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ABSTRACT Precise point positioning (PPP) is of great importance in fields requiring coordinates with
high accuracy, such as geophysics, meteorology, and geodesy. Compared with relative positioning restricted
by the length of baseline, PPP using a single receiver is more flexible. Carrier phase observations with
much higher precision than pseudorange measurements are used in the positioning process of PPP. However,
accurate estimation of integer ambiguity associated with carrier phase observations is a prerequisite. Then
the integrity of the phase observable can be completed as a range measurement with high precision. With
triple-frequency signals of global navigation satellite system (GNSS) available, combinations of original
observations with longer wavelengths and lower noises are preferable. In this paper, we propose an improved
ambiguity resolution (AR) method based on the traditional bootstrapping method to make it suitable for PPP
and increase the precision of AR and positioning. Virtual ambiguities of extra-wide-lane, wide-lane, and
modified narrow-lane combinations are resolved first for their relatively better characteristics. Furthermore,
extra pseudoranges are included to decrease the ionospheric delay which cannot be ignored as it is in
relative positioning. Then, original ambiguities on the three frequencies can be recovered from the combined
ambiguities using three linear equations which are independent to each other. Finally, the performance of
the improved method is tested with real GPS navigation data on three frequencies which is provided by the
international GNSS service. Comparedwith the traditional bootstrappingmethod, it shows that the ambiguity
residuals of the improved method have decreased which indicates more accurate estimation. The precision
of the positioning results has increased accordingly.

INDEX TERMS GNSS, GPS, ambiguity resolution, precise point positioning, triple-frequency positioning.

I. INTRODUCTION
Precise point positioning is widely used in fields such as
high precision navigation, geophysics, meteorology, geodetic
and so on. In relative positioning, the length of the baseline
between the user and the reference receivers usually restrict
the application and precision of this method severely. The
double-differenced biases such as orbital, ionospheric and
tropospheric residuals will increase with the increment of
distance between the user and the reference receivers. The
errors of the medium and long baselines can’t be eliminated
effectively as the ones of the short baselines (< 10km) [1].
However, depending on a single receiver, PPP ismore flexible
and won’t be affected by length of the baseline. In recent
years, the satellite orbit and clock products provided by sev-
eral institutions such as IGS are becoming more accurate and
timely. What’s more, the strategies of network analysis to

derive integrated estimation of the station coordinates and
satellite orbits as well as Earth rotation parameters with
full statistical information are steadily improved. Therefore
positioning results with decimeter or even centimeter accu-
racy in PPP are possible [2]–[4]. Soycan and Ata [5] (2011)
investigated the availability of precise point positioning and
compared it to the traditional network solution. They con-
cluded that PPP may be an alternative to traditional relative
positioning. Thus PPP using a single receiver is considered
to be a powerful tool that can be applied to the fields such
as crustal deformation monitoring, near real-time GPS mete-
orology, orbit determination of low Earth orbiting satellites,
and the precise positioning of mobile objects. In conclusion
PPP is becoming a very pragmatic tool.

Pseudorange measurement which is primarily used for
navigation nowadays has measuring error of meter-scale.
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Hence it is not qualified for high precision positioning.
In PPP, carrier phase observations are utilized because they
have much lower measurement noises than the code observa-
tions. As it is known, the cycles of the carrier phase obser-
vations are counted after acquisition of the satellite signal by
the receiver. As a result, the integer cycles before acquisition
are not known in advance and are named as integer ambigu-
ities. With the integrated measurement unknown, the carrier
phase observables can’t be applied to the positioning process
straightly. Hence, accurate estimation of the integer ambi-
guity associated with the carrier phase is a prerequisite for
high precision positioning. Once the integer ambiguity has
been resolved, carrier phase measurement can be used as the
parameter of range as the pseudorange does however with
much higher positioning accuracy.

In order to improve the positioning precision of PPP,
many approaches related to ambiguity resolution have been
put forward in recent years. Normally in preprocessing,
the ambiguity won’t keep the integer property naturally due
to the existence of uncalibrated errors originated in the
receiver and satellite [6]–[8]. In summary, precise model-
ing or thorough elimination of the error sources which bias
the code and carrier phase observations are vital for reliable
ambiguity resolution in any system of GNSS [9]. In one
hand, fractional-cycle biases (FCBs) in the float estimations
were proposed to be eliminated by Geng et al. [10] (2010).
Geng et al. [11] (2010) theoretically proved the equivalence
of the ambiguity-fixed position estimates derived from two
different methods by assuming that the FCBs were hardware-
dependent and they were only assimilated into the clocks
and ambiguities. On the other hand, new strategies were
presented to remove the uncalibrated phase delays (UPDs).
XX Li (2013) developed a real-time computational proce-
dure for generating uncalibrated phase delays (UPDs) on
L1 and L2 frequencies. The empirical spatial and tempo-
ral constraints and the ionospheric delays derived from a
real-time available ionospheric model were all considered
as pseudo-observations into the estimation for strengthening
the solution [12]. Ge et al. [13] (2008) demonstrated that the
single-differenced (SD) UPDs between satellites in wide-
lane and narrow-lane combinations from a global reference
network could be estimated with high accuracy through a
statistical analysis of the ambiguities. Thus the corrected
SD-ambiguities could be fixed to integer values.

Apart from the operation of single difference, AR
for zero-differenced (ZD) PPP had been put forward.
Zhang et al. [14] (2013) investigated and demonstrated the
performance of a global zero-differenced (ZD) PPP inte-
ger ambiguity resolution (IAR) service for GPS users by
providing routine ZD uncalibrated fractional offsets (UFOs)
for wide-lane and narrow-lane combinations. In the work of
Zhang et al. [15] (2011), the ZD GNSS observations from a
regional reference network were processed based upon re-
parameterized observation equations, corrections for satel-
lite clocks, phase biases and interpolated atmospheric delays
were calculated and provided to users. In the second step,

these network-based corrections were used at the user site
to restore the integer nature of the ZD phase ambiguities,
which made rapid and high accuracy user positioning possi-
ble. What’s more, the corrections from the networks were uti-
lized for single point positioning. Bertiger et al. [16] (2010)
presented an algorithm processing dual-frequency GPS data
from a single receiver together with wide-lane and phase bias
estimates from the global network of GPS receivers. The
algorithm was demonstrated to have significantly improved
repeatability of daily estimates of ground receiver posi-
tion. Le et al. [17] (2009) investigated the use of Global and
Regional Ionosphere Maps for single-frequency precise point
positioning. The results showed that the SWACI map could
bring the vertical positioning accuracy to the same level
as the horizontal one, at 23 km. Teunissen et al. [18] (2010)
discussed the concept of PPP-RTK. By forming certain com-
binations of these network parameters for correcting their
single-receiver GNSS phase and code data, users could per-
form integer ambiguity resolution and realize cm-level posi-
tioning.

As we can see, the precision of the float ambiguity reso-
lution is the foundation of the following fixation procedures
for almost all methods. So it is vital to improve the precision
of the float ambiguity resolution either. Then the parameters
of interest (e.g. receiver coordinates) can be calculated with
a higher precision. With triple-frequency signals of GNSS
available, the virtual signals with longer wavelengths and
lower noises can be constructed through linear combinations.
Therefore, we propose an improved ambiguity resolution
method for PPP based on the triple-frequency carriers and
the traditional boot-strapping method in order to increase the
precision of theAR and the positioning. Considering the char-
acteristics of different combinations along with the success
rates, the relatively better virtual signals named as extra-wide-
lane, wide-lane and modified narrow-lane combinations are
chosen for AR. In the traditional methods designed for rela-
tive positioning, the ionospheric residuals after double differ-
ence are small enough to be neglected. In order to eliminate
the geometry parameters and residual ionospheric delays of
single receiver, extra pseudoranges are combined with the
optimal combinations to reduce the ionospheric errors in the
improvedmethod.With real GPS navigation data on three fre-
quencies, the effectiveness of the improved method is tested
by numerical analysis. The ambiguity fixing results and the
positioning precision of the improved method are compared
with that of the traditional boot-strapping method.

The paper is organized as follows. In section 2, we first
introduce the mathematical models and the resolution of
the observation equations of the positioning process using
the triple-frequency code and carrier phase measurements
in PPP. Then in the next section, we interpret the basic
procedures of boot-strapping methods using combinations
of triple-frequency observables. In section 4, the procedures
of the improved method which is suitable for PPP and will
achieve more reliable ambiguity resolution are presented.
Section 5 illustrates the results and analysis of the numeri-
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cal test using the improved method and traditional method
respectively. Conclusion comes as the last section.

II. OBSERVATION EQUATIONS OF CODE AND
CARRIER PHASE
The code (P or C/A) and carrier phase observations included
in the GNSS signals are used for positioning and ambiguity
resolution of PPP. Although the functions of the observables
have been discussed sufficiently before, they still need to
be introduced first as foundations of positioning. The math-
ematical equations of the original code and carrier phase
observations on multiple frequencies are expressed as [19]:

Pi = ρ + β1iδI1 + εPi (1)

Φi = ρ − β1iδI1 − λiNi + εΦi (2)

where the subscript i denotes various frequencies of GNSS.
Pi and Φi indicate the code and phase observables in meters;
ρ is the geometric parameter which doesn’t change with
the variances of the frequencies and includes the distances
between receivers and satellites, the receiver and satellite
hardware delays in meters and clock errors, along with the
tropospheric delays. The symbol δI1 denotes the ionospheric
bias on frequency f1 in meters, β1i = f 21 /f

2
i is the ionospheric

scale factor (ISF), λi is the wavelength of fi, Ni is the integer
ambiguity in cycles. εPi and εΦi are the code and phase
measurement noises including multipath noise on frequency
fi and they are independent to each other.
In PPP, most of the main errors are corrected in the pre-

processing procedure. For example, the satellite clock errors
can be corrected by interpolation of the precise ephemeris
provided by analysis system such as IGS [20]. The dry com-
ponent of the tropospheric delays can be computed approx-
imately by interpolation of the Saastamoinen model or the
UNB3 model [21]. Hence the coordinates, the residual wet
component of the tropospheric delays, ionosphere delays and
the integer ambiguities are the mainly remaining unknown
parameters.

For these non-linear observation equations, generally the
least-square (LS) method is used to resolve the unknown
parameters of interest. Supposed that the ambiguity param-
eter Ni has been resolved precisely, then the coordinates of
the receiver can be resolved by the equations written as:[

P
Φ + λN

]
= GX +

[
εP
εΦ

]
(3)

where G is the geometric matrix of the LS method. Hence,
if we can improve the precision of the float ambiguity estima-
tion so that it can be fixed to a more precise integer ambiguity
correspondingly, more accurate positioning results can be
derived.

Up to now many methods to resolve the ambiguity have
been proposed. Teunissen et al. [22] made a comparison
between the LAMBDA method and boot-strapping methods
such as the Three-Carrier Ambiguity Resolution (TCAR) and
the Cascading Integer Resolution (CIR) method [23], [24].

The LAMBDA method utilizes the information of variance-
covariance matrix and the statistical decorrelation for ambi-
guity transformation to search for the integer ambiguity.
The boot-strapping method is generally based on a group of
selected linear combinations of the original multi-frequency
observations. Although the LAMBDA method will achieve
relatively higher success rate, it will involve much more com-
plexity of computation due to decorrelation and the procedure
of integer searching. On the contrary, with linear combina-
tions, the computations of the boot-strapping methods are
much easier. On the other hand, with signals onmore frequen-
cies accessible to users nowadays, boot-strapping methods
utilizing multiple frequencies will get novel benefits for AR.
Hence, the procedures to improve the resolution accuracy of
boot-strapping method is of interest and introduced in the
following sections.

III. LINEAR COMBINATIONS OF OBSERVATIONS
As it is known, some systems of the GNSS such as themodern
GPS (Global Positioning System) and BDS (Beidou Naviga-
tion Satellite System) have been broadcasting signals on three
frequencies. With code and carrier phase observations on
more and more frequencies available, more combinations of
triple-frequencies utilized for boot-strapping method can be
constructed. Hence, new combinations characterized to have
longer wavelengths and lower measurement noises than the
preceding ones of single or double frequencies aremore likely
to be obtained. These characters will contribute to increase
the accuracy and efficiency of integer ambiguity resolution
and positioning. As basic knowledge of the improved method
in the next section, the traditional boot-strapping method
is elaborated first [25]. The mathematical model commonly
used in this kind of method is introduced in the following
part.

A. LINEAR COMBINATION OF THE CODE AND CARRIER
PHASE OBSERVATIONS
In order to deduce the corresponding virtual parameters of the
combined equations, both sides of equation (2) are divided by
the wavelength and the derivation is expressed as:

Li = λ
−1
i (ρ − β1iδI1)− Ni + εΦi (4)

where Li = Φiλ
−1 represents the observable of the carrier

phase in the unit of cycles. The definitions of the symbols
ρ, β1i, δI1 and Ni are the same as they are in the original
measurement models (2). For satellite signals with three fre-
quencies, the subscript i is assigned as 1, 2 or 3. Then the
corresponding carrier phases on the three frequencies can
be written as L1, L2 and L3. They are arranged according
to the magnitude of the three wavelengths λ1, λ2, and λ3,
which satisfy the relationship of λ1 < λ2 < λ3. Then
arbitrary coefficients written as k1, k2 and k3 are assumed to
be the combination parameters of L1, L2 and L3. Hence the
equation linearly combined by the original triple-frequency
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observations is written as:

L(k1,k2,k3) = k1L1 + k2L2 + k3L3

= (
k1
λ1
+
k2
λ2
+
k3
λ3

)ρ − (
k1
λ1
+
k2λ2
λ21

+
k3λ3
λ21

)δI1

−N(k1,k2,k3) + εΦ(k1,k2,k3)
(5)

where N(k1,k2,k3) represents the combined ambiguity of the
virtual carrier phase and is derived as:

N(k1,k2,k3) = k1 · N1 + k2 · N2 + k3 · N3 (6)

To preserve the integer character of the combined ambigu-
ity N(k1,k2,k3), the combination parameters k1, k2 and k3 are
required to be integers as well, in order that N(k1,k2,k3) can be
resolved in the same way as the original integer ambiguity.
Consequently, when equations (1) and (2) are combined by
the coefficients of k1, k2, and k3, the combined code and
carrier phase observations are derived as:

P(k1,k2,k3) =
k1 · f1 · P1 + k2 · f2 · P2 + k3 · f3 · P3

k1 · f1 + k2 · f2 + k3 · f3
= ρ + β(k1,k2,k3)δI1 + εP(k1,k2,k3) (7)

Φ(k1,k2,k3) =
k1 · f1 ·Φ1 + k2 · f2 ·Φ2 + k3 · f3 ·Φ3

k1 · f1 + k2 · f2 + k3 · f3
= ρ − β(k1,k2,k3)δI1 − λ(k1,k2,k3)N(k1,k2,k3)

+ εΦ(k1,k2,k3)
(8)

where β(k1,k2,k3) is the ionospheric scalar factor of the com-
bined signal with reference to the one of carrier L1. The
combined ISF is expressed as:

β(k1,k2,k3) =
f 21 · (k1/f1 + k2/f2 + k3/f3)

k1 · f1 + k2 · f2 + k3 · f3
(9)

According to the procedure of the derivation, the virtual fre-
quency and wavelength of the linearly combined observation
are expressed as:

f(k1,k2,k3) = k1 · f1 + k2 · f2 + k3 · f3 (10)

λ(k1,k2,k3) =
c

k1 · f1 + k2 · f2 + k3 · f3
(11)

where c represents the speed of light in vacuum. Under com-
mon situations, the noises of the pseudorange measurements
on different frequencies are assumed to be identical and
independent to each other, which are expressed as σP1 =
σP2 = σP3 = σP with decimeter level. Similarly, for the
carrier phase noises which are also independent and identical
to each other, the standard variances meet the equation of
σΦ1 = σΦ2 = σΦ3 = σΦ with millimeter level. Without
loss of generality, it can be assumed that σP = 0.25 m and
σΦ = 0.002 m for common circumstance [26]. Therefore,
the variances of code and carrier phase observations after
linear combination are derived as:

σ 2
P(k1,k2,k3)

=
(k1 ·f1)2 · σ 2

P1
+ (k2 ·f2)2 · σ 2

P2
+ (k3 ·f3)2 · σ 2

P3

(k1 · f1 + k2 · f2 + k3 · f3)2

= η2(k1,k2,k3)σ
2
P (12)

σ 2
Φ(k1,k2,k3)

=
(k1 ·f1)2 · σ 2

Φ1
+ (k2 ·f2)2 · σ 2

Φ2
+ (k3 ·f3)2 · σ 2

Φ3

(k1 · f1 + k2 · f2 + k3 · f3)2

= η2(k1,k2,k3)σ
2
Φ (13)

where η(k1,k2,k3) represents the phase noise factor (PNF) and
is derived as:

η2(k1,k2,k3) =
(k1 · f1)2 + (k2 · f2)2 + (k3 · f3)2

(k1 · f1 + k2 · f2 + k3 · f3)2
(14)

B. PROCEDURES OF BOOT-STRAPPING METHODS
For boot-strapping methods, the virtual ambiguities are usu-
ally resolved from the combinations with longer wavelengths
to the ones with shorter wavelengths sequentially. However,
most of the linear combinations are not qualified to be used
for the ambiguity resolution because of the short wavelength,
large ionospheric delay or high combination noise. So how
to choose the optimal set of the combinations is vital to the
boot-strapping method.

As for the boot-strapping method, it starts with the extra-
wide-lane (EWL) combination of the two closest L-band
carriers. Then the float ambiguity of EWL combination
can be resolved directly by using the corresponding HMW
combination (Hatch [27] 1982, Melbourne [28] 1985, and
Wubbena [29] 1985). Because the geometric parameters and
the ionosphere errors have been eliminated in this combina-
tion [30]. Then the integer ambiguity is resolved by rounding
its float estimation to its nearest integer. Then the resolved
integer ambiguity of EWL is put back into EWL to update the
combination. The combination with resolved ambiguity can
be regarded as more accurate pseudorange and be utilized in
subsequent steps to resolve other combined ambiguities.With
this information, the wide-lane (WL) combination is resolved
by using the ambiguity-resolved EWL combination. The WL
is combined by the second two closest L-band carriers and
is supposed to have the second longest virtual wavelength.
In relative positioning, the ionosphere errors are considered
to have been eliminated by double difference between the
satellites and receivers. Hence, the float estimation of the
ambiguity is accurate enough to be rounded directly to get
the integer ambiguity. With the first two ambiguity-resolved
signals, the ambiguity of the third combination referred to
as NL can be rounded in the way which is the same as
the second step. The original observation with the longest
wavelength is usually used as the NL combination directly
in the traditional boot-strapping method. If each of the three
combined virtual ambiguities is fixed correctly, the original
ambiguities can then be reconstructed from the three first-
order equations which are linearly independent to each other.
Then they can be inserted back into the original position-
ing equations as known quantities to update the navigation
results of the coordinates. Compared to other integer search-
ing methods, the boot-strapping methods are regarded to
have decreased the complexity of the computational steps a
lot [22].Without loss of generality, the boot-strappingmethod
was first put forward for systems with triple-frequency car-
rier phases. However the principles are not restricted to
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this situation and can be applied to other multi-frequency
conditions.

IV. PROCEDURES OF THE IMPROVED METHOD
As illustrated in the previous section, no matter in which way
the ambiguities are fixed to correct integers, first of all the
float estimations are calculated such as they are resolved in
the method of LAMBDA, TCAR, CIR and so on. Hence,
the precision of the float ambiguity is the foundation for the
following fixation procedures for most of the methods. With
the estimation of the ambiguity being more precise, position-
ing accuracy in PPP will increase accordingly. So it is vital to
improve the ambiguity resolution in PPP. Then the parameters
of interest (e.g. coordinates of the receiver) can be calcu-
lated with higher precision. However, without being double-
differenced first, the residual errors in PPP can’t be eliminated
directly as they are in the relative positioning. To increase the
accuracy of the float ambiguities derived by boot-strapping
method and remove the ionosphere delays which are simply
omitted before, an improved method of integer ambiguity
resolution for PPP is proposed in this section. This method is
based on the traditional boot-strapping methods but is more
adaptable for precise point positioning. By linear combina-
tions, the virtual signals with longer wavelengths and lower
noises can be constructed. Considering the characteristics of
different combinations, the best virtual signals are chosen for
AR according to their characteristics. In the previous boot-
strapping methods, ionospheric errors are simply ignored due
to the operation of double difference in relative position-
ing. However the ionospheric delays in PPP or in an active
environment will be much larger. In other words, the com-
binations are biased by the residual ionospheric delays in
addition to measurement and multipath noises. For decime-
ter or even centimeter precision positioning, the influence of
the ionospheric delay with the magnitude of meter-scale is no
doubt beyond endurance. If not eliminated, it will severely
damage the estimation of the ambiguity. Hence, to reduce the
ionospheric errors, extra pseudoranges are combined with the
relatively better combinations in the improved method. Then
through numerical test and analysis utilizing real GPS navi-
gation data, the validity of the improved method for PPP is
demonstrated. The ambiguity fixing results and the position-
ing precision of the improved method are compared with the
traditional method. First of all, the modelling strategy for the
PPP ambiguity resolution is considered. The boot-strapping
methods designed for network positioning are modified so
that they can be applied to the single point positioning.

For different GNSS systems, the wavelength, ionospheric
scale factor, and the noise amplitude factor of the combination
are different for each frequency-scheme. With variances of
the combination coefficients k1, k2, and k3, infinite com-
binations of the original observations can be constructed.
However, due to bad characters such as amplification of
ionospheric delays and noises along with even shorter wave-
lengths, most of the combinations are insufficient for precise
point positioning. Hence, the selection of the combinations

has a strong impact on the ambiguity resolution and posi-
tioning in PPP. In order to make a clear comparison of the
characters among various combinations, the characteristics of
the relatively valuable combinations of triple-frequency GPS
are calculated and listed in Table 1 for reference. According
to values of the three frequencies of GPS, the carriers are
arranged as L1 = 1, 575.420 MHz, L2 = 1, 227.600 MHz
and L3 = 1, 176.450 MHz as illustrated before. The char-
acteristics of triple-frequency signals in other systems can
be summarized in the same way. Hence, we can clearly
compare the properties of different combinations and choose
the optimal set of the combinations for ambiguity resolution
and positioning.

A. PROCEDURES OF AMBIGUITY RESOLUTION
1) EWL COMBINATION
Usually, the two observations of the carrier phases whose
frequencies are closer to each other than the other groups
are selected in the first step. For GPS, the frequencies of
carriers L2 and L3 are closer to each other. What’s more,
the wavelength of the combination Φ(0,1,−1) is relatively
larger, with ISF and PNF becoming lower as shown in Table 1.
Hence, the combination coefficients of carriers L2 and L3
are assigned to be 1 and −1 in order to obtain longer wave-
length. The combined ambiguity of this combination which
is referred to as the EWL is supposed to be resolved first.
The pseudorange observations on these two frequencies are
combined by the coefficients of 1 and 1 referred to as the
narrow-lane combination of the codes. The geometric param-
eters including the coordinates, receiver clock errors and the
dry component of the tropospheric delays don’t change with
the frequencies. Hence they can be removed by subtraction
between the narrow-lane combination of codes and the EWL
combination of carrier phases which is integrally referred to
as the HMW combination. Hence, the combined ambiguity
and the combined ionospheric residuals are the left parame-
ters to be resolved. The ambiguity of ΦEWL derived by the
HMW combination is indicated as:

NEWL = N2 − N3

=

f2P2+f3P3
f2+f3

−
f2Φ2−f3Φ3

f2−f3
− (β(0,1,1) + β(0,1,−1))δI1

λEWL
(15)

With β(0,1,1) = 1.7186 and β(0,1,−1) = −1.7186 as seen
in Table 1, we can get that β(0,1,1) + β(0,1,−1) = 0. This
result indicates that the combined ionospheric delay can be
removed by the HMW combination directly. Furthermore,
the combined wavelength has been amplified to 5.8610 m
which is benefit to the resolution of the ambiguity. How-
ever, the PNF of this combination is becoming larger as
33.2415 according to Table 1 after combination. Suppose that
the noise of the original carrier phase is 0.002 m as illustrated
before, the value of the combined noise is still smaller than
0.1 m and obviously it is eligible to be ignored compared
to the longer wavelength. The model errors such as the wet
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TABLE 1. Characteristics of the triple-frequency combinations.

component of the troposphere delays, satellite clock errors
and so on are eliminated by precise models previously as
expressed in the preceding part. Then the integer fixation of
the EWL ambiguity is rounded from the float estimation and
expressed as:

N̆EWL = round[NEWL] (16)

2) WL COMBINATION
Through comparison among the rest combinations except
EWL, the combination with relatively longer wavelength and
lower ISF or PNF is utilized in this step and is named as the
wide-lane (WL) combination. If we assume that the values of
δI1 and ε keep constant, the combined error will be smaller
with relatively smaller amplification factor and is beneficial
to higher accuracy of ambiguity resolution. Moreover, as we
can see in equation (9), usually the ISF and PNF are smaller
when the combination coefficients are smaller. Hence, when
the properties of different combinations are close to each
other, the smaller coefficients are preferable for AR. As a
result, the combinationΦ(1,−1,0) with the smallest coefficient
group is chosen as theWL due to its relatively better property
as shown in Table 1. Then the combined EWL ambiguity
calculated in the previous step is substituted back into the
EWL combination to obtain precise and exact carrier phase
observation with higher accuracy. To eliminate the geometric
and ionospheric parameters in the WL combination, extra
pseudoranges are included to resolve the ambiguity of the sec-
ond combination besides the carrier phase observation with
fixed ambiguity. Here the pseudorange (code) observation on
carrier L1 is utilized. The corresponding coefficients of the
code observation and EWL combination are assumed to be a1
and a2. Then the ambiguity of theWL combination is derived
as (17), as shown at the bottom of the next page:

In order to resolve the WL ambiguity, the geometry and
ionospheric parameters which are also unknown need to be
removed first. Due to this requirement, the relationship of a1
and a2 can be expressed as:

a1 + a2 − 1 = 0 (18)

a1 + a2βEWL − βWL = 0 (19)

According to Table 1, we can get that βEWL = β(0,1,−1) =

−1.7186 and βWL = β(1,−1,0) = −1.2833 for GPS. There-
fore the values of the coefficients are derived as a1 = 0.160
and a2 = 0.840. Then the WL ambiguity can be resolved by
(17) and the fixation can be rounded from the float estimation.

3) MODIFIED NARROW-LANE COMBINATION
In traditional boot-strapping methods, usually Φ(0,0,1) of
GPS is chosen as the narrow-lane combination. However,
the ionospheric residuals and noises of the traditional NL
combination are larger than the first two combinations in
PPP. The errors will violate the precision of the ambiguity
resolution. In order to improve the performance of ambiguity
resolution in PPP, a modified combination is chosen. On one
hand, the modified narrow-lane combination named as MNL
should be independent to the first two combinations. On the
other hand, the coefficients of this combination should be as
small as possible however still possessing relatively longer
wavelength and lower noise. According to Table 1, Φ(4,−5,0)
is chosen as the MNL combination. In consideration of other
combinations, even if they may have lower amplification
factors of the noises, the fairly short wavelength is a dis-
advantage to the estimation of the ambiguity. What’s more,
the noises with even quite small values will be evident in this
process and consequently are not negligible. Then the WL
with fixed ambiguity and the modifiedMNL combination are
combined to resolve the combined ambiguity.

Previously, the WL individually is combined with the NL
and the combination is capable to remove the geometric
parameters because it is assumed that the ionosphere delays
after double difference are small enough to be omitted. How-
ever in PPP the ionosphere residuals which are not elim-
inated in advance will be absorbed by the ambiguity and
influence the ambiguity estimation and positioning. With
observation data provided by IGS, the approximate values of
the ionospheric errors can be derived out. The observation
data of 400 epochs with a sampling interval of 30s is utilized.
It is collected on January 1st 2017. Figure 1 depicts the ranges
of the ionospheric delays of the signals on frequency f1 of
two GPS satellites. The PRN of the satellites are 26 (blue)
and 27 (red) respectively. The PRN represents the unique
number of a satellite [31]. Figure 1 shows that for the epochs
before 150, the ionospheric errors of PRN 27 decrease from
3 m to 1.8 m and the errors of PRN 26 decrease from
2.5 m to 1.5 m. During the epochs of 200 to 400, the errors of
both of the two satellites increase from about 1.6 m to 2.6 m
approximately. As it is known, the ionospheric errors are
related to the zenith-delay and the variance of the elevation
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FIGURE 1. The ionospheric delays of the carrier phase L1. The curves of
blue and red correspond to the results of GPS satellites PRN 26 and
PRN 27 respectively.

angle of the satellite. For a static receiver, the zenith-delay of
the ionospheric error is relatively stable during a short time.
Hence the errors will be smaller when the elevation angle
of the satellite is larger. With the movement of the satellite,
the elevation angle of the satellite will change accordingly
and lead to the variance of the ionospheric delays for some
extent. In summary, the values of the ionospheric errors usu-
ally are around meter-level as shown in Figure 1. Obviously
the ionosphere delays can’t be simply omitted for precise
point positioning if they haven’t been removed in advance.
Therefore, in order to remove the geometric and ionospheric
parameters, NMNL is derived by including the pseudorange
observations along with the fixed WL combination and is
expressed as (20), as shown at the bottom of the next
page:

The combination coefficients are subjected to the condi-
tions as:

b1 + b2 − 1 = 0 (21)

b1 + b2βWL − βMNL = 0 (22)

According to Table 1, we can get that βWL = β(1,−1,0) =

−1.2833 and βMNL = β(4,−5,0) = −23.2604 for GPS. There-
fore the values of the coefficients are derived as b1 = −9.625
and b2 = 10.625. Although the ISF of MNL combination is
larger than that of the NL as seen in Table 1, the wavelength
has also increased a lot. What’s more the ionospheric delays
are eliminated by combining the pseudorange and carrier
phase observations with the coefficients of b1 and b2. Hence
the ISF won’t be included in the resolution equation. And the
combination leads to a quite small b1 which is also beneficial
for AR because the pseudorange measurement relatively has
larger noises than the carrier phase observation. At last the
fixation of MNL ambiguity is rounded from the float estima-
tion directly.

B. RESOLUTION OF ORIGINAL AMBIGUITIES
Once the three combined ambiguities have been resolved,
the original ambiguities of the triple-frequency carrier phases
can be recovered from the linear equations composed by the
combined ambiguities. According to the coefficients of the
EWL, WL and MNL when combining the original ambigui-
ties, the equations are expressed as:0 1 −1

1 −1 0
4 −5 0

N1
N2
N3

 =
N(EWL)
N(WL)
N(MNL)

 (23)

As we can see, the equations are independent to each other.
Hence, unique solutions can be resolved from the equations
of full rank. After the ambiguities have been fixed, the exact
values of the carrier phases can be calculated by combing
the ambiguity integers with the fractional parts generated by
the receiver previously. The fixed carrier phases are regarded
as range parameters and are put back into the positioning
equations to achieve more precise positioning results of PPP.

V. NUMERICAL TEST AND ANALYSIS OF REAL DATA
Nowadays real triple-frequency data of GNSS provided by
the IGS is available online and accessible to users. The
triple-frequency observations utilized in this test are collected
on January 1st, 2017 by the DUMN station of IGS. The
observation interval of this static receiver is 30s. First, with
observations of satellite PRN 26 and PRN 27, we calculate
the success rates of the combinations to verify the validity
of the method in a theoretical aspect. Then the residuals of
the combined ambiguities contrast to the reference ones are
resolved and depicted in figures. The results of NL in the
traditional method is also listed to show a comparison of
the two methods. At last, the combined ambiguities of both
the two methods are substituted back into the observation
equations to resolve the coordinates of the station. The results
compared to the standard coordinates given in the positioning
file of IGS are pictured. In this test, the accurate coordinates
of the stations have already been calculated by IGS and are
provided in the files of IGS for reference.

A. SUCCESS RATES OF VARIOUS COMBINATIONS
According to the process of estimating the combined
ambiguities, it is shown that they will be biased by the
combined ionospheric delay β(k1,k2,k3)δI1 before the errors
have been removed thoroughly, along with the variance of
σN(k1,k2,k3)

. In common situation, the noises are assumed to
be normally distributed. Hence, the ambiguity of the extra-
wide-lane combination meets the distribution of NEWL ∼
N (βEWLδI1, σNEWL ). Similarly, the ambiguity estimations of
the WL, MNL and NL combinations obey the identical dis-
tribution with the biases and variances corresponding to their

NWL =
(a1P1 + a2ΦEWL −ΦWL)+ (a1 + a2βEWL − βWL)δI1 + λEWLNEWL

λWL
(17)
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own combined ionospheric delays and noises respectively.
Although the real situation may be slightly different from
these conditions, the assumptions are valid in most cases as
illustrated in the previous work. With the noise and residual
ionospheric delay being the variance and bias respectively,
the probability between the boundaries of -0.5 cycle and
0.5 cycle can be regarded as the theoretical success rate of the
ambiguity resolution. Because the residual with an absolute
value larger than 0.5 cycle will more likely lead to an incorrect
result. In conclusion, the success rate of the combined ambi-
guities can be derived by the Gaussian probability density
function and is written as:

P(−0.5 < x < 0.5) =
∫ 0.5

−0.5

1
√
2π

exp
(
−
(x − µ)2

2σ 2

)
dx

(24)

where x represents the difference between the float ambiguity
estimation and the reference value calculated from the precise
data given by the file of IGS previously. µ and σ indicate the
bias and variance of x in cycles respectively. Obviously even
for the same combinations, the success rate will be influenced
by the magnitude of the residual ionospheric delays and the
noises of the observations. Hence, the success rates of the
combinations can be utilized to demonstrate the performance
of the improved method.

Through changing the values of the ionospheric delays
and noises, we can depict the variances of the success rates
of different ambiguity combinations. As illustrated before,
the measurement noises on different frequencies are identical
to each other. Under common situations, the standard devia-
tions of the pseudorange and carrier phase observations are
usually meter-scale and centimeter-scale to millimeter-scale,
respectively [26]. The ionosphere errors and the standard
deviations are calculated by equations (9) and (13).

Figure 2 (a), (b), (c) and (d) plot the success rates of the
EWL, WL and MNL ambiguities of the improved method
along with the NL ambiguity of the traditional method. The
results of different colors in each of the pictures represent
the condition of different standard variances. The red curve
represents the condition of σΦ = 0.002 m. The dark blue and
light blue curves correspond to the variances of σΦ = 0.008
m and σΦ = 0.02 m respectively. The wide range of the three
different values is capable to represent most of the conditions
that the positioning process will meet. The horizontal and
vertical axes of Figure 2 represent the ranges of ionosphere
delays of carrier L1 and the success rates of the combined
ambiguities respectively. For each subgraph, the success rates
of the ambiguity estimations gradually decrease with the
increment of ionospheric delays. The curves with larger stan-
dard variances drop faster than the ones with smaller noises
for the same combination. As Figure 2 (c) shows, the success

FIGURE 2. The success rates of EWL, WL, MNL and NL versus the
ionospheric delays of carrier L1 with different noises.

rate of the MNL ambiguities won’t drop below 99.9% until
the ionospheric delay is larger than 0.6 m even under the quite
noisy situation with σΦ = 0.02 m. However even under very
quiet environment with the smallest noise of σΦ = 0.008 m,
the success rate of the NL ambiguities of the traditional
method quickly drops to zero when the ionosphere delay is

NMNL =
(b1P1 + b2ΦWL −ΦMNL)+ (b1 + b2βWL − βMNL)δI1 + λWL M NWL

λMNL
(20)
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FIGURE 3. The ambiguity residuals of EWL, WL, MNL and NL
combinations of PRN 26 in cycles.

as small as 0.12 m. As it is shown in Figure 1, the magnitude
level of the ionospheric errors surely will exceed this thresh-
old. Therefore, the ranges of the success rates indicate that,
compared to the improved method, the traditional method is
more inclined to be influenced by the ionosphere delays and
the noises which are the main obstacles in PPP. In a similar
way we can plot the success rates of other combinations, and
the results validate that the EWL and WL combinations do
possess the best and second best properties when compared
to other frequency-schemes. What’s more, consistent to the
theoretical derivation in the preceding part, the MNL com-
bination does have relatively better properties than the other
remaining combinations.

B. RESIDUALS OF AMBIGUITY ESTIMATIONS
After verifying the theoretical success rate, we employ real
observation data into the procedures of the improved and
traditional methods to calculate the values of the combined
ambiguities. With the precise coordinates of the station given
by the positioning files of IGS, the value of the referenced
ambiguities can be derived in advance. The differentials
between the computed ambiguities and the referenced ones
are defined as the ambiguity residuals which indicate the per-
formance of the AR method. Smaller residual means higher
precision of ambiguity estimation. In this test, the obser-
vation data of satellites PRN 26 and PRN 27 are utilized.
Figure 3 (a), (b) (c) and (d) depict residuals of the EWL,WL,
MNL and NL combined ambiguities of PRN 26. During the
observation time of 180 epochs with the sampling interval
of 30s, the absolute values of the NEWL and NWL resid-
uals don’t exceed 0.15 cycle and 1.3 cycles respectively
which indicate accurate estimations of the two combined
ambiguities. Although the residuals of NMNL are larger than
the previous two combinations, they have achieved better
results than the NL ones of the traditional method as shown
in Figure 3 (c) and (d). Figure 4 (a), (b), (c) and (d) illustrate

FIGURE 4. The ambiguity residuals of EWL, WL, MNL and NL
combinations of PRN 27 in cycles.

the combined ambiguity residuals of satellite PRN 27. The
curves of the subgraphs show the similar tendencies and
results as the ones of PRN 26. Residuals of other satellites
can be calculated in the same way and the results showing
the same tendency are not depicted for clearness. Hence,
the ambiguity resolution of the improved method is supposed
to possess better precision than the traditional one.

C. RESIDUALS OF POSITIONING RESULTS
As illustrated in the preceding section, the original ambi-
guities are recovered by linearly independent equations
composed by the combined ambiguities which have been
resolved. Then, the ambiguity estimations are put back into
equation (2) to achieve more accurate coordinates of the
receiver. Because the range parameters which are calculated
by the C/A codes previously and utilized to resolve the
coordinates are replaced by more accurate carrier phases,
the positioning results are supposed to have higher accuracy.
The reference positioning coordinates of the stations are pro-
vided by the navigation files of IGS in advance. Then the
positioning results of the two methods are calculated through
using the carrier phases with fixed ambiguities. Both the
results are compared with the accurate location information
given in advance to inspect the positioning precision respec-
tively. The coordinates of the stations contain three compo-
nents which are in the east, north and up directions (ENU).
Figure 5 (a), (b) and (c) illustrate the positioning residuals
of the three components. Both the results of the improved
method (red) and the traditional method (blue) are depicted.
As it is shown, the positioning errors of the improved method
have decreased for most of the epochs when compared to
the traditional method in each of the three directions. The
improvement in the up direction isn’t as obvious as it is in
the other two directions. It can be interpreted that maybe
the ambiguities of the carrier phases are not the main fac-
tors that influence the coordination of this direction. What’s
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FIGURE 5. The positioning residuals in the east, north and up directions
(a, b and c) and the integral RMS of the traditional (blue) and improved
(red) methods.

TABLE 2. Mean values and RMS of the ambiguity and positioning
residuals.

more, the results close to the epoch 200 are relatively bad.
This condition maybe is caused by the transforming of the
satellite constellation and the initialization will be affected as
a result. However, the integral tendency of decrease of the
positioning residuals indicates that the ambiguity estimations
of the improved method are more precise than that of the
traditional one. It indicates that the improved AR method has
more efficient performance and can achieve higher success
rate under the same environment conditions. Figure 5 (d)
depicts the RMS of the integral residuals of the two methods.
In conclusion, the numerical characters of the results are
listed in Table 2. The results of the traditional and improved
methods are listed in the first and second rows respectively.
The N residuals of PRN 26 and PRN 27 in the second and
third columns represent the mean values of the MNL and
NL combinations respectively. RMS of the solution in the
three directions along with the integral values are listed in
the columns 4-7. The third row of Table 2 shows the value of
increment.

VI. CONCLUSION
Precise point positioning is widely utilized in many fields.
The accurate estimation of the integer ambiguity of the carrier
phase is regarded as a precondition of precise positioning.
With triple-frequency signals of GNSS being accessible,

we put forward an improved method in order to achieve more
precise estimations of the ambiguities and positioning results
in PPP. Combinations of the original observations are con-
structed to obtain better characters which are beneficial for
ambiguity resolution, such as longer wavelengths and lower
measurement noises. Through sufficient comparison of the
combined characters, the EWL, WL and MNL combinations
with relatively better properties are chosen for AR. In PPP,
the ionospheric error is not small enough to be omitted as it is
in traditional boot-strappingmethod. Therefore, to resolve the
combined ambiguities, extra pseudorange measurements are
employed in the combination to make it capable to reduce the
ionospheric delays along with the geometric parameters. Real
triple-frequency observations of GPS provided by IGS are
utilized in the numerical test. To demonstrate the efficiency
of the improved method, the ambiguity and positioning resid-
uals along with the success rates of the two methods are
calculated with reference to the precise values given by the
navigation file in advance. The test results show that the
ambiguity combinations of the improved method have higher
success rates.What’s more, residuals of the ambiguity and the
coordinate estimations have decreased. In summary, the con-
sequences indicate that the improved method is efficient to
increase the accuracy of the ambiguity resolution and the
positioning results.
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