
Received September 8, 2017, accepted December 10, 2017, date of publication January 23, 2018, date of current version March 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2797059

Next Generation Metaheuristic: Jaguar Algorithm
YAO-HSIN CHOU , SHU-YU KUO, LI-SHENG YANG, AND CHIA-YUN YANG
Department of Computer Science and Information Engineering, National Chi Nan University, Puli 545, Taiwan

Corresponding author: Yao-Hsin Chou (yhchou@ncnu.edu.tw)

ABSTRACT Metaheuristic algorithms are implemented to solve optimization problems and have recently
received significant research attention. Metaheuristic algorithms rely primarily on two properties, explo-
ration, and exploitation. Traditional metaheuristic algorithms use many weights (parameters) to balance
these two properties to increase the chance of finding a better solution in limited cost and time. However,
traditional algorithms have some problems. Exploration and exploitation are different abilities and restrict
each other, therefore, traditional algorithms need many parameters and lots of costs to achieve the balance,
and also need to adjust parameters for different optimization problems. Jaguar Algorithm (JA) has great
abilities both in exploitation and exploration, is proposed to address these issues. First, JA attempts to
find the optimal solution in the designated search area. It then uses history information to jump to a better
area. JA can, therefore, determine the position of the global optimum. JA achieves strong exploitation and
exploration with these features. Also, according to different problems, JA implements adaptive parameter
adjustment. The self-analysis and experiment of this research demonstrate that each JA capability can have
various positive effects, while the performance comparison demonstrates JAs superiority over traditional
metaheuristic algorithms.

INDEX TERMS Metaheuristic algorithms, jaguar algorithm (JA), function optimization problem, depen-
dency problem.

I. INTRODUCTION
As modern life grows ever more complex in all areas,
the need for efficiency and methods for reducing resource
consumption has become more important. Many situa-
tions in finance or manufacturing, for example, require
the resolution of highly complicated optimization problems.
Examples include stocks selection [1] and finding trading
rule [2], [3] in stock markets, as well as circuit synthesis,
placement and routing optimization problems, and deploy-
ment optimization problems [4] in wireless sensor networks
and some traditional problems include the 0/1 knapsack
problem, scheduling problems, traveling salesman prob-
lem (TSP), etc. These have been proven to be NP-hard/
NP-complete problems, and they are important problems
need to be solved efficiently and effectively. Effective algo-
rithms are therefore required to find optimal solutions in a
short time. Generally, the solution space is extremely large,
and a plurality of variables or dimensions must be considered.
To identify the best quality solution in a large solution space,
an algorithm must test many variable combinations to find
the best one. However, it is very difficult to find the opti-
mal solution from these numerous combinations. This means
that the optimal solution cannot be found by the method of

exhaustion in a limited time; it is thus important to develop
an effective and efficient algorithm for this purpose. Manny
metaheuristic algorithms have been proposed to solve these
highly complicated optimization problems. On the condition
of limited time and cost, metaheuristic algorithms help to
find the approximate optimal solution from the huge solu-
tion space in a limited time. In the real world, the goal of
metaheuristic algorithms is to minimize cost and maximize
profit in regard to industrial and business problems. The
better the capability of an metaheuristic algorithm, the better
the solution will be, and found in a shorter time. For this
reason, metaheuristic algorithm has received global research
attention.

Heuristic methods are mainly used to solve specific
problems, while metaheuristic algorithms can be applied
to solving different types of optimization problems. Most
of metaheuristic algorithms are inspired by observing the
behavior of animals or natural phenomena. Different types of
metaheuristic algorithm have been proposed with promising
performance, such as genetic algorithm (GA) [5], differen-
tial evolutionary (DE) [6], [7], evolution strategy (ES) [8],
genetic programming (GP) [9], particle swarm optimiza-
tion (PSO) [10], ant colony optimization (ACO) [11],

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

9975

https://orcid.org/0000-0002-3254-5510


Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

artificial bee colony (ABC) [12], quantum-inspired
evolutionary algorithm (QEA) [13], quantum-inspired
electromagnetism-like mechanism (QEM) [14], quantum-
inspired tabu search (QTS) [15], [16], and tabu search
algorithm [17]. These metaheuristic algorithms use different
information to search the solution as thoroughly as possible.
Recently, swarm algorithms constitute an emerging branch
of metaheuristic algorithms because they are simple and
effective. Swarm algorithms are population-based algorithms
that simulate the social behavior of swarm animals such as
an ant colony, bee colony, a flock of birds, a school of fish,
or an immune system. Swam system collects information
from each individual in the group. In this study, we propose a
novel metaheuristic algorithm, named jaguar algorithm (JA),
which is inspired by the behavior of jaguars. JA is a state-
of-the-art algorithm that enhances the ability of exploration
and exploitation and can significantly improve the premature
convergence problem which traditional swarm algorithms get
trapped into a local optimum easily when solving multimodal
problems.

Exploration is dedicated to looking for promising areas
within the search space, while exploitation focuses on these
promising areas and searches them thoroughly. The tra-
ditional metaheuristic search process attempts to achieve
a balance between exploration and exploitation that is an
important research focus in the field of metaheuristic algo-
rithm. By striking a better balance between exploration and
exploitation, the algorithm can achieve a better searching
capability. However, there are some problems in search meth-
ods attempting to balance these two forces. It is not easy
to adjust these two forces because they are contradictory to
each other. If the algorithm over-concentrates on exploration,
convergence becomes difficult and hard to find global opti-
mal. If the algorithm over-concentrates on exploitation, it will
cause the problem of premature and can be trapped in local
optima easily. These algorithms thus require many param-
eters to balance exploration and exploitation when dealing
with different types of problems. Algorithms also still need
to test all the parameter combinations in order to find the
optimal solution.

JA differs from traditional search methods. JA conducts
exploration and exploitation separately, which means that
it does not need to balance the two forces. JA focuses on
exploitation first, discovering the optimum in a local area
as far as possible. Then, it uses territoriality to prevent
other jaguars or itself entering those searched areas again.
The mechanism of territoriality makes jaguar go to areas
not previously searched, thus preventing extra evaluation,
and reducing resource consumption. Finally, JA uses the
information of all territories to jump to different places
(i.e. exploration). With the above schemes, JA exploits
promising areas and can explore territories without becom-
ing trapped in a local optimum. JA can, therefore, perform
well in terms of both exploration and exploitation. In this
paper, This paper uses various function optimization prob-
lems to test the searching ability of JA. The results presented

here indicate that the JA outperforms the other traditional
methods.

The remainder of this paper is organized as follows.
SectionII briefly introduces the related literature on meta-
heuristic algorithms, discusses the major search methods of
these algorithms, and identifies contributions and deficien-
cies. SectionIII presents the process and the characteristics
of JA, which offers a fundamental improvement. SectionIV
provides numerical comparisons with the related studies
in order to test the capabilities of algorithms by function
optimization problems and analyze the performance of JA.
SectionV offers conclusions for this research.

II. RELATED WORK
Many metaheuristic algorithms studies have been conducted
to date, focusing on solving highly complicated optimization
problems in different fields. This section will discuss some
state-of-the-art metaheuristic algorithms. They all have their
own characteristics; some of them are inspired by the behav-
ior of animals, and some by natural phenomena. Each meta-
heuristic algorithm has its advantages and disadvantages. The
following will discuss the search ability of these algorithms.

Evolutionary algorithm is inspired by the natural rules
of survival and natural selection. In evolutionary terms,
the species with the best genes survive, and pass those genes
to the next generation, which undergoes the same selection
process. As a result, only the fittest species will survive.
GA [5] is the most famous in this category. The primary pro-
cesses in GA are cloning, crossover and mutation. Each solu-
tion is represented by one chromosome. Better chromosomes
leave better information through cloning, while inferior ones
will be eliminated. Parents preserve good parts through a
crossover operation, and change parts of the chromosomes
by mutation. By repeating these processes, chromosomes
can converge to a better solution, i.e. survival of the fittest.
However, GA suffers from premature convergence because
of the cloning and crossover operations. This means that
solutions can be easily trapped in local optima. So GA needs
mutation to escape local optima. But too low a mutation rate
could mean not finding a better solution, and too high a muta-
tion rate causes algorithm divergence. Thus, GA needs an
appropriate cloning method, a suitable crossover method, and
a fit mutation rate in order to have better search capabilities.

Swarm algorithms aremostly inspired by the behaviors and
habits of social animals in nature. They usually have their own
means of communicating, so they are able to find targets in a
short time. One of the more popular algorithms is PSO. PSO
is inspired by the behavior of birds flocking. Many different
methods have been designed to improve the performance
of PSO and analyze its search ability [10], [18]–[20]. PSO
merges a current global best solution (gbest), personal best
solutions (pbest), and inertial velocity (v) into a resultant
force. The resultant force leads the swarms to search promis-
ing areas, so PSO needs a good set of velocity weights and
inertia weight (c1, c2 and w) in order to look around the
domain so as to converge in a better place. Because of its

9976 VOLUME 6, 2018



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

simple implementation and good quality of solutions found,
PSO can be applied to many fields. Many variant versions
of PSO attempt to enhance the quality of solutions and solve
more complex problems. ABC algorithm [12], [21] is another
famous algorithm in this category. ABC mimics the behavior
of honey bee swarms, and includes the division of labor and
cooperation in searching for and collecting nectar. The main
feature is that the swarm population is divided into three kinds
of characters: employed bees, onlookers and one scout. Each
of them has its own duty. Employed bees are responsible for
searching around food sources. The onlookers get informa-
tion about food sources and choose a target by roulette wheel
selection. Only the scout is similar to the mutation operator
in GA. It moves randomly in the search space. If a food source
cannot be improved further through a given number of itera-
tions, called the limit, it is replaced with a new food source by
the scout in order to escape from the local optima. In ABC,
employed bees and onlookers are in charge of the exploitation
in the domain, and scouts are responsible for exploration and
dispersion to search for potential food sources. ABC lacks
a better exploration capability. It therefore uses numerous
populations and increasing iterations to solve the problem,
but the evaluation also increases. It is necessary to adjust
the appropriate number of employed bees, onlookers, scouts
and the limit in order to avoid becoming trapped in local
optima. This is how ABC balances exploration and exploita-
tion. Other swarm algorithms such as ACO [11], artificial
fish swarm algorithm [22], grey wolf optimizer [23], bat
algorithm [24], glowworm swarm optimization [25], etc.,
are similar to PSO, and combine different parameters into a
resultant force. Some also add a random factor to seek other
solutions. Some algorithms implement a local search, but this
results in many wasted evaluations if the location is not near
the best solution.

QEA [13], proposed in 2002 by Han and Kim was
the first quantum-inspired algorithm. Subsequently, many
researchers have proposed different quantum-inspired algo-
rithms or improved the original, resulting in, for example,
QEM [14], QTS [15], [16], improved quantum-inspired tabu
search algorithm (IMQTS) [26], and Quantum-inspired par-
ticle swarm optimization (QPSO) [27]. QEA mimics the
superposition phenomenon, whereby a quantum group rep-
resents all possible states at the same time. The state of a
quantum bit has a probability to be 0 or 1 through mea-
surement. QEA generates populations P(t) by measuring the
probability matrix Q(t). The better population will then be
stored in B(t). The best fitness in B(t) is denoted as the best
solution b. A migration in QEA is implemented by replacing
some solutions by others, locally or globally. QEA adjusts
the probability matrix Q(t) by Q-gate. The idea of QEA is
to get closer to the best solution. The angle of the Q-gate
is designed according to different problems. Too large an
angle causes the solution to become stuck at local optima, and
too small an angle causes solution divergence. QTS uses the
same method as QEA to generate populations. The difference
between QTS and QEA is that QTS updates the beta array

with a rotation gate according to both the best and worst
solutions. The probability of the corresponding beta array is
increased or decreased according to the best solution and the
worst one. The idea of QTS is to get away from the worst,
and closer to the best solutions. Also, the angle of the rotation
matrix θ1, θ2 affects its optimization capability. This is why
QTS needs to be adjusted for suitable parameters to get the
best solution. IMQTS tends to solve the problem of QTS,
which is unable to escape local optima, to search for the
global optimum. IMQTS combines a bell curve probability
model f = (x; a, b, c) into QTS. The bell curve probability
model provides IMQTS with a certain probability to accept
the second best solution instead of the best solution. It is
therefore easier for IMQTS to escape the local optima, and
thus able to explore the solution space more effectively.
However, quantum-inspired algorithm needs many genera-
tions to adjust the beta array with the angle of rotation array
to avoid converging to local optima too fast, or it employs
a jump mechanism to increase the probability of getting the
best solution.

Tabu search (TS) algorithm [17] is a very special algorithm
that is usually employed to solve combinatorial optimization
problems. The concept is to avoid trying the same solu-
tions or patterns in order to find better solutions. Tabu search
algorithm has the ability of memory, and recent solutions that
have been tried are recorded in a ‘‘tabu list’’. If the tabu list is
full, the elements expire from the tabu list in the same order
they were added. TS searches neighbor solutions with a hill
climbing heuristic and avoids positions which are in the tabu
list. The purpose of this algorithm is to escape local optima.

Each of these traditional metaheuristic algorithms has its
own search characteristics but mainly attempts to balance
exploration and exploitation. At the beginning of the algo-
rithms, the positions of individuals are randomly initialized
over the search space; this is an explorative search. During the
search process, individuals find the best current solution and
will be regarded as the best individuals. This attracts other
individuals to exploit the promising area. The exploitation
process would be, for example, a superior chromosome in GA
being retained for crossover and cloning. In PSO the positions
of gbest and pbest are the search directions, the onlooker bees
of ABC exploit the surrounding area of a food source, QEA
adjusts the probabilities to get closer to the best solution,
QTS brings the probabilities of the beta array closer to the
best solution, and farther from the worst solution at the same
time. Furthermore, in traditional metaheuristic algorithms,
the moving process of other individuals is added by some
random factors for the purpose of looking for promising
areas; this takes the explorative search into account. Exam-
ples would be the mutation rate of GA, the random factors
of PSO (r1, r2), the random factor of ABC (ϕ), and the
probability matrix of QEA and QTS.

However, it is difficult to focus on exploration and exploita-
tion at the same time. During the process of exploration,
algorithms will search as far as possible, so it is difficult
to carefully search one area, which is why it is difficult

VOLUME 6, 2018 9977



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

to simultaneously work on exploitation. Conversely, during
the process of exploitation, algorithms will search within
promising areas as far as possible, so it is difficult to also
search more areas at the same time, which means it is difficult
to simultaneously work on exploitation. Traditional search
methods thus try to simultaneously explore more promising
areas and exploit the current best promising area. Too strong
an explorative search might lead to later convergence, or it
could result in a failure to converge at a global optimum,
wasting evaluations on inferior areas. Too strong an exploita-
tive search might lead to premature convergence, and the
algorithm would become trapped in local optima. Therefore,
traditional methods try to balance exploration and exploita-
tion, using many parameters to adjust the balance. Exam-
ples of this would be the mutation rate and the number of
crossovers and clones in GA, and the weight parameters
of guidance (inertial velocity, pbest, gbest) are respectively
w, c1, c2 in PSO. These weight parameters balancing explo-
ration and exploitation have to be tested repeatedly. Fine-
tuning the appropriate parameter combination is a difficult
and complicated process. Moreover, in order to solve dif-
ferent complicated problems, different tailor-made parameter
combinations must be fine-tuned for each problem. In addi-
tion, the movements of traditional methods usually include
some random factors. They are thus unable to determine if
the exploitation is finished or not, and they have no idea
whether they should continue exploiting or jump out to other
areas. They need analysis to know whether they are occupied
in exploitation or exploration. In addition, other individuals
are attracted to exploit promising areas, and they randomly
look anywhere where better solutions may be found at the
same time. This means that traditional methods are unable
to achieve their best possible exploration and exploitation
simultaneously.

Unlike these traditional methods, Jaguar Algorithm (JA),
based on the behavior of jaguars in the wild, is designed
with a completely new concept. Instead of the traditional
method of conducting exploitation and exploration at the
same time, JA performs these processes separately. It can,
therefore, engage in exploration and exploitation at the right
moment for each. In JA, the jaguar (algorithm) focuses on
exploitation and then focuses on exploration. It pays atten-
tion to finding the best solution in the current area when
hunting, which means hunting gives JA a strong exploitation
capability. Furthermore, territoriality prevents jaguars from
searching the area (territory) again if it has been occupied
by other jaguars or itself. After this, JA uses the territory
information in its memory (tendency) to jump into new areas
with better prey (solutions). By jumping, JA avoids becoming
trapped in local optima and is able to find better solutions
more efficiently. In other words, JA achieves a strong explo-
ration capability by jumping. JA also implements an adaptive
adjustment method to approximate parameters according to
different problems. Therefore, JA is able to find the best
solution much more effectively and efficiently.

III. PROPOSED METHOD
Jaguars are a species of big cat. They are powerful and
agile hunters. When a jaguar finds its prey, it moves directly
towards the prey in a short time. Then, when it is very close
to the prey, it advances carefully rather than attacking reck-
lessly. Jaguars usually hunt alone and consolidate their own
territories to prevent competition for prey by other jaguars,
which is territoriality. Jaguars only act with other jaguars
when they are cubs and learn how to seize prey. When they
are mature and strong enough, they leave their parents and
establish their own territories. The proposed algorithm, jaguar
algorithm (JA), mimics the behavior of a jaguar hunting,
learning, and territorial claims. Hunting and learning help
jaguars find the nearest prey (solution) which can enhance the
capability of exploitation. With territoriality, a jaguar claims
its territories to prevent other jaguars from competing for
prey. The territories will not be searched again. After this,
the jaguar uses the information about its territories to jump to
other regions which have not been searched. The territories
use memory structures to enhance the capability of explo-
ration. In other words, with these behaviors, JA has strong
exploitation and exploration abilities and JA has powerful
ability to find the optimal solution.

FIGURE 1. Flowchart of jaguar algorithm.

The flowchart of JA is shown in Fig. 1. In initialization, step
would be set according to the domain of function problems.
In each dimension, it executes hunting, updating territory,
adaptive territory jumping mechanism, forbidden tendency
and leaving forbidden tendency, until the forbidden range is
larger than the domain. JA repeats these procedures until the
last dimension is reached. After this, JA hunts in each dimen-
sion, respectively, to ensure that the jaguar remains in the best
territory position. At the end of JA, learning is implemented
from the first dimension to the last. The following subsections
will discuss each movement of JA clearly.

9978 VOLUME 6, 2018



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

A. HUNTING
The optimal solution is usually surrounded by other good
ones. In order to find the prey (best solution), jaguars should
find the best direction, follow the direction and run to the
prey quickly. In each dimension, the directions only consist
of the positive (+) and the negative (−). At first, the jaguar
tries these two sides of the current position to find the best
direction (X ± step ∗ 2m,m = 0 and step is the only
adaptive parameter in JA. The adaptive step is described in
the next subsection). It compares the fitness values with f (x)
and chooses the best one as the potential direction. If nei-
ther direction is better than the current position, the jaguar
remains at its current position. Otherwise, JA doubles the
speed (adding m by 1) repeatedly and follows the direction
until the fitness of the next position is bad. By a double speed,
the jaguar can get close to the prey (solution) rapidly. When
a bad position is encountered, JA stops addingm. This means
that the jaguar is close to the prey (solution) and needs to
move carefully. After this, JA subtracts m by 1 and checks
its position in relation to the previous direction which has
already been checked. In order to get closer to the prey,
JA keeps subtracting m by 1 (slow down the movement),
trying on both sides of its current position (X ± step ∗ 2m)
and replacing the current position by the better one until m is
equal to 0. As m equals 0, the jaguar is nearest to the prey
at the current step. The example of hunting mechanism is
illustrated in Fig. 2.

FIGURE 2. Hunting.

JA keeps dividing the step by 2 and starting the next round
of hunting until the local optimal solution in the current peak
is found. When the step is too small that the current position
is equal to both sides (X±step = X , because of the limitation
in IEEE754 [28]), the jaguar is probably in the best position
for the current peak. In other words, the jaguar has seized its
prey. The hunting process pseudocode is shown in Fig. 3. The
Rush and Approaching pseudocode is shown in Fig. 4.
For example, in Fig. 2, Stage 1: As hunting begins,

the position where the jaguar initialized is denoted as Xstart .
The jaguar tests both sides of this position to select the direc-
tion of the next step. If the next position is better, the blue line
shows the movement. If the next position is not better than the
current position, the gray dotted line shows the movement;

FIGURE 3. Hunting pseudocode.

FIGURE 4. Rush and approaching pseudocode.

Stage 2: Because the right side is the best of those three
positions, the jaguar follows the direction and adds m by 1
(acceleration) until the fitness of the next position is bad.
The brown X marks the last position of acceleration. This
means that the jaguar needs to slow down. When m = 3,
the fitness of the next position is bad. The jaguar keeps
subtracting m by 1 and trying both sides of its position until
it finishes approaching the prey and m = 0; Stage 3: After
several rounds of hunting, and when the step is too small to
distinguish both sides from the current position, the fitness
of the current position is the best in the hunting process, and
the position is recorded as Xend . When the jaguar finds the
prey (local optimum), it will establish a territory with the best
solution (Xend ) and initial position (Xstart ). After the territory
is claimed, the jaguar leaves the territory to seek more prey.

B. ADAPTIVE INITIAL STEP
The purpose of the hunting process is to find the best solution
of the current peak. In hunting, the jaguar follows the best

VOLUME 6, 2018 9979



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

direction to find the best solution. If it moves too slowly,
the jaguar is able to check details, but will take a long time
to reach the prey. Conversely, if it moves rapidly, the jaguar
will lose toomuch information. A suitable step can efficiently
find the best solution. In the proposed method, the step is
adaptive to different situations. In the beginning, the step
is initialized according to the domain range of the solution
space or the current position in Equation 1. These are known
in the beginning to produce the initial step. JA is then able to
obtain the max and min exponent of every value according to
IEEE754 [28]. For example, the assumed value is 100 (the
domain value of the function problem or the first position
of the jaguar), and it is converted into binary representa-
tion, which is 1100100, since the floating storage form of
IEEE754 [28] is a binary representation. The maximal bit
of 1100100 is 26. As with IEEE754 [28], the minimal storage
bit is 23 bits apart from the maximal bit, so the maximum
and minimum of 2power are 26 and 2−17. The exponents
expmax and expmin are 6 and −17, respectively. In this case,
the initial step is 2−5. The formula design will be explained in
the experiment section. The jaguar follows the best direction
and accelerates the step in hunting. When both sides of the
current position are bad, the step will be divided by 2. In the
following section, several experiments are conducted to test
the capability of the adaptive step. In JA, Adaptive Initial Step
calculated with a domain is implemented.

stepini =


2.0
b

expmax + expmin
2

c

if
expmax + expmin

2
≥ 0

2.0
d

expmax + expmin
2

e

if
expmax + expmin

2
< 0

(1)

C. TERRITORIALITY
Jaguars live and hunt alone for the most part. Each jaguar
has its own hunting area, or territory. It does not allow other
individuals to compete for the same prey. JA mimics this
behavior. In JA, a jaguar claims its territory after finding
the prey. Through hunting, the jaguar does its best to find
the optimal solution of the current area. Therefore, a territory
only consists of the location of the best solution (Xend ) and the
hunting range (r), shown in Fig. 5. The location of the best
solution is equal to Xend and the hunting range (r) is equal
toDistance(Xstart ,Xend ) which is the distance between initial
position (Xstart ) and best solution (Xend ). Establishment of
territory means that an area has already been searched, and
the best solution of the current area has been found. The idea
of territoriality also means that other jaguars will not enter
established territories. Therefore, the jaguar is able to search
undiscovered areas by utilizing the information of territory,
making the force of exploration more efficient.

It is worth mentioning that the idea of territory is simi-
lar to the Tabu Search Algorithm [17]. Tabu is well-known
for being implemented to solve combinational optimiza-
tion problems. TS, however, can potentially choose the

FIGURE 5. Territory.

same solution; however, traditional algorithms cannot record
all their positions owing to the limits of storage. In JA,
the jaguar will not search those areas (territories) that have
already been searched. Territory only consists of the best
position (Xend ) and the hunting range (r). The algorithm
attempts to find the best solution in every area until it reaches
the optimum of that area. This means that jaguars randomly
placed in a territory will locate the same best solution (Xend )
through hunting. For this reason, the information of territory
contains only the best solution and hunting range. This also
means that JA does not need to store all searched positions.
Traditional methods must record a huge number of positions
in a memory pool. Implementation of the proposed method is
far more efficient. This territory mechanism also prevents the
algorithm from searching the same regions more than once,
reducing unnecessary evaluations.

D. ADAPTIVE TERRITORY JUMPING MECHANISM
Establishing territory means that the best solution of the cur-
rent area is found. Therefore, JA is able to search other regions
which have not been discovered. However, the method for
efficiently jumping to new areas is very important. There are
some characteristics worth mentioning. The solution space is
continuous, if JA follows the good areas, it will be able to find
more areas which are much better. In other words, JA is able
to find the best area by following the tendency of good areas.
Therefore, JA follows the tendency for efficient jumping. The
jumping mechanism is similar to the hunting process. First,
the jaguar tries to find the tendency, or the good direction,
to jump. The jaguar then follows the tendency and accelerates
until it finds a bad territory. The jaguar then decelerates and
jumps to both sides of the current territory.

1) ADAPTIVE TERRITORY
The first step of jumping is to find the tendency. After
hunting, the jaguar claims a territory (tcur ). In other words,
the information on the current area has been acquired: best
solution (fit), location of best solution (X ) and hunting range
(r , range of current area), as shown in Fig. 6. First, JA tries the

9980 VOLUME 6, 2018



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

FIGURE 6. Adaptive territory.

two sides of the best solution with the double hunting range
(X+ = Xcur+2×r; X− = Xcur−2×r; jumping distance =
2 × r) to jump from the current territory. Then it starts to
hunt from these two positions. Due to the hunting process,
if the jaguar stays in the same territory, it will find the same
best solution (fitness = fitcur and location = Xcur ). If the
jaguar cannot jump out of the current territory, the green
dotted line shows the movement. It is able to realize that
the range of the current territory is larger than the previous
one. In this case, the hunting range (r) of the territory will
be updated. It will keep trying to jump out until it finds
new territories (right side: t+, left side: t−) which contain
their best solutions, location and hunting range (right side:
fit+,X+, r+ = Distance(Xcur ,X+); left side: fit−,X−, r− =
Distance(Xcur ,X−)). Alternatively, it could reach the bound
of the solution space. If the jaguar jumps out of a territory
and finds a nearby territory, the green solid line shows the
movement. By this process, it is able to find an appropriate
range of a territory. The pseudocode for this process is shown
in Fig. 7.

2) ACCELERATION
After the previous process, two new territories besides the
original (tcur ) are identified. If either of them is better than
the current territory, the jaguar will move to the best one in
(t+, t−) and follow the best direction. If the found territory is
better than the previous one, the green solid line shows the
movement. If the found territory is not better than the pre-
vious one, the green dotted line shows the movement. Then,
JA uses the distance between locations of the best territory
(from t+, t−) and the original one as jumping distance. For
example, as in Fig. 8, if the right direction (+) is better,
move to the position of X+ and jump again in the same
direction by double the jumping distance Xnext = X +
d × 2n, jumping distance d = Distance(Xcur ,X+), where
n is initialized to 1. If the fitness of the new territory tnext

FIGURE 7. Adaptive territory jumping mechanism pseudocode.

FIGURE 8. Acceleration of adaptive territory jumping mechanism.

(information includes fitnext ,Xnext , rnext = Distance(X+,
Xnext )) is better than that of the previous territory, move to
the next position (X = Xnext ) and add n by 1. Keep jumping
in the right direction (+) and accelerating (n = n + 1) until
the next territory is bad. The red X shows the last territory of
acceleration. If the acceleration is executed, this is the first
situation. The second situation is that no better direction is
found in the beginning. Next, the jaguar will decelerate and
check other territories nearby in both situations.

3) JUMPING DISTANCE REDUCTION
In the first situation, after acceleration, keep reducing n by
1 (n = n − 1) and checking both sides (X + d × 2n,
X −d×2n) until both new territories are the same as the cur-
rent territory. If the found territory is better than the previous
one, the green solid line shows themovement. If the found ter-
ritory is not better than the previous one, the green dotted line
shows the movement. The example is shown in Fig. 9 with
tendency (+).

VOLUME 6, 2018 9981



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

FIGURE 9. Jumping distance reduction in direction (+).

In the second situation, if there is no better direction at the
beginning (Adaptive Territory), as previously, keep reducing
the hunting range of the first territory and try both sides until
the same territory is found. The pseudocode for this process
is shown in Fig. 10.

FIGURE 10. Jumping distance reduction pseudocode.

E. FORBIDDEN TENDENCY
In most cases of the adaptive territory jumping mechanism,
the jaguar is able to find the best territory, which contains the
best solution in the tendency range. However, many territories
have already been claimed in the jumping mechanism. Each
territory contains its range. If the territories found in the jump-
ing mechanism are connected, the tendency can be obtained.
The lower bound of the tendency is the position (X ) of the
leftmost territory minus its hunting range (r), while the upper
bound of the tendency is the position (X ) of the rightmost
territory plus its hunting range (r). In other words, it is able
to determine whether the tendency range has been searched.
Moreover, with the idea of territoriality, the jaguar is able to
forbid the tendency because the best territory in this tendency
has been found. Other jaguars will therefore not enter this
tendency. The example is shown in Fig. 11.

FIGURE 11. Forbidden tendency in function with two tendencies.

When the jaguar is initially in an unknown area, it contin-
ues to hunt, claim territory and jump. As a result, the jaguar
has a better chance of finding the best solution in other
tendencies. After this, previous tendency will be forbidden.
At the same time, if the new tendency shares the same best
solution with the previous tendency, the two will be merged.
In summary, the tendency range is expandable and searching
efficiency will be enhanced.

F. LEARNING
The learning method is designed by mimicking the learning
behavior of jaguars. In nature, cubs follow their mother and
learn how to hunt. In JA, while the mother moves in this
dimension, cubs hunt in other dimensions. Learning is similar
to the adaptive territory jump mechanism. The difference is
that the jaguar considers one dimension in the adaptive ter-
ritory jump mechanism, but multiple dimensions in learning
when moving because in the functions with dimensionality,
it would not be possible to find better solutions when only
considering one dimension in jumping. Learning mechanism
(Fig. 12) considers all the dimensions at the same time,
follows the tendency of territories, and it can solve the depen-
dency problem.

1) DECIDE THE DIRECTION AND DISTANCE (VECTOR)
JA finds the good direction in each dimension. In this paper,
JA uses the direction between the initial position and final
position in learning mechanism to find the better direction.
According to the good direction, jaguars move the distance of
a step (step is the only adaptive parameter in JA, it is designed
according to IEEE754 [28] and the domain of the problem)
in each dimension. The direction and the distance in every
dimension compose a vector.

2) ACCELERATION
JA keeps doubling the vector, doing HuntingByTurns
(Fig. 13) and updating the vector until the fitness of the
position is worse than the current position. The example of
expected movement of learning is shown in Fig. 14. JA finds
the better position, doubles the vector, and updates the vec-
tor based on new better position, then keep searching until
finding worse one.

3) DECELERATION
In deceleration, JA keeps trying two sides where may exist
the better solution. JA reduces the vector by half, does
HuntingByTurns and updates the vectors until the positions
of the two sides are equal to the current position.

IV. EXPERIMENT AND ANALYSIS
This section shows the results of experiments conducted to
evaluate the performance of the proposed Jaguar Algorithm.
Seven classic benchmark function problems are used to test
the capabilities of the compared algorithms. These func-
tions are taken from [12], [13], [26]. In the first subsection,
the characteristics and the difficulties of each function are

9982 VOLUME 6, 2018



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

FIGURE 12. Learning pseudocode.

FIGURE 13. HuntingByTurns pseudocode.

introduced, and used to test the capability of an algorithm
to address different types of problems. In the following sub-
section, the reason and purpose of each capability of JA is

FIGURE 14. Learning follows the tendency (Acceleration).

individually analyzed. Each capability is tested with different
functions to examine whether these capabilities take their
own role. The order of the self-analysis experiment is the
same as for the flow of the Jaguar Algorithm, namely hunting,
adaptive initial step, adaptive territory jumping mechanism,
forbidden tendency and learning. The results of all the bench-
mark functions are shown in section IV-B.6 The section IV-C
presents comparisons of the JA and other algorithms. The
settings of algorithms for the experiment environment are
given in section IV-C, including several common control
parameters for different experiments, which are population
size, the stopping criteria of the algorithms and the dimension
of the function. In addition, it also notes the control param-
eters that other algorithms use to balance exploration and
exploitation. Different function optimization problems are
used to test the performance of the algorithms. JA is imple-
mented in Visual Studio 2012 C++. The test environment is
set up on a personal computer with a Pentium E5300 2.6 GHz
CPU, 4G RAM, and running Windows 7.

A. BENCHMARK FUNCTIONS
Various types of functions are used to test different capa-
bilities of algorithms. For example, unimodal problems only
have one peak. Algorithms with good exploitation can find
the global optimum efficiently. Multimodal functions have
two or more local optima. It is easy tomake algorithm trapped
in local optima. The difficulty level of each function will
increase if the global optimum is far from the second or third
optimum, and so on. The algorithms are easily attracted
to local optima and become stuck in them. In addition,
the functions with dependency are worth discussing. The
initial research of dependency was published in 1994 by
Friedman [29]. The important point here is that variables of
dependency problems interact with each other. Sometimes,
these problems must consider more than one variable in
order to obtain a better solution. The following will simply
introduce the characteristics of benchmark functions one by
one. In next subsection, JA will be implemented on these

VOLUME 6, 2018 9983



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

TABLE 1. Benchmark function list.

complicated problems, and self-analysis will be conducted.
JA will then be compared to other algorithms.

The first function is Absolute Value, whose global mini-
mum is at x = 0, 0, , 0, and its value is 0. The domain for the
function is [−100, 100]. There is only a valley in this function,
and its global optimum is located at the center of the valley.
This kind of function without any local optimum is called a
unimodal function. It is applied to test the exploitative ability
of an algorithm.

Sphere is also a unimodal function whose global minimum
is at x = 0, 0, , 0, and its fitness is 0. The domain for the
function is [−100, 100]. It is also test the force of exploitation
of an algorithm.

The Rastrigin function is transformed from the Sphere
function. The global minimum is at x = 0, 0, , 0 and its
value is 0. The common domain for the function is [−15, 15].
This function is a multimodal function. Due to the addition
of cosine modulation, the function has many local optima.
As a result, an algorithm cannot just have the exploitative
ability; otherwise it would be trapped in the local optima.
Algorithms must have the explorative ability and can escape
from the local optima.

TheAckley function is amultimodal functionwhose global
minimum is at x = 0, 0, , 0, and its value is 0. The com-
mon domain for the function is [−32.768, 32.768]. There
are numerous local optima owing to an exponential term.
In order to achieve the global optimum, both exploration and
exploitation are essential.

The global minimum of Schwefel function is at
x = 420.9687, 420.9687, . . . , 420.9687. The domain of the
function is [−500, 500]. It is worth noting that there are two
tendencies in each dimension; however, the global optimum is
only located on one side, and the global optimum is far from
the second-best optimum. If the dimension is 30, there are
230 tendencies, and the global optimum exists in only one of
these tendencies; thus, an algorithm would be easily trapped
in the local optima.

The global minimum of the Griewank function is at
x= 0, 0, , 0, and its value is 0. The domain for the function is
[−600,600]. The Griewank function has a product term that
makes variables have slight dependency. Thus, although it is

a multimodal function, the problem appears to be unimodal
when the dimension is higher than 30.

The last function is the Rosenbrock function, whose global
minimum is at x = 1, 1, , 1, and its value is 0. The common
domain for the function is [−2.048, 2.048]. The global opti-
mum is inside a long, narrow, parabolic-shaped flat valley.
TheRosenbrock function has a chain-like interaction between
the variables. This means that algorithms cannot only con-
sider one variable; they must consider all the variables at the
same time in order to find the optimal solution. It is a strong
dependency problem.

B. SELF-ANALYSIS
This section provides an analysis of the capabilities of the
proposed method. Each function has different characteris-
tics. Experiments and analysis for different functions are
presented. The following experiments will discuss the capa-
bilities of JA in detail. After this, JA will be applied to the
benchmark functions listed in Table 1.

1) HUNTING
This section tests exploitation capabilities on unimodal func-
tion problems, e.g. the absolute function and the sphere func-
tion. Exploitation in JA is hunting, and it applies the adaptive
initial step in order to hunt with an appropriate parameter.
Hunting means checking both sides of the current position
with the step to determine whether there is a better adjacent
solution. The step is continuously reduced by half until it is
too small for the current position to be distinguished from
either side. JA uses the concept of the bisectional squeeze the-
orem to approximate to the possible best position. So, hunting
can find the best position in the current area. The result
in 30 dimensions is shown in Table 2, and JA compares
with other algorithms in Table 3 and 4. JA can find the
global optimal solution for the unimodal function problems
in 30 trials. In addition, the concept of the bisection method
allows JA to exploit more rapidly. JA does not require a large
number of evaluations to find the best solution of the current
peak, and compared with other algorithms, JA can find the
optimal solution faster and more efficiently.

9984 VOLUME 6, 2018



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

TABLE 2. Result of hunting.

TABLE 3. Compare with other algorithms in absolute.

TABLE 4. Compare with other algorithms in sphere.

FIGURE 15. Instances of the initial step which is too large or too small.
(a) The initial step is too large. (b) The initial step is too small.

2) ADAPTIVE INITIAL STEP
In the hunting process, the jaguar tries both sides of its current
position with positive and negative directions in order to
identify the best direction. In this step, there is a parameter
which must be set, namely initial step. This section explains
how the initial step is formulated, and describes two meth-
ods of producing the initial step. Initial steps that are too
large or small are not appropriate for hunting. Large steps
have to be divided many times to find optimal solutions in
many cases(as in Fig. 15(a)). On the other hands, small steps
require much more time in many cases (as in Fig. 15(b)).
JA adaptively adjusts the best initial step when facing

different problems. Hence, the series of fixed initial steps are
tested on five different functions, from feasible maximal step
to minimal step. The step can be applied to every position
within the domain. The experiment then notes how many
evaluations were required for the hunting method using each
initial step (i.e. the speed of finding the optimal solution in
its located region). The test experiment is run 100,000 times,
and the blue line in Fig. 16 shows the evaluations.
Using the above testing, this study proposes two ways of

producing the initial step. The first uses the domain range,
which is defined in the beginning. The second uses the value
of the initial position, which is randomly initialized in the
beginning. Both values are known at the beginning of the
experiments. In Fig. 16, the middle size of initial steps cost a
relatively small amount of evaluation. Therefore, the adaptive
initial step of JA is formulated by themiddle value ofmaximal
and minimal precision, generated by both methods.

The results of the adaptive initial step experiment on dif-
ferent function problems are given in Fig. 16, where the red
line represents the domain and the green line represents the
initial position. Both adaptive methods cost fewer evaluations
to rapidly hunt the optimum of an area, and the same is true
for the other functions. These two methods are thus able to
adaptively produce the initial steps. These two methods have
their own features. They both result in more rapid hunting,
with lower evaluation costs, resulting in efficient exploitation.

3) ADAPTIVE TERRITORY JUMPING MECHANISM
In order to test the capability of the adaptive territory jump-
ing mechanism, two kinds of JA with different abilities are
compared: (1) hunting without jumping; (2) hunting with
jumping. Each method is executed in 30 independent experi-
ments. The result is shown in Table 5. The test function is the
Rastrigin function of one dimension in Table 5. The solution
space contains many local optima and one global optimum
located in the center. This function has a tendency for the
local optima to become better as they get closer to the center.
It is thus very easy to become trapped in the local optimum.
The jaguar has the ability to find the global optimum with the
adaptive territory jumping mechanism.

TABLE 5. Result of adaptive territory jumping mechanism.

4) FORBIDDEN TENDENCY
In territoriality, after jumping, the jaguar is able to leave
tendencies that have been searched. In Table 6, Hunting,
the jumping mechanism and the forbidden tendency are
implemented. The result is obtained by 30 independent
experiments.

The Schwefel function is used in 30 dimensions. There are
two opposite tendencies in each dimension. The best solution

VOLUME 6, 2018 9985



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

FIGURE 16. Comparison of every feasible initial step and two adaptive initial step methods in five functions. (a) Absolute.
(b) Rastrigin. (c) Ackley. (d) Schwefel. (e) Griewank.

TABLE 6. Result of forbidden tendency.

is in the right/positive tendency. It contains 2dimension tenden-
cies in the whole solution space and each tendency consists of
many peaks. In 30 dimensions, there are 230 (1,073,741,824)
tendencies, and the optimal solution is only in one tendency.
In that one tendency, the optimal solution is located near the
bound. Because the structure is very complicated, traditional
algorithms are very easily attracted to converge into local
optima. However, in the proposed method, a tendency con-
sists of many territories. The forbidden tendency mechanism

is the same idea as territory mechanism. JA will therefore
not waste evaluations on tendencies previously found. This
makes the JA search solution space more efficient, and less
likely to be trapped in local optima. As a result, JA finds the
best solution with fewer evaluations in each experiment.

5) LEARNING
In order to address the dimensionality of functions, JA imple-
ments the above abilities and learning in this experiment.
Tables 7 and 8 give the average results of 30 indepen-
dent experiments. In Table 7, the success rate refers to the
percentage that the optimal solution is successfully found
in 30 independent experiments. In Table 8, the values
of the first column d represent the function dimensions.

9986 VOLUME 6, 2018



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

TABLE 7. Comparison result: JA without learning vs. JA with earning.

TABLE 8. Result of learning in 2 and 30 dimension functions.

The benchmark function is the Rosenbrock function
in 2 and 30 dimensions. It is known that in the Rosenbrock
function, every dimension is connected to the others; the
dimensionality is very strong. The Griewank function is also
a dependency problem. Most algorithms do not perform
well with these functions; the results are shown in the next
subsection. However, the jaguar is able to move in multiple
dimensions at the same time. Therefore, JA has better ability
to find optimal solution and yields a good result in depen-
dency problem.

TABLE 9. Result of JA tested on 30 dimension functions.

6) NUMERICAL OPTIMIZATION
In this section, JA implements all the behaviors in the exper-
iment, as shown in Table 9. JA is tested with the follow-
ing functions in 30 dimensions: Absolute Value, Sphere,
Rastrigin, Ackley, Griewank, Schwefel and Rosenbrock.
JA has many features that help the jaguar find the global
optimum in these functions. JA is able to find the best solution
in an area rapidly using an adaptive initial step and hunting.
Therefore, the jaguar is able to find the optimal solution in the
Absolute Value and Sphere unimodal functions. The jaguar
has the ability to find the best territory in a tendency by
using the adaptive territory jumping mechanism. This helps
the jaguar find the optimal solution in multi-modal functions
Rastrigin and Ackley. Moreover, Schwefel is a function with
multi-tendencies. The jaguar is able to leave from a tendency
that has already been searched. This allows JA has more
opportunities to find the global optimum. In theGriewank and
Rosenbrock functions with dependency, the jaguar is able to
move multiple dimensions at the same time through learning.
As a result, in the experiments, JA has great ability to find the
optimal solution in these functions.

TABLE 10. Result of JA comparison with QEA and FEP.

TABLE 11. Result of JA comparison with PSO and IMQTS.

C. COMPARISON
In this section, JAs performance is compared with traditional
algorithms with different functions. JA uses one jaguar in
the following experiments. The terminal criterion of JA is
shown in Fig. 1, which breaks the traditional meta-heuristic
framework. The adaptive initial step is produced by domain
range. In traditional algorithms, the terminal condition is
the maximum number of generations. However, the most
important criterion should be the number of evaluations.
In one generation, the algorithms are able to implement a
huge number of populations and local searches. However,
it seems unfair to simply compare JA with other algorithms
with different populations and generations. The evaluation
times of traditional algorithms are estimated by the number
of populations and generations. The reasonable comparison
between algorithms would be to examine the number of eval-
uations required for an algorithm to find a better solution. The
results in this section are shown in Tables 10 to 12. Each cell
consists of two rows and one column. The values in the upper
row represent the average of best solutions in 30 independent
experiments and standard deviation. The value in the lower
row represents the evaluation cost.

VOLUME 6, 2018 9987



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

TABLE 12. Comparisons of JA with GA, PSO, PS-EA and ABC.

The comparison with QEA [13] and FEP [13] is shown
in Table 10. The common test parameter settings of the exper-
iment are as follows: 50 independent experiments, 30 dimen-
sions and 100 populations. The terminal conditions for QEA
and FEP differ for each function (Sphere 1500, Ackley 1500,
Griewank 2000, Rastrigin 5000, Schwefel 9000, Rosenbrock
20000). The exclusive control parameters of QEA given
in [13] are for H gate = 0.01, and the encode length
of Q-bits employed for functions (Sphere 18, Ackley 18,
Rosenbrock 18, Griewank 21, Rastrigin 17, Schwefel 22).
The control parameters of FEP given in [30] are t = 1 for
Cauchy mutation and q = 10 for selection.
In the Sphere, Ackley, Griewank, and Rastrigin functions,

JA can find the optimal solution with a fewer number of eval-
uations compared with QEA and FEP. In Schwefel function,
JA also finds the optimal solution. Compare with QEA,
JA outputs different precision, it does not mean that JA finds
a worse solution than QEA. In the Rosenbrock function,
although JA uses more evaluations, it still finds a better
solution than those found by QEA and FEP.

The algorithms presented were from [10] and [26] in this
comparison experiment, with 30 dimension functions. The
common test parameter settings for the experiment are as
follows. There are 50 independent experiments. The pop-
ulation size and termination criteria (maximal generation)
are different. There are 30 populations and 1000 generations
in PSO. The populations and generations used by IMQTS
for each function are 1500 and 500 for Absolute Value,
1000 and 200 for Ackley, 5000 and 500 for Griewank,
1500 and 1000 for Rastrigin and 500 and 200 for Rosen-
brock. Owing to the different numbers of populations and
generations, it is more reasonable to use the number of
evaluation as comparison criteria. Therefore, the number of
evaluations is calculated for each algorithm and its varying
population and generations, as shown in Table 11. The exclu-
sive control parameters of PSO given in [5] are inertia weight
w= 0.729844, learning factors c1, c2 = 1.496180 and initial
velocity v(t = 0) = 0. The control parameters of IMQTS
given in [15] are (a, b, c) for a bell-shaped function which is

employed with the algorithm. Respectively, (a, b, c) are (300,
400, 1) for Absolute Value, (200, 300, 300) for Ackley, (100,
150, 100) for Griewank, (600, 700, 1300) for Rastrigin and
(100, 10, 40) for Rosenbrock.

In Table 11, the result shows that JA can find the optimal
solution in all five functions. Compared with IMQTS, JA uses
less number of evaluations to obtain a better solution for most
functions.

The algorithms presented were from [31], and [12].
JA is compared with these algorithms using 30 dimension
functions, with results given in Table 12 The common
test parameter settings for the experiment are as follows:
30 independent experiments and 125 populations. The termi-
nal criteria (maximal generation) are 1000 in GA, PSO and
PS-EA, and 2000 in ABC. The exclusive control parameters
of GA given in [31] are single point crossover rate= 0.95 and
Gaussian mutation rate= 0.1. The control parameters of PSO
given in [31] are inertia weight varying from 0.9 to 0.7 lin-
early with the iterations, and learning factors c1, c2 =
1.496180. The control parameters of PS-EA given in [31]
are inheritance probabilities which are adjusted dynamically.
A feasible set of initial inheritance probabilities is used to
test the performance in [31]. The control parameters of ABC
given in [12] are a population with 50% employed bees
and 50% onlooker bees. There is one scout bee. The limit
(i.e. the number of generations after which the food source is
abandoned) is set according to population and dimensions.

In Table 12, the result shows that JA can find the optimal
solution for all functions. In Rosenbrock, the dimensionality
of the function causes most algorithms to perform poorly.
If the domain range is larger, the difficulty also increases.
Compared with ABC in the Ackley, Rastrigin, Schwefel, and
Rosenbrock functions JA uses fewer evaluations to obtain the
optimal solution.

These experiment results demonstrate JAs superior perfor-
mance. During hunting, JA uses fewer evaluations to find the
optimal solution than do other algorithms in unimodal func-
tions. With territoriality and jumping, JA uses an effective
way to find the optimal solution in multimodal functions.

9988 VOLUME 6, 2018



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

With forbidden tendencies, JA can find the global optimum in
Schwefel, while other algorithms are easily trapped in local
optima. With learning, JA can move in multiple dimensions
at the same time. JA achieves good performance in functions
with dimensionality (dependency). Compared with other tra-
ditional algorithms, it shows that learning can be improved in
evaluations. As a result, JA is able to find the optimal solution
faster andwith less required resources compared to traditional
algorithms.

V. CONCLUSION
Traditional optimization algorithms are designed to balance
the capabilities of exploration and exploitation in order to
obtain an optimal solution with limited costs or time. In order
to effectively balance exploration and exploitation, many
parameters are implemented, such as weights and random
models. Algorithms then need to adjust these parameters for
different problems, and random models waste computational
cost and make these algorithms very difficult to analyze.
Different from traditional methods, JA performs exploration
and exploitation separately. It can, therefore, engage in explo-
ration and exploitation at the right moment for each.

JA consists of five features: hunting, territoriality, an adap-
tive territory jumping mechanism, forbidden tendency, and
learning. JA is simple and is implemented without random-
ness. Moreover, the only parameter, the step, is adaptive
to the environment. The mechanisms of hunting, jumping,
and learning share the same concept. In hunting, a jaguar
follows the best direction and accelerates. If JA meets a bad
position, it decelerates and checks both sides of the current
position. Using the hunting process, the jaguar is able to
find the best solution in an area within a short time and
small cost. With the adaptive step, the jaguar is able to hunt
more rapidly. Territoriality prevents other jaguars or itself
from entering regions that have already been searched; this
also allows the jaguar to search the solution space more
efficiently, without wasting extra evaluations on these regions
and prevent it trapping in local optima. When new terri-
tory is claimed, the jaguar checks the appropriate range of
the territory and uses this information to jump. With the
adaptive territory jumping mechanism, the jaguar can follow
the best tendency of territories. After this, the jaguar leaves
the tendency, making JA more efficient. With the learning
mechanism, the jaguar is able to move in multiple dimensions
at the same time, making JA more efficient, and gives it
the ability to deal with dependency problems. JA differs
from the strategy of balancing exploration and exploitation
in traditional algorithms, as JA implements exploration and
exploitation separately. The results of the benchmark tests
show that JA outperforms the traditional algorithms, and have
powerful search ability to find the global optimal solution in
a much lesser computational cost.

REFERENCES
[1] B.-Y. Liao, H.-W. Chen, S.-Y. Kuo, and Y.-H. Chou, ‘‘Portfolio optimiza-

tion based on novel risk assessment strategy with genetic algorithm,’’ in
Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 2015, pp. 2861–2866.

[2] Y.-H. Chou, S.-Y. Kuo, C.-Y. Chen, and H.-C. Chao, ‘‘A rule-based
dynamic decision-making stock trading system based on quantum-
inspired tabu search algorithm,’’ IEEE Access, vol. 2, pp. 883–896,
2014.

[3] S.-Y. Kuo, C. Kuo, and Y.-H. Chou, ‘‘Dynamic stock trading system based
on quantum-inspired tabu search algorithm,’’ in Proc. IEEE Congr. Evol.
Comput., Jun. 2013, pp. 1029–1036.

[4] S.-Y. Kuo, Y.-H. Chou, and C.-Y. Chen, ‘‘Quantum-inspired algorithm for
cyber-physical visual surveillance deployment systems,’’ Comput. Netw.,
vol. 117, pp. 5–18, Apr. 2017.

[5] J. G. Digalakis and K. G. Margaritis, ‘‘An experimental study of bench-
marking functions for genetic algorithms,’’ Int. J. Comput. Math., vol. 79,
no. 4, pp. 403–416, 2002.

[6] R. Storn and K. Price, ‘‘Minimizing the real functions of the ICEC’96
contest by differential evolution,’’ in Proc. IEEE Int. Conf. Evol. Comput.,
May 1996, pp. 842–844.

[7] S. Das and P. N. Suganthan, ‘‘Differential evolution: A survey of the
state-of-the-art,’’ IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[8] J. Knowles and D. Corne, ‘‘Approximating the nondominated front using
the pareto archived evolution strategy,’’ Evol. Comput., vol. 8, no. 2,
pp. 149–172, Jun. 2000.

[9] J. R. Koza, Genetic Programming—On the Programming of Computers
by Means of Natural Selection, vol. 1. Cambridge, MA, USA: MIT Press,
1992.

[10] A. Engelbrecht, ‘‘Particle swarm optimization: Velocity initialization,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2012, pp. 1–8.

[11] M. Dorigo, V. Maniezzo, and A. Colorni, ‘‘Ant system: Optimiza-
tion by a colony of cooperating agents,’’ IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[12] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, 2007.

[13] K.-H. Han and J.-H. Kim, ‘‘Quantum-inspired evolutionary algorithms
with a new termination criterion, Hε gate, and two-phase scheme,’’ IEEE
Trans. Evol. Comput., vol. 8, no. 2, pp. 156–169, Apr. 2004.

[14] Y.-H. Chou, C.-Y. Chen, C.-H. Chiu, and H.-C. Chao, ‘‘Classical and
quantum-inspired electromagnetism-like mechanism and its applications,’’
Control Theory Appl., IET, vol. 6, no. 10, pp. 1424–1433, Jul. 2012.

[15] Y.-H. Chou, C.-H. Chiu, and Y.-J. Yang, ‘‘Quantum-inspired tabu search
algorithm for solving 0/1 knapsack problems,’’ in Proc. 13th Annu. Conf.
Companion Genet. Evol. Comput., 2011, pp. 55–56.

[16] H.-P. Chiang, Y.-H. Chou, C.-H. Chiu, S.-Y. Kuo, and
Y.-M. Huang, ‘‘A quantum-inspired tabu search algorithm for solving
combinatorial optimization problems,’’ Soft Comput., vol. 18, no. 9,
pp. 1771–1781, 2014.

[17] F. Glover, ‘‘Tabu search—Part I,’’ ORSA J. Comput., vol. 1, no. 3,
pp. 190–206, 1989.

[18] Q. Qin, S. Cheng, Q. Zhang, L. Li, and Y. Shi, ‘‘Particle swarm optimiza-
tion with interswarm interactive learning strategy,’’ IEEE Trans. Cybern.,
vol. 46, no. 10, pp. 2238–2251, Oct. 2016.

[19] M. R. Bonyadi and Z. Michalewicz, ‘‘Stability analysis of the particle
swarm optimization without stagnation assumption,’’ IEEE Trans. Evol.
Comput., vol. 20, no. 5, pp. 814–819, Oct. 2016.

[20] J. Liu, Y. Mei, and X. Li, ‘‘An analysis of the inertia weight parameter for
binary particle swarm optimization,’’ IEEE Trans. Evol. Comput., vol. 20,
no. 5, pp. 666–681, Oct. 2016.

[21] G. Zhu and S. Kwong, ‘‘Gbest-guided artificial bee colony algorithm for
numerical function optimization, ’’ Appl. Math. Comput., vol. 217, no. 7,
pp. 3166–3173, 2010.

[22] M. Neshat, G. Sepidnam, M. Sargolzaei, and A. N. Toosi, ‘‘Artificial fish
swarm algorithm: A survey of the state-of-the-art, hybridization, com-
binatorial and indicative applications,’’ Artif. Intell. Rev., vol. 42, no. 4,
pp. 965–997, 2014.

[23] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[24] X.-S. Yang, ‘‘A new metaheuristic bat-inspired algorithm,’’ Nature
Inspired Cooperat. Strategies Optim., vol. 284, pp. 65–74, 2010.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-
12538-6_6

[25] K. N. Krishnanand andD. Ghose, ‘‘Glowworm swarm optimisation: A new
method for optimisingmulti-modal functions,’’ Int. J. Comput. Intell. Stud.,
vol. 1, no. 1, pp. 93–119, 2009.

VOLUME 6, 2018 9989



Y.-H. Chou et al.: Next Generation Metaheuristic: Jaguar Algorithm

[26] Y.-J. Yang, S.-Y. Kuo, F.-J. Lin, I.-I. Liu, and Y.-H. Chou, ‘‘Improved
quantum-inspired tabu search algorithm for solving function optimization
problem,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2013,
pp. 823–828.

[27] J. Meng, H. G. Wang, Z. Dong, and K. P. Wong, ‘‘Quantum-inspired par-
ticle swarm optimization for valve-point economic load dispatch,’’ IEEE
Trans. Power Syst., vol. 25, no. 1, pp. 215–222, Feb. 2010.

[28] D. Zuras et al., IEEE Standard for Floating-Point Arithmetic,
IEEE Standard 754-2008, 2008, pp. 1–70.

[29] J. H. Friedman, ‘‘An overview of predictive learning and function approx-
imation,’’ in From Statistics to Neural Networks. Berlin, Germany:
Springer, 1994.

[30] X. Yao, Y. Liu, and G. Lin, ‘‘Evolutionary programming made faster,’’
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[31] D. Srinivasan and T. H. Seow, ‘‘Particle swarm inspired evolutionary
algorithm (PS-EA) for multiobjective optimization problems,’’ in Proc.
Congr. Evol. Comput. (CEC), vol. 4, Dec. 2003, pp. 2292–2297.

YAO-HSIN CHOU received the Ph.D. degree
from the Department of Electrical Engineer-
ing, National Taiwan University, Taipei, Taiwan,
in 2009. He is currently an Associate Profes-
sor with the Department of Computer Science
and Information Engineering, National Chi Nan
University, Puli, Taiwan. He has authored over
60 papers in journals and conference proceedings.
His current research interests include computa-
tional intelligence, evolutionary computation, arti-

ficial intelligence, financial technology, and quantum information science.

SHU-YU KUO received the B.S. and M.S. degrees
in computer science and information engineer-
ing from National Chi Nan University, Taiwan,
in 2012 and 2013, respectively, where she is
currently pursuing the Ph.D. degree with the
Department of Computer Science and Information
Engineering. Her research interests include evolu-
tionary computation, automated trading systems,
and wireless sensor network.

LI-SHENG YANG is currently pursuing the
master’s degree with the Department of Computer
Science and Information Engineering, National
Chi Nan University. His research interests include
evolutionary computation and metaheuristic
algorithm.

CHIA-YUN YANG is currently pursuing the
master’s degree with the Department of Computer
Science and Information Engineering, National
Chi Nan University. Her research interests include
evolutionary computation and visualization tool.

9990 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	PROPOSED METHOD
	HUNTING
	ADAPTIVE INITIAL STEP
	TERRITORIALITY
	ADAPTIVE TERRITORY JUMPING MECHANISM
	ADAPTIVE TERRITORY
	ACCELERATION
	JUMPING DISTANCE REDUCTION

	FORBIDDEN TENDENCY
	LEARNING
	DECIDE THE DIRECTION AND DISTANCE (VECTOR)
	ACCELERATION
	DECELERATION


	EXPERIMENT AND ANALYSIS
	BENCHMARK FUNCTIONS
	SELF-ANALYSIS
	HUNTING
	ADAPTIVE INITIAL STEP
	ADAPTIVE TERRITORY JUMPING MECHANISM
	FORBIDDEN TENDENCY
	LEARNING
	NUMERICAL OPTIMIZATION

	COMPARISON

	CONCLUSION
	REFERENCES
	Biographies
	YAO-HSIN CHOU
	SHU-YU KUO
	LI-SHENG YANG
	CHIA-YUN YANG


