity
in subgraph enumeration improves with the use of G-tries,
the entire process can be accelerated by implementing the
algorithm in parallel. Therefore, in this paper, we present
a parallel version of our algorithm based on the openMP
library [28]. The procedure-code is described in Algorithm 3.
We created threads in line 1 and output the number of each
thread in line 2. Line 10 indicates parallel processing of
the for-loop structure by dynamic scheduling. To remove
the conflict of each thread and alter the variable frequency,
we used a vector to replace the single frequency (line 13).
Finally, the sum of the frequency vector is calculated in
line 6.

Algorithm 3 Parallel Census of Subgraph of G-Trie T in
Graph G
Input: G-trie T , Graph G, thread count thread_count
Output: The frequency of each subgraph
1: # pragma omp parallel num_threads(thread_count)
2: for all children c of T .root do
3: thread = parallel thread number
4: Cencus(c, ∅, G, thread)
5: end for
6: frequency = the sum of frequency vector
7: return the frequency of each subgraph
8: Function Cencus(Node, Vused , G, thread)
9: Vcand = candidates of V (G) that respect color and

condition of Node
10: # pragma omp for schedule(dynamic)
11: for all v ∈ Vcand do
12: if Node is the leaf node of G-trie then
13: Node.frequency[thread]++
14: end if
15: for all children c of Node do
16: Cencus(c, Vused

⋃
v, G)

17: end for
18: end for

III. EXPERIMENT
A. ENVIRONMENT
This study aims to increase the speed of identifying net-
work motifs in co-regulatory networks and to identify larger-
scale network motifs. To verify the efficiency of the algo-
rithm proposed in this paper, we implemented our algorithm
in C++. Experiments were performed on a general computer,
which contains an Intel Xeon E3-1230 CPU with 4-cores and
8-threads and 8 GB memory.
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B. DATA COLLECTION
To verify the efficiency and accuracy of our method,
we adopted three co-regulatory networks from previous
research. These co-regulatory networks are listed in Table 1
and include two small-scale, published co-regulatory net-
works: Glioblastoma multiform (GBM) and Alzheimer
disease (AD). The largest co-regulatory network is derived
from ENCODE project.

TABLE 1. The information of three co-regulatory networks adopted in
this study.

TABLE 2. The CPU time of FANMOD, CoMoFinder and LCNM to
identify 3 and 4 node co-regulatory motifs in the GBM network.

TABLE 3. The CPU time of FANMOD, CoMoFinder and LCNM to
identify 3 and 4 node co-regulatory motifs in the AD network.

C. COMPARISON ALGORITHMS
In this paper, we adopted two algorithms for comparison:
FANMOD [19], which is widely used in motif identification,
and CoMoFinder [16], which is publicized in our previous
paper. Additional algorithms exist, such as WaRSwap [21]
which is designed to identify co-regulatory networkmotif, but
this algorithm directly adopts the enumeration and classifica-
tion process from FANMOD. For consistency, the duration of
experiments is shown in seconds by default.

D. COMPARISON WITH PREVIOUS ALGORITHM
To evaluate the efficiency of our algorithm, we compared
the running time of LCNN with CoMoFinder and FANMOD
in three co-regulatory networks. Due to the limitation of
computational time, previous research studied co-regulatory
network motifs that only contain 3 or 4 nodes. In addition,
identification of all 3- or 4-node motif types by our algorithm
is highly efficient. Therefore, our comparison focuses on
3 and 4 node motifs. For a fair comparison, the parallel
mode is not turned on for CoMoFinder and LCNM. Here,
we compare the CPU time of the entire process of network
motif identification, including time elapsed in the original

TABLE 4. The CPU time of FANMOD, CoMoFinder and LCNM to identify
3 and 4 node co-regulatory motifs in the ENCODE network.

TABLE 5. The compression ratio and CPU time of LCNM without ordering
of node types to identify 3-node graph patterns in 3 co-regulatory
networks.

TABLE 6. The compression ratio and CPU time of LCNM without ordering
of node types to identify 4-node graph patterns in 3 co-regulatory
networks.

TABLE 7. The compression ratio and CPU time of LCNM with ordering
of node types to identify 3-node graph patterns in 3 co-regulatory
networks.

TABLE 8. The compression ratio and CPU time of LCNM with ordering
of node types to identify 4-node graph patterns in 3 co-regulatory
networks

graph and the 1000 randomized graphs. Compare Results
are shown in Table 2, Table 3 and Table 4. LCNM shows
the best performance in comparison with FANMOD and
CoMoFinder.

E. PERFORMANCE IMPROVEMENT
Although G-trie is an efficient data structure to identify a set
of graphs, its efficiency depends on the compression ratio [27]
of the subgraphs stored within it. The compression ratio
can be calculated with Eq. (3). By ordering the node types,
we achieved better performance. The performance of G-trie
without ordering of the node types is shown in Table 5 and
Table 6. The performance of G-trie with ordering of the node
types is shown in Table 7 and Table 8. The experimental
results show that the compression ratio of LCNM is higher
and the CPU time is shorter with node type ordering, which
suggests that node type ordering improves the efficiency of
LCNM.

compression ratio = 1−
nodes in tree∑

nodes of stored graphs
(3)

F. PARALLEL PERFORMANCE
In our previous paper, we proposed a parallel version of
the CoMoFinder algorithm. In this paper, we also propose a
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parallel version of our algorithm and compare the efficiency
of this algorithm. We identified 4-node network motifs in
ENCODE co-regulated networks. The parallel version of
the LCNM algorithm is designed to take full advantage of
computing resources. Considering that a high-performance
computer is difficult to obtain for most researchers, we only
tested LCNMon a typical computer, containing an Intel Xeon
E3-1230 4-cores and 8-threads and 8 GB memory. The wall
clock time of CoMoFinder and LCNM is indicated in Table 9.
Compared with the CoMoFinder algorithm, the LCNM algo-
rithm showed efficient parallel performance.

TABLE 9. The wall clock time of CoMoFinder and LCNM to identify 4-node
co-regulatory network motifs in ENCODE network with multiple threads.

TABLE 10. Co-regulatory network motifs identified by LCNM with random
walk in the GBM network.

TABLE 11. Co-regulatory network motifs identified by LCNM with random
walk in the AD network.

G. DISCOVERY OF LARGER CO-REGULATORY
NETWORK MOTIFS
We discovered larger co-regulatory network motifs by
sampling connected subgraphs from the co-regulatory net-
works. To obtain the candidate motif type, we sampled
100 subgraphs from the original network. The number of
motifs that we identified is indicated in Table 10 and Table 11.
The large network motif examples are illustrated in Figure 3.
Because of space constraints, we only show 3 types of motifs
on each scale. Graphs from #1.1 to #4.3 in Figure 2 are gen-
erated from the GBM network. Graphs from #5.1 to #6.3 in
Figure 3 are generated from the AD network. These motif
patterns clearly show regulations between miRNAs, TFs and
genes. For instance, in motif pattern #4.1, there are three
miRNAs regulate three genes and one TF together, another
miRNA regulate one of the three genes.

We also proposed a quick sampling method to generate
candidate graph patterns, which we applied with the ESU
sampling algorithm for 10 randomized graphs and chose the
100 graphs with the highest Zscore. The number of motifs that
we identified is indicated in Table 12 and Table 13. Though

TABLE 12. Co-regulatory network motifs identified by LCNM with quick
sampling in the GBM network.

TABLE 13. Co-regulatory network motifs identified by LCNM with quick
sampling in the AD network.

FIGURE 2. The large co-regulatory motif identified by LCNM in the GBM
network.

the sampling time may be longer than randomwalk, it signifi-
cantly increased the number of co-regulated motifs identified
by LCNM. There is a phenomenon in which the motif is
not always the highest frequency graph pattern. Therefore,
choosing the graph patterns that have higher probability of
being a motif will save much time in motif identification.

H. A CLUSTER OF CO-REGULATORY MOTIFS
To reveal the relationship between the co-regulatory network
motifs, we analyzed the instances of the motifs that we iden-
tified. For example, the instances in network of motif #1.1 in
Figure 3 gather into a cluster, which is shown in Figure 4.
The cluster is formed by 15 motif instances that contain
hsa-miR-124, hsa-miR-137, TCF4, TEAD1 and several

14156 VOLUME 6, 2018



J. Luo et al.: Efficient Network Motif Discovery Approach for Co-Regulatory Networks

FIGURE 3. The large co-regulatory motif identified by LCNM in the AD
network.

FIGURE 4. A co-regulatory motif cluster which contains 15 motif
instances of motif #1.1 in the GBM network.

genes. The hsa-miR-137 has been observed to be enriched
in the brain [31] and is related to schizophrenia [32]. Some
researchers have also demonstrated that hsa-miR-137 acts as
a tumor suppressor in several biological processes [32], [33],
and hsa-miR-124 contains tumor suppressive function [34].

IV. CONCLUSION
In this paper, we proposed a novel algorithm to identify
large network motifs based on the G-trie structure. Experi-
mental results indicated that our method is efficient for the
identification of large co-regulatory motifs. Moreover, larger
network motifs provide new insights into co-regulatory net-
works. The advantage of the LCNM algorithm proposed in
this paper consists of three components: (i) the identification
of large network motifs in a short time period, (ii) lower
computational complexity compared with previous methods,
and (iii) an efficient parallel version of LCNM. However,
generating candidate graph patterns by sampling is not appli-
cable to identify all motif types in a co-regulatory network.
Furthermore, the calculation time remains excessive in the
context of a network with tens of thousands of nodes. Future
studies will focus on parallel processing of this algorithm via
supercomputer.
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