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ABSTRACT Speech-based human–machine interaction (HMI) is essential to electronic navigation,
autonomous cars, and intelligent vehicles. The noises generated by the mechanical motion or electric power
equipment degrade speech quality and result in HMI failing to work effectively. However, there is relatively
little literature available on speech enhancement under electric vehicle noise condition. This paper presents
a speech enhancement method based on improved nonnegative matrix factorization (ImNMF). Unlike the
traditional nonnegative matrix factorization (NMF) trains its speech dictionary using speech recorded in
advance which inevitably contains a little noise component, ImNMF generates the speech dictionary using
the spectra of pitch and their harmonics via mathematical model. This purpose is to guarantee the purity
of speech dictionary. In addition, in order to alleviate the loss of the information of the noise sample,
ImNMF constructs noise dictionary by a combination of the gain adjusted spectrum frames of the noise
samples separated online. Compared with traditional NMF, the ImNMF noise atoms are relatively larger.
Thus, the representation of speech signal mixed with noise atoms is greatly reduced. Therefore, ImNMF can
reduce distortion of reconstructed speechwhile enhancing the recovered speech quality. Speech enhancement
and speaker verification experiments on NUST603 and TIMIT data showed that the proposed ImNMF can
effectively enhance speech signal in the noise environment of electric vehicles and further can reduce the
equal error rate of the speaker verification system.

INDEX TERMS Electric vehicle noise, speech enhancement, non-negative matrix factorization, speaker
verification.

I. INTRODUCTION
Speech based human-machine interaction (HMI) is essen-
tial to electronic navigation, autonomous cars, and intel-
ligent vehicles. The noises generated by the mechanical
motion or electric power equipment degrade speech sig-
nal quality and result in HMI failing to work. The speech
enhancement technology [1] (i.e. denoising) not only can
improve the signal to noise ratio (SNR) and the audi-
tory perception of recovered speech, but also can effec-
tively enhance the robustness of the speech recognition and
speaker verification systems. Therefore, speech enhancement
under noisy environments has been a focus of consider-
able research. However, relatively less research has been
conducted on speech enhancement against vehicles noise,
especially new energy vehicles, such as electric vehicles.
Moreover, with the rapid development of artificial intelli-
gence and information technology, speech recognition and
speaker identification (speaker verification) are increasingly

used in information security, electronic payments, map nav-
igation, automatic driving, and other applications. Many of
them occur in the vehicle environment when people are driv-
ing or taking an electric vehicle.

The noise produced by traditional vehicles with oil and
gas fuel engines mainly comes from the vibration of engines,
frames, gears, and tires. Compared to traditional vehicles,
the noise of electric vehicles consists of not only the normal
noise generated by the frame, gear, and tire mechanical vibra-
tion, but also the electromagnetic noise from high-voltage
power supply system, power inverters, motors, and other
electrical devices [2]. Therefore, the noise condition becomes
more complex in electric vehicles.

Based on the differences of the noise source and interfer-
ence way, the noise can be divided into convolution noise
and additive noise. The noise in a vehicle is additive noise.
Thus, the focus of this paper is on speech enhancement
under the additive noise condition. To remove additive noise,
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the simplest methods are spectrum subtraction (SS) and
Wiener filtering. The former subtracts an estimated noise
spectrum from a noisy speech spectrum. This method was
firstly proposed by Boll [3]. The latter based on Wiener
filtering was described in [4]. Another important and classic
speech enhancement method called minimum mean square
error (MMSE) [5], [6] performs non-linear estimation of the
short-time spectral amplitude (STSA) of the speech signal to
minimize the MSE in the spectral domain.

Recently, signal-subspace-based speech enhancement
methods, such as nonnegative matrix factorization (NMF)
[7], [8], have attracted more attention. As a basic tool for
data representation and analysis, NMF has been successfully
applied in the fields of image analysis, text clustering, speech
enhancement [8], [9], singer identification [10], speaker
recognition [11], and so on. However, while speech enhance-
ment based onNMF improves the speech signal to noise ratio,
it inevitably leads to speech signal distortion, and further
destroys the integrity of speech spectrum.

The integrity of speech spectrum is the key to determine
the quality of the speech signal, which inevitably affects the
auditory perception of the utterance. In this paper, the cause
of speech distortion during the denoising based on NMF
is first analyzed. Then, the dictionary structure of NMF is
modified and a novel speech enhancement approach based on
improved non-negative matrix factorization (ImNMF) is pro-
posed. In the vehicle interior noise environment, especially
in the new energy electric vehicle interior noise condition,
speech enhancement evaluation experiment is carried out, and
compared with the classical speech enhancement algorithm
SS, Wiener, MMSE, NMF, etc.

An evaluation of speech enhancement is carried out under
an electric vehicle noise condition. It was compared with
classic speech enhancement algorithms, such as SS, Wiener,
MMSE, NMF, etc. The speaker verification system is more
sensitive to the quality of the speech signal. Thus, to fur-
ther evaluate the proposed speech enhancement approach,
a speaker verification experiment is conducted in electric
vehicle noise environments. The results show that the pro-
posed ImNMF can effectively enhance the speech signal in
the noisy environment of electric vehicles, while significantly
improving the robustness of the speaker verification system.

The rest of this paper is organized as follows:
Section 2 introduces the typical model of the noisy
speech. Section 3 presents the ImNMF approach and
describes as speech enhancement technology. To evaluate the
proposed method under electric vehicle noise condition, the
experiments on speech enhancement and speaker verification
are conducted in Section 4. The conclusion is finally drawn
in Section 5.

II. NOISY SPEECH MODEL
In the time domain, an observed speech signal y, which
usually degrades, is generated from the clean speech signal x
with additive noise n and convolution channel distortions h

according to:

y = x ∗ h+ n, (1)

where the ∗ denotes the convolution operator.
At the preprocessing stage, the speech signal is first divided

into L frames. Then, the ‘hanming’ window function and the
short-time Fourier transform (STFT) can be applied to every
frame of speech signal to generate the spectrum, which is a
K -dimensional vector (K is the number of STFT frequency
bins). The spectrum of the signals x, h, n, and y obtained
by STFT are denoted as Xl , H, Nl and Yl respectively. Here,
l ∈ [1, 2, . . . ,L] is the frame index.

In the spectral domain, (1) can be rewritten as:

Y l = X l �H + N l, (2)

where � denotes Hadamard product.
Mel-frequency cepstral coefficient (MFCC) is the most

widely used acoustic features. To generate MFCC, first a
set of Mel scale filters is applied on the spectrum to obtain
Mel-filter-bank output. Then the log operator is employed to
obtain the log-filter-bank output. Finally, the discrete cosine
transform (DCT) is used to generate MFCC in the cepstral
domain. The MFCC forms of Xl , H, Nl , and Yl are denoted
as X̂ l , Ĥ , N̂ l , and Ŷ l respectively. Obeying above steps,
the MFCC of (2) can be given as following [12], [13]:

Ŷ l = X̂ l + Ĥ + C log
(
1+ exp

(
C-1 (N̂ l − X̂ l − Ĥ

)))
,

(3)

where C is the DCT matrix.
From (1) to (3), it can be found that, for channel noises,

owing to the effect of the logarithmic operation in the MFCC
process, the interaction of the speech and the noise becomes
additive and easy to remove by subtraction operator in the
Mel-frequency cepstrum domain, while it is convolutive in
the time domain or in the spectral domain. The speech
enhancement method, cepstral mean subtraction (CMS) is
based on this principle. However, for background noise,
owing to the effect of the logarithmic operation in the
MFCC process, the interaction of the speech and noise in the
time or in the spectrum domain is additive and simple, but
it becomes nonlinear and very hard to process in the Mel-
frequency spectral domain.

Given additive background noise, the noise model in the
time domain or in the spectrum domain is simple and suitable
for denoising using methods such as SS and NMF. Since the
focus of this paper is speech enhancement under the noise
condition of electric vehicles, channel noiseH can be ignored.
So (2) can be simplified to

Y l = X l + N l . (4)

In the following sections, we take advantage of (4)
to elaborate on the relation between clean and distorted
speech. To remove the additive noise efficiently, we consider
the speech and noise model in the spectral domain.
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III. SPEECH ENHANCEMENT
The major objective of speech enhancement is to recover
pure original speech from a noisy speech signal. However,
it is difficult to remove noise without distorting speech since
the performance of any noise estimation algorithm usually
depends on a trade-off between speech distortion and noise
reduction. In general, speech enhancement algorithms fall
into three categories: filtering techniques, spectral restora-
tion, and model-based methods. Among of them, the model-
based speech enhancement methods, such as NMF series
based methods, take advantage of the statistical models of
both speech and noise to produce estimates of pure speech
from noisy observations.

NMF is a recently developed technique for finding linear
representations of non-negative data [3], [4]. NMF is a widely
used tool for making useful audio representations. NMF fac-
torizes the given non-negative matrixB into two non-negative
matrices:

B = UV , (5)

where B ∈ Rm1×m2
+ , U ∈ Rm1×r

+ , V ∈ Rr×m2
+ . In speech

processing, B is usually the spectrogram of the speech sig-
nal with spectral vectors stored by column, U is the basis
matrix or dictionary, and V is referred to as the NMF coef-
ficient or activation matrix.

Given a clean speech signal X = [X1,X2, . . . ,XL], back-
ground noise signal N = [N1,N2, . . . ,NL], and observed
speech signal Y = [Y1,Y2, , . . . ,YL], by (4) and (5) one
has:

X = UsV s, (6)

N = UnVn, (7)

U =
[
Us Un ], (8)

V =
[
V s

Vn

]
, (9)

Y = UsV s
+ UnVn

=
[
Us Un ] [ V s

Vn

]
, (10)

In practice the clean signal X and background noise N are
unknown, however the corresponding dictionaries Us and Un

can be designed. In this case, given an observed speech Y,
by solving (10), one can obtain the estimated coefficient
matrices V s′ and Vn′ , Then the clean signal X ′ and N ′ can
be recovered by

X ′ = UsV s′ , (11)

N ′ = UnVn′ . (12)

Last, the clean speech signal in time domain can be obtained
by applying inverse STFT to X ′.

A. DICTIONARY CONSTRUCTION
The key step of NMF-based speech enhancement is esti-
mation of speech dictionary Us and noise dictionary Un.
So far, the dictionary construction methods mainly include
two kinds: the analytic method and the learning (by training)

method [14]. The former builds the dictionary via mathemat-
ical model, while the later usually trains the dictionary on a
large number of speech data recorded in advance.
Lyubimov and Kotov [15] introduced the dictionary con-

struction method by mathematical way in the automatic
transcription system to describe the tone and harmonics in
polyphony [11] into speech enhancement under noise condi-
tions and presented a NMF with linear constraints (linNMF).
Inspired by which we improve the dictionary construction,
especially the noise dictionary construction, in order to guar-
antee the purity of speech dictionary and to alleviate the
problem about the loss of the information of the noise sample.

1) THE CONSTRUCTION OF SPEECH DICTIONARY
Most of the traditional NMFs (such as the standard NMF
we called NMF in this paper) train the speech dictionary
by using speech data recorded in advance which inevitably
contains a little noise. The emerging linNMF generates the
speech dictionary using the spectrums of the pitches and their
harmonics via the mathematical model firstly applied to the
automatic transcription system for describing the tone and
harmonic in polyphony. We adopt a similar scheme which
belongs to analytic methods to guarantee the purity of speech
dictionary.
The basic of speech production assumes that in the time

domain, the excitation source e(t) and vocal tract filter z(t)
are combined into convolution model:

x(t) = z(t) ∗ e(t), (13)

The excitation signal consists of pitch and its harmonics.
Where the excitation signal e(t) itself could be presented
by summing up complex sinusoids on frequencies that are
multiples of fundamental frequency:

e (t) =
P∑
k=1

ckeik$(t), (14)

where ck is the coefficient, and $ (t) is the fundamental
frequency (i.e. pitch). For the τ -frame speech signal, x(τ ),
the harmonic function is set as w(t). After STFT, it can be
given as:

|Xτ (ω)| =
P∑
k=1

ck |Zτ (k$τ )| |W (ω − k$τ )| , (15)

where Z (ω) andW (ω) are STFTs of vocal tract filter z(t) and
harmonic w(t).
In MFCC, the power or magnitude spectrum is used, while

the phase information is lost. Thus, the speech dictionary can
be generated by the linear combination of the pitch and its
harmonics after STFT, as following:
Step 1: Computing the fundamental frequencies. The q

fundamental frequencies are selected between the range [fmin,
fmax] with interval1f . In this paper, we set fmin = 80, fmax =

400, 1f = 10Hz, thus the corresponding the fundamental
frequencies are 80, 90, · · · , 400, which are in total of 33.
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FIGURE 1. The spectral of speech dictionary.

Step 2:Computing the speech dictionary size (total number
of speech atoms). For each fundamental frequency we can
construct a dictionary containing m atoms. Here we used
m = 4, and thus the dictionary contains rs(= 132) atoms.
Step 3: Computing each dictionary atom. For each fun-

damental frequency, the number of harmonics can be
decided by:

P = min (fix (fs/ (2f0)) , 30) , (16)

where fs is sampling frequency of speech signal, f0 is the
fundamental frequency, and fix(µ) rounds the element to the
nearest integer towards zero. Then the corresponding speech
dictionary atoms are:

ψ s
j = [c1ω1, c2ω2, . . . , ckωk , . . . , cPωP] , (17)

where j ∈ [1, 2, . . . , rs], ωk ∈ RK+ is STFT vector of
windowed cos(2πkf 0t), ck is the gain coefficient.
Step 4:At last, the speech dictionary can be constructed by:

usj = ψ
s
jaj, (18)

where aj ∈ RP is the vector of harmonic amplitudes, which
presented the spectral envelope shape of vowel sound.

For example, when each element of aj is 1/P, following
above step, the spectral of speech dictionary can be obtained
and is shown in Figure 1. Obviously, with varying funda-
mental frequencies there exist the similar structure between
spectrums of vowel and harmonic.

2) THE CONSTRUCTION OF NOISE DICTIONARY
Given a noisy speech signal, the noise samples are obtained
by the voice activity detection (VAD) online. These noise
samples are connected, and forms the G frames. Then the

FIGURE 2. The spectral of noise dictionary.

correspondingG frames noise spectrum can be obtained. One
example is shown in Figure. 2.

Unlike NMF, linNMF, and denseNMF firstly decompose
the noise spectrum samples into 2 matrices: the basis matrix
and the coefficient matrix, then directly take the basis matrix
as the noise dictionary (NMF) or take the basis matrix
with linear constraints as the noise dictionary (linNMF and
denseNMF), we take advantage of the noise spectrum sam-
ples to construct the noise dictionary without being decom-
posed by NMF. In the improved scheme, the noise spectrum
samples are denoted as wg, g ∈ [1, 2, . . . ,G] is frame index
term, and the corresponding noise dictionary atoms are:

ψn
j =

[
c1w1, c2w2, . . . , cgwg, . . . , cGwG

]
, (19)

where cg is the gain coefficient. j ∈ [rs + 1, rs + 2, . . . , rs +
rn] is frame index term, rn is the noise dictionary size (total
number of noise atoms).

The noise dictionary size rn is set to 16 in this work.
By selecting rn groups of the different gain coefficients,
rn noise atoms can be obtained. Similarly to speech dictio-
nary, the noise dictionary can be constructed by:

unj = ψ
n
j aj, (20)

where ψn
j are atoms, j ∈ [rs + 1, rs + 2, . . . , rs + rn].

B. SPEECH RECOVERY WITH ImNMF
Now, to decompose input noisy spectrogram using speech
and noise dictionaries, we give the following formula
of NMF problem by employing the Kullback-Leibler
divergence (KLD),

minV ,aj KLD (Y ||UV)+ λ ‖V‖1 + α
∥∥aj∥∥22

s.t. usj = ψ
s
j
aj, unj = ψ

n
j
aj, ||aj||1 = 1,

j = 1, 2, · · · , rs + rn, (21)

where α and λ are balance parameters, KLD is defined by:

KLD (Y ||UV) =
∑
i,j

[
Y i,j log

Y i,j
(UV)i,j

− Y i,j + (UV)i,j

]
.

(22)

It should be noted that although here KLD is employed,
other divergences, such as Itakura–Saito Divergence, could
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FIGURE 3. The framework of speech enhancement.

be used as well. In (21), the matrix V is assumed to be sparse
and measured by L1 norm. The parameter λ is set different
for speech part and noise part, which means the different
constraints are used for speech signal and noise signal. λs
(corresponding to Vs) and α ware both set to 0.2, and λn
(corresponding to Vn) is set to 0 in this paper.
Last the optimization (21) can be solved by iteratively

updating following two steps:

aj ← ãj ·
1̄j̃aTj ψ

T
j 1̃x̄

T
j + ψ

T
j

Y
UV x̄

T
j + α1̄j̃a

T
j ãj

ψT
j 1̃x̄

T
j + 1̄j̃aTj ψ

T
j

Y
UV x̄

T
j + αãj

, (23)

V ← V ·
UT Y

UV

UT 1̃+ λ
, (24)

where ãj = aj
/
||aj||1, 1j indicates the vector of all-ones of

the same size as aj, 1̃ ∈ RK×L is the all-ones matrix.

C. THE FRAME OF DENOISING
The framework of ImNMF based denoising approach is
shown in Figure 3. The corresponding speech enhancement
is as following:

a) Constructing the speech dictionary.
b) Constructing the noise dictionary.
c) Performing STFT and ImNMF for inputing noisy signal.
d) Obtaining the recovery signal by inverse STFT and

Wiener filtering.

IV. EXPERIMENT AND ANALYSIS
A. DATA PREPARATION
For performance evaluation, we design and generate an addi-
tive noisy corpus based on the TIMIT corpus and partial
NUST603 data. The TIMIT corpus contains 6300 recordings
of 630 speakers of eight major dialects of American English,
each speaker reads 10 phonetically rich sentences. The Mic
part of the NUST603 data that recorded with microphone
contains 2961 Chinese utterances in total, with durations
of 15s-3min, spoken by 423 speakers.

Two electric vehicles (Beiqi-EV160 and Saichi-X3) are
employed to collect the vehicle noises. As shown in Figure 4,
the silver electric vehicle on the left is a Beiqi-EV160 charg-
ing at the station. A PCM-5560 microphone and a Lenovo
T420i laptop are employed for the noise recording.

FIGURE 4. The Beiqi-EV160 (silver electric car on the left) at the charging
station.

All files of the electric vehicle noise were recorded on
the new Sihuan Road in Haidian District, Beijing, China.
The vehicle is driven under the real-time traffic conditions.
Its speed ranges from 0 to 90 km/h with multiple starting,
acceleration and deceleration. During the ride, the air con-
ditioning is on, the horn is occasionally engaged, and there
are occasional slight bumps caused by the auto slowdown
facilities at the crossroads.

The recording task is completed by 3 people. One is
responsible for driving the electric vehicle, another one sit-
ting in the passenger seat puts microphone near the gear
shift where usually navigation or intelligent equipment are
mounted; and the third one sitting in the back for operating
the recording software. The recordings are monaural, 16 bits,
and at 16 kHz. For an example, the waveform and spectrum
of Beiqi5 noise derived from the EV160 vehicle are shown as
Figure 5 (a) and (b), respectively.

For compatibility to the telecommunications system, all the
speech, noisy speech, and noise signals are resampled down
to 8 kHz. As shown in Figure 5(b), the energy spectrums
of the noise in the electric vehicle are mainly assembled at
0-1000 Hz, especially at 0-200 Hz, which is, by and large,
the same as that in [16].

It is not easy to estimate the SNR of the in-vehicle
speech. The distance between the microphone and the
speaker’s mouth, the loudness of the individual sound, and
the strength of the within vehicle noise are key factors in
determining the SNR of in-vehicle speech. The NIST STNR
Tools (V2.7) is used to estimate the 20 utterances of sev-
eral individuals, and the SNR is roughly distributed between
5.75-26.5 dB.

FaNT (filtering and noise adding tool) [17] is an open-
source software for speech processing. The software is inte-
grated with the G.712, IRS,MIRS and P.341 filters developed
for telecommunications by the international telecommuni-
cation union (ITU). Another important function of FaNT is
adding noise (according to the designed SNR) to a given
original signal. In the following experiments, FaNT is used to
mix electric vehicle noise into TIMIT andNUST603 corpuses
to generate the desired noisy data. It should be noted that the
SNR of the generated noisy speech can be a little lower than
the set value because the pre-filtering function of G.712 on
the original speech is selected before adding the target noise.
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FIGURE 5. The noise of Beiqi-5 for (a) the waveform and (b) the spectrum.

B. DISTORTION COMPARISON
To evaluate the proposed ImNMF for speech enhancement
in term of distortion, we compare the recovered speech sig-
nals (reconstructed by SS, Wiener, MMSE, NMF, linNMF,
denseNMF, and ImNMF) from three aspects of thewaveform,
the spectrum, and the objective speech quality score, under
electric vehicle noise condition.

1) THE WAVEFORMS OF THE RECOVERED SPEECH
For instance, the ‘Beiqi5’ noise and ‘Saichi5’ noise are mixed
into the original speech M200-N1 to generate the noisy
speech M200-N1-Beiqi5-6dB with ‘Beiqi5’ noise at SNR
of 6dB and the noisy speech M200-N1-Saichi5-6dB with
‘Saichi5’ noise at SNR of 6dB, respectively. The waveforms
of the original speech signal and the two noisy speech sig-
nals are shown in Figure 6. The waveforms of the recov-
ered speech signals via SS, Wiener, MMSE, NMF, linNMF,
denseNMF, and ImNMF are shown in Figure 7 and Figure 8,
respectively.

From Figure 7(a), 7(b), 8(a), and 8(b), we can find that
the speech signals recovered by the classical SS and MMSE
speech enhancement approaches contain a little residual noise
because of the inaccuracy of noise estimation. As shown
in figures 7(c) and 8(c), the algorithm of Wiener achieves
high SNR of the recovered speech, and it also causes a
great distortion while removing noise. Figure 7(d), 7(f), 8(d),
and 8(f) show that the traditional method NMF and the
emerging method denseNMF less eliminate the noise against
Beiqi5 leading to much noise remained, while over eliminate

FIGURE 6. The waveforms of (a) the original speech M200-N1, (b) the
noisy speech M200-N1-Beiqi5-6dB, and (c) the noisy speech
M200-N1-Saichi5-6dB.

the noise against Saichi5 leading to serious speech distortion.
As shown in Figure 7(e) and 8(e), there is much residual
noise in the enhanced speech against both of the two electric
vehicle noises based on linNMF. Thewaveforms of the recov-
ered speech signals via the proposed ImNMF are showed in
Figure 7(g) and 8(g), from which we find that against either
Beiqi5 or Saichi5 noise, ImNMF can effectively enhance the
noisy speech as well. Among of the competitive denoising
methods, ImNMF performs the best trade off between the
reduction of noise and the speech distortion.

2) THE SPECTRUMS OF THE RECOVERED SPEECH
The spectrum of the original speech signal is shown
in Figure 9. The spectrums of the recovered speech signals via
SS, Wiener, MMSE, NMF, linNMF, denseNMF, and ImNMF
are shown in Figure 10 and 11, respectively. The formants
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FIGURE 7. The waveforms of recovered speech from noisy speech M200-N1-Beiqi5-6dB via (a) SS, (b) MMSE, (c) Wiener, (d) NMF, (e) linNMF,
(f) denseNMF, and (g) ImNMF.

corresponding to vowels of speech are clearly present in these
figures.

Comparing the spectrums in the subfigures of Figure 10,
we can find that, there are different degrees of energy loss in
the formant structures of the seven enhanced speech signals
against Beiqi5 noise. Among of them, in detail the spectrum
of the recovered speech via ImNMF is the most integrated
and closest to the original signal, while that via Wiener is the

most negative one. The spectrums of the recovered speech
signals from the noisy speech with Saichi5 noise are showed
as Figure 11. Compared to the spectrums of original speech,
there is much distortion (i.e. the formant loss) in the recovered
speech via Wiener, NMF, linNMF, and denseNMF, and there
is a slight distortion in the recovered speech via SS and
MMSE. Generally, the recovered speech via ImNMF is the
closest to original signal and with the least distortion.
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FIGURE 8. The waveforms of recovered speech from noisy speech M200-N1-Saichi5-6dB via (a) SS, (b) MMSE, (c) Wiener, (d) NMF, (e) linNMF,
(f) denseNMF, and (g) ImNMF.

3) THE OBJECTIVE QUALITY EVALUATION
There are many ways to evaluate the recovered speech qual-
ity. The following, we select five quantitative and objective
scoring methods to evaluate the quality of the reconstructed
speech after denoising. The first criterion is the signal-to-
distortion ratio (SDR) of the enhanced speech proposed by

BSS-EVAL [18] to show the impact on noise separation
and suppression of the algorithms. The second metric is the
perceptual evaluation of speech quality (PESQ) score, which
measures the subjective speech quality [19]. The third one is
the short-time objective intelligibility (STOI) score described
in [20], which is expected to have a monotonic relation with
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TABLE 1. The quality scores of the noisy speech and the recovered speech.

TABLE 2. The structure of the noisy corpuses for training and testing.

TABLE 3. The schemes of the training and testing.

TABLE 4. The EER and MINDCF-08 on TIMIT Corpus distorted by EV noise at the SNR of 8 dB (%).

FIGURE 9. The spectrum of the original speech M200-N1.

the subjective speech intelligibility. The overall effect of the
enhanced speech using the scale of the mean opinion score
(OVRL) [19], [21] is the fourth measure. The last criterion is
the SIG described in [21], which employs a five-point scale

of signal distortion. For all the above metrics, a larger score
indicates better performance.

50 utterances are randomly chosen from TIMIT and
NUST603 corpuses, and then are mixed with the two electric
vehicle noises at a SNRof 6 dB to generate a total of 100 noisy
utterances for evaluating the denoising performance. The
average score of the all noisy utterances is considered as the
speech quality score. The speech quality scores of the noisy
speech and the recovered speech via SS, Wiener, MMSE,
NMF, linNMF, denseNMF, and ImNMF are shown in Table 1.
From which it can be find that, excepting SDR, the proposed
ImNMF is slightly lower than denseNMF to be suboptimal,
and for all other terms, achieves better performance than the
competing methods.

The noise atoms of NMF, linNMF, and denseNMF are
generated by NMF training which decomposes the noise
samples into tiny fragments and results in losing noise
information more or less. In the process of noisy speech
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FIGURE 10. The spectrums of recovered speech from noisy speech M200-N1-Beiqi5-6dB via (a) SS, (b) MMSE, (c) Wiener, (d) NMF, (e) linNMF, (f)
denseNMF, and (g) ImNMF.

decomposition, the particle of noise atoms is too small,
which leads the noise atoms to be easily mixed into the
speech signal representation. Thus, part of the speech signal
incorrectly represented by the noise atom is discarded as
noise in the reconstruction, finally. In order to prevent this
drawback, ImNMF generates the speech dictionary using

the mathematical model and constructs noise dictionary by
means of linear combination of the spectrum frames of the
noise samples. Compared with traditional NMF, linNMF,
and denseNMF, the noise atoms of ImNMF are relatively
larger and preserve more information of the noise sam-
ples. Thus, representation of speech signal mixed with noise
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FIGURE 11. The spectrums of recovered speech from noisy speech M200-N1-Saichi5-6dB via (a) SS, (b) MMSE, (c) Wiener, (d) NMF, (e) linNMF, (f)
denseNMF, and (g) ImNMF.

atoms is greatly reduced, which further resulting in less
distortion.

C. SPEAKER VERIFICATION
The speaker verification system is more sensitive to
the quality of the speech signal. Therefore, the speaker
verification can indirectly evaluate the performance of the

speech enhancement under electric vehicle noise condition.
The noisy utterances are generated by adding noises on
TIMIT and the ‘Mic’ part of NUST603. As listed in Table 2,
these noisy utterances are divided into training set and test-
ing set, which are used for model training and performance
testing, respectively. The SNRs are set to 8, 15, 25 dB, the
‘original’ notes the original speech signal without adding
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noise. In consideration of the unseen noise condition (the
noise for the testing is unseen in the training) [22], the bab-
ble, factory1, volvo, pink, light-rain, and music-box noises
are mixed into the training sets, while the beiqi5 and
saichi5 noises are added to the test sets, respectively.
At the Training Stage: Firstly, according the schemes listed

in Table 3, the Gaussian mixture model (GMM) [23]–[25],
the universal background model (UBM) [26], [27], and the
total subspace (T) [23], [25] are trained in advance. Then the
400-dimensional i-vector (identify vector) [23]–[28] features
are extracted for training sets. Finally, the linear discrim-
inant analysis (LDA) model [23]–[25] for dimensionality
reduction and the Gaussian probabilistic linear discriminant
analysis (GPLDA) [23]–[25], [28] model are trained, using
the i-vector features of the training sets.
At the Testing Stage: The recovered utterances via SS,

Wiener, MMSE, NMF, linNMF, denseNMF, and ImNMF
are put into speaker verification system to be tested, respec-
tively. Firstly, the 400-dimensional i-vector features of each
utterance for testing are extracted. Then, the dimensional-
ity of them is reduced via LDA, and the scores are cal-
culated based on GPLDA. Finally, the speaker verification
decisions are made and the equal error rate (EER) [23]
and minimum decision cost function of 2008 (minDCF-
08) [23] are calculated based on the scores at SNR = 8 dB.
The results are listed in Table 4, for the two metrics,
a small value indicates better performance. The detection
error tradeoff (DET) curves [23] (as a means of represent-
ing performance on detection tasks that involve a tradeoff
of error types) of speaker verification with various denois-
ing methods are shown as Figure 12. For the DET curves,
which is closer to the coordinate origin indicates the better
performance.

As listed in Table 4, ImNMF achieves the best performance
among the seven competing methods in terms of the EER
and minDCF-08. MMSE is a classic speech enhancement
method and gains the suboptimal performance (be next
only to ImNMF). The same conclusion can be drawn from
Figure 12, that is, ImNMF outperforms all other six methods
in speaker verification system under the noise condition of
electric vehicles.

It also can be fond from Table 4 and Figure 12 that the
methods such as linNMF, denseNMF, and ImNMF, which
construct speech dictionary by an analytic way, have a dis-
tinct advantage in speech representation. Unlike the noise
dictionaries of NMF, linNMF, and denseNMF are trained by a
standard NMF on noise data, the noise dictionary of ImNMF
is a linear combinations of the noise spectra samples with gain
coefficients, but without being decomposed by NMF, which
makes the noise atom larger and less losing the information
of the noise data. Thus, ImNMF not only improves the noise
dictionary’s capability to represent the noise signal, but also
reduces the noise dictionary’s probability to represent the
speech signal.

From the above discussion, we can come to conclude that
ImNMF improves the SNR and reduces the distortion as well

FIGURE 12. The DET curves of speaker verification with denoising via SS,
MMSE, Wiener, NMF, linNMF, denseNMF, and ImNMF on TIMIT Corpus
Distorted by (a) Beiqi5 noise and (b) Saichi5 noise at SNR of 8 dB.

in speech enhancement. It achieves the best trade off between
the noise reduction and the speech distortion.

V. CONCLUSION
This paper has proposed a speech enhancement method
ImNMF based on the improved nonnegative matrix factor-
ization and applied it to the speaker verification system.
In ImNMF, the atoms of its speech dictionary are constructed
via a mathematical model to guarantee the speech dictionary
purity. The noise dictionary consists of the linear combina-
tion of the noise spectrum samples separated online, which
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preserves the information of the noise samples as much as
possible. The speech enhancement experiments have been
conducted on the TIMIT and NUST603 data with the electric
vehicle noises. The results demonstrated that the proposed
ImNMF can effectively enhance the noisy speech and can
improve the robustness of the speaker verification system
under electric vehicle noise conditions.
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