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ABSTRACT Windowed orthogonal frequency-division multiplexing (OFDM) and wavelet OFDM have
been proposed as multicarrier techniques for broadband communications over the power line network by the
standard IEEE 1901. The windowed OFDMhas been extensively researched and employed in different fields
of communication, while the wavelet OFDM has been recently recommended for the first time in a standard.
This paper is aimed to show that the wavelet OFDM, which basically is an extended lapped transform-
based multicarrier modulation (ELT-MCM), is a viable and attractive alternative for data transmission in
hostile scenarios, such as in-home power line communications (PLC). To this end, we obtain theoretical
expressions for ELT-MCM of: 1) the desired signal power; 2) the inter-symbol interference power; 3) the
inter-carrier interference power; and 4) the noise power at the receiver side. These expressions are used to
derive the throughput. This paper includes several computer simulations that show that ELT-MCM is an
efficient alternative to improve data rates in the PLC systems.

INDEX TERMS Power line communications, multicarrier modulation, orthogonal frequency-division
multiplexing, extended lapped transform-based multicarrier modulation, filter bank multicarrier modulation,
discrete cosine transform, discrete sine transform, prototype filter.

I. INTRODUCTION
Channel partitioning techniques have become part of sev-
eral standards for broadband wireless and wireline commu-
nications. The idea behind these techniques is to convert
a broadband frequency channel into a set of overlapping
and (nearly) orthogonal frequency-flat subchannels [1] aimed
at sharing the media among users. Orthogonal Frequency
Division Multiplexing (OFDM), with or without windowing,
is the most widely recommended technique and employs
cyclic prefix (CP) or zeros as redundant samples to carry
out the channel partition [2]. Recently, filter bank multicar-
rier (FBMC) has attracted a great deal of research atten-
tion, with the difference that the partitioning is performed
by means of pulse shaping, with good properties in time
and frequency, with no additional redundant samples [3].
FBMC is now proposed as an attractive alternative to OFDM
as themodulation technique of the fifth generation of wireless
networks (5G) [4]–[9].

The popularity of power line communications (PLC) for
smart grids, for in-vehicle applications, and for outdoors and

in-home data communication systems, has grown a great
deal [10]–[19]. It can be a good solution for the ‘last mile’
problem, since it provides broadband communication to iso-
lated places where other communication systems are not in
place, and for the ‘last inch’ problem, since it implements
indoor high-speed networks [20]. IEEE Std 1901 [21] defines
a standard for broadband over power line (BPL) devices via
electric power lines. All classes of BPL devices are consid-
ered for the use of this standard, including BPL devices used
for smart energy or in-vehicle applications.

The physical layer (PHY) procedures included in IEEE
1901 specify either a windowed OFDM or a wavelet OFDM
as multicarrier modulation (MCM) schemes. Although the
latter scheme is referred to as wavelet OFDM, the recom-
mended system is not based on wavelet, it is a class of FBMC
based on the Extended Lapped Transform (ELT) [16], [22].
For this reason, hereinafter we will refer to wavelet OFDM
also as ELT-MCM.

It is well known that one important drawback of OFDM
is its insertion of redundancy, which reduces the throughput.
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FIGURE 1. General block diagram of an ELT-MCM with ASCET.

As an alternative, FBMC is a viable and attractive solution for
communications over the mains network, because it does not
require any kind of redundancy, it has higher robustness in
noisy environments, greater spectral separation, and reduced
adjacent subchannel interference, among others. However,
channel equalization represents one of the most challenging
issues and plays an important role in the PLC receivers based
on FBMC, chiefly since the PLC channel varies in both
frequency and time, and experiences deep notches [23].

Since OFDM with and without windowing has been rec-
ommended in other standards, e.g., HomePlug AV [24],
it has received widespread attention by researchers. In this
respect, there have been previous studies of the capac-
ity and throughput of OFDM-based systems. For instance,
in [25] the discrete multi-tone (DMT) capacity was analyzed.
The performance of windowed OFDM systems was studied
in [26] and [27]. Recent literature has proposed contributions
with specific emphasis on OFDM/OQAM (FBMC/OQAM)
[25], [26], [28], [29]. A special case of FBMC, based
on the conventional modulation [30], has been studied
in [31]–[33]. To the best of the authors’ knowledge, the study
of the throughput for the system based on the ELT and
deployed by IEEE 1901, is still an open problem. The
main purpose of this paper is to derive theoretical expres-
sions for the wavelet OFDM system (or ELT-MCM), also
including anAdaptive Sine-modulated/Cosine-modulated fil-
ter bank Equalizer for Transmultiplexer (ASCET) [16], [34].
Finally, a comparison of the throughputs for windowed
OFDM and ELT-MCM is included, considering an in-home
PLC scenario.

The rest of this paper is organized as follows. In Section II,
the ELT-MCM system is briefly presented. In Section III
theoretical expressions for the power of the desired signal,
of the inter-symbol interference (ISI), of the inter-carrier
interference (ICI), and of the noise, all at the receiver side, are

derived. In Section IV, we study the throughput. Section V
contains some simulation results. Section VI provides our
conclusions.

II. FILTER BANK MULTICARRIER TRANSCEIVER
Fig. 1 shows the block diagram of the filter bank multicarrier
transceiver detailed in [16] and considered in the present
paper. The baseband ELT-MCMphysical layer recommended
in [21] is the following transmitting filter (for the kth sub-
band, for 0 ≤ k ≤ M − 1):

fk [n] =

√
2
M
· p[n] · cos

[(
k +

1
2

)
π

M

(
n+

M + 1
2

)]
× cos (θk), (1)

where 0 ≤ n ≤ N , M is the number of subbands, p[n] is
the prototype filter with length equal to N + 1 = 2κM , κ is
the overlapping factor, and θk is a phase constant equal to
0 or π . Expression (1), excluding the term cos (θk), is nothing
but the ELT synthesis filters introduced by Malvar [22].
For the above transmitting bank, the reception system can
be implemented as the time reflection of the transmission
bank [16]:

hk [n] =

√
2
M
· p[n] · cos

[(
k +

1
2

)
π

M

×

(
N − n+

M + 1
2

)]
· cos (θk). (2)

With regard to p [n], different prototype filters are proposed
in the standard [21] for the cases ofM = 512, 1024 and 2048
subchannels, and for an overlapping factor κ equal to 2 or 3.
It is worth noting that the proposed prototype filters have
even symmetry (p[N − n] = p[n]). The standard does not
provide expressions that allow designers to quickly obtain the
corresponding coefficients, but in [16] it is shown that these
prototype filters belong to a family of windows proposed
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by Malvar [22] which has the perfect reconstruction (PR)
property in the context of filter banks.

In order to compensate for the channel effects, the ASCET
system can be used [35]. Its use for ELT-MCMwas proposed
in [16], and the impulse responses of the receiving filters of
the sine modulated filter bank (SMFB) are given by

hsk [n] =

√
2
M
· p[n] · sin

[(
k +

1
2

)
π

M

×

(
N − n+

M + 1
2

)]
· cos (θk). (3)

For more details of the transceiver configuration and for a
quick and efficient way of implementing the whole system
of Fig. 1 by means of polyphase filters, we refer the reader
to [16].

III. ANALYTICAL EXPRESSIONS
In Fig. 1, let us consider the discrete-time transmitted signal
given by

x[n] =
∑
k∈Kon

∑
m∈Z

xk,m · fk [n− mM ], (4)

whereKon ⊆ {0, · · · ,M − 1} is the set of active subchannels
defined by the tone mask [21], and xk,m are the symbols
in the subcarrier-time position (k,m), assumed to be zero-
mean wide-sense stationary (WSS) processes. In particular,
the variance σ 2

x is assumed to be identical for all xk,m, which
are independent and identically distributed for every k inKon.
We assume that the PLC channel can be modeled as a time-
invariant frequency selective channel:

ach[n] =
L−1∑
l=0

al · δ[n− l], (5)

where L is the length of the channel. We also assume that
there is no significant variation during a frame transmission.
The received signal is given by

y[n] =
L−1∑
l=0

al · x[n− l − β]+ r[n− β], (6)

where r[n] is additive noise and β is a delay included to
obtain proper system operation. In this paper, we assume the
noise to be additive white Gaussian noise with zero mean and
variance σ 2

r . Lastly, the signal at the k0-subcarrier output can
be written as

yck0,n =
N∑
τ=0

hk0 [τ ] · y [nM − τ ] =
N∑
τ=0

hk0 [τ ]

×

L−1∑
l=0

al ·
∑
k∈Kon

∑
m∈Z

xk,m · fk [nM−τ−l−β−mM ]

+

N∑
τ=0

hk0 [t] · r [nM − β − τ ]. (7)

In the following subsections, we will obtain the signal-to-
interference-plus-noise ratio (SINR) under the reasonable

assumption that the number of subcarriers used is quite large,
so that the interference on a given subcarrier is normally
distributed [27].

A. TRANSMITTING OVER A CHANNEL WITHOUT NOISE
Noise apart, the output symbol at the position (k0,m0) can be
written as

yck0,m0
=

∑
k∈Kon

∑
m∈Z

xk,m
L−1∑
l=0

al · Gck0,m0
(k,m, l), (8)

where

Gck0,m0
(k,m, l)=

N∑
τ=0

fk [m0 M−τ−l − β − mM ] · hk0 [τ ].

The expression (8) can be separated into the signal,
(k,m) = (k0,m0), and interference, (k,m) 6= (k0,m0). The
first part gives rise to the signal of interest

9c
k0,m0

= xk0,m0

L−1∑
l=0

al · Gck0,m0
(k0,m0, l)

= xk0,m0 · Q
c
k0,m0

(k0,m0), (9)

and the second one to the inter-symbol interference (ISI)

I ck0,m0
=

∑
m∈Z
m6=m0

xk0,m
L−1∑
l=0

al · Gck0,m0
(k0,m, l)

=

∑
m∈Z
m6=m0

xk0,m · Q
c
k0,m0

(k0,m), (10)

and the inter-carrier interference (ICI)

J ck0,m0
=

∑
k∈Kon
k 6=k0

∑
m∈Z

xk,m ·
L−1∑
l=0

al · Gck0,m0
(k,m, l)

=

∑
Kon
k 6=k0

∑
m∈Z

xk,m · Qck0,m0
(k,m), (11)

where

Qck0,m0
(k,m) =

L−1∑
l=0

al · Gck0,m0
(k,m, l).

Therefore, the cosine modulated filter bank (CMFB) output
symbol can be expressed as

yck0,m0
= 9c

k0,m + I
c
k0,m0
+ J ck0,m0

. (12)

Following the same reasoning, the SMFB output symbol at
the position (k0,m0) is

ysk0,m0
= 9s

k0,m + I
s
k0,m0
+ J sk0,m0

, (13)

where the expressions of the signal of interest, ISI and ICI are
similar to (9)-(11), but Gck0,m0

(k,m, l) is replaced by

Gsk0,m0
(k,m, l) =

N∑
τ=0

fk [m0 M−τ− l − β − mM ] · hsk0 [τ ],
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and

Qsk0,m0
(k0,m0) =

L−1∑
l=0

al · Gsk0,m0
(k0,m0, l).

B. NOISE EFFECTS
Taking the noise1 into consideration, (12) and (13) can be
rewritten as

yck0,m0
= 9c

k0,m0
+ I ck0,m0

+ J ck0,m0
+ rck0,m0

, (14)

ysk0,m0
= 9s

k0,m0
+ I sk0,m0

+ J sk0,m0
+ rsk0,m0

, (15)

where

rck0,m0
=

N∑
τ=0

hk0 [τ ] · r [m0M − β − τ ], (16)

rsk0,m0
=

N∑
τ=0

hsk0 [τ ] · r [m0M − β − τ ]. (17)

C. THE SINR OF THE 0-ASCET
In the 0-ASCET [34], [35], the cosine-modulated per-
subcarrier equalizer (CM-PSE) and the sine-modulated (SM)
PSE are constants2:

ck [n] = ck , sk [n] = sk .

Thus, the demodulated (k0,m0)th symbol in the absence of
noise can be written as

x̂k0,m0 = yck0,m0
· ck0 + y

s
k0,m0
· sk0

= 9c
k0,m0
· ck0 + ψ

s
k0,m0
· sk0︸ ︷︷ ︸

9T
k0,m0

+ I ck0,m0
· ck0 + I

s
k0,m0
· sk0︸ ︷︷ ︸

ITk0,m0

+ J ck0,m0
· ck0 + J

s
k0,m0
· sk0 ,︸ ︷︷ ︸

JTk0,m0

(18)

where 9T
k0,m0

, ITk0,m0
and JTk0,m0

are the signal and the total
interference parts at the (k0,m0)th symbol. The signal power
can then be calculated as the second central moment:

P9 (k0) = E
[∣∣∣9T

k0,m0

∣∣∣2]
= σ 2

x

∣∣∣∣Qck0,m0
(k0,m0) · ck0 + Q

s
k0,m0

(k0,m0) · sk0

∣∣∣∣2.
(19)

where E[·] is the expected value. Next, the intersymbol inter-
ference power is obtained as

PISI (k0) = E
[∣∣∣ITk0,m0

∣∣∣2]
1The channel noise in an in-home PLC channel results from the con-

tribution of different noises (impulsive or background) and narrowband
interferences [36], [37].

2Background material on the design of an ASCET for ELT-MCM can be
found in [16].

= σ 2
x

∑
m∈Z
m6=m0

∣∣∣∣Qck0,m0
(k0,m) · ck0

+Qsk0,m0
(k0,m) · sk0

∣∣∣∣2. (20)

On the other hand, the total intercarrier interference power
can be obtained as

PICI (k0) = E
[∣∣∣JTk0,m0

∣∣∣2]
= σ 2

x

∑
Kon
k 6=k0

∑
m∈Z0

∣∣∣∣Qck0,m0
(k,m) · ck0

+Qsk0,m0
(k,m) · sk0

∣∣∣∣2. (21)

The noise at the demodulated (k0,m0)th symbol can be
expressed as

Pr (k0) = E
[∣∣∣rck0,m0

· ck0 + r
s
k0,m0
· sk0

∣∣∣2]
= σ 2

r

N∑
τ=0

∣∣∣ck0 · hk0 [τ ]+ sk0 · hsk0 [τ ]∣∣∣2 . (22)

Considering (19), (20), (21), and (22), the SINR at the k0th
subcarrier is obtained as

SINR (k0) =
P9 (k0)

PISI (k0)+ PICI (k0)+ Pr (k0)
. (23)

The theoretical expressions to obtain the SINR for a higher
order ASCET are derived in Appendix.

IV. THROUGHPUT ANALYSIS
In this section, we obtain the maximal data rate of Wavelet
OFDM. Previously, we show the expressions derived in [26]
for windowed OFDM.

A. WINDOWED OFDM PHY
The theoretical throughput can be calculated by the following
expression:

R = 1f

∑
k∈K′on

M
M + GI

· C(k), (24)

where 1f is the subcarrier spacing, K′on is the set of active
subcarriers, GI is the length of the guard interval in samples,
and C(k) is the maximal data rate for the kth subchannel,
which can be calculated by means of the following expres-
sion:

C(k) = log2

(
1+

SINR(k)
0

)
. (25)

0 is the SINR gap that, when 22K -QAM constellation is used,
is defined by

0 ≈
1
3

[
Q−1

(
SER
4

)2
]
, (26)
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where SER stands for the symbol error rate and Q−1(·) is the
inverse tail probability of the standard normal distribution [1],
[3]. For 0 = 1, C(k) is the capacity of the kth subchannel.

Assuming single tap subcarrier equalization and that both
the noise and the input signals are independent and Gaussian
distributed, the SINR of the windowed OFDM system is [26]:

SINR(k0) =
σ 2
x (k0)|Hk0 |

2

σ 2
n (k0)+ P

Wofdm
ICI+ISI (k0)

, (27)

where σ 2
x (k0) denotes the variance of the transmitted sym-

bols; σ 2
n (k0), Hk0 , and P

Wofdm
ICI+ISI (k0) are the PLC noise level,

the frequency channel coefficient, and the interference power,
respectively, all the above on the kth subcarrier.

B. WAVELET OFDM PHY
As in the previous case, the ELT-MCM throughput can be
obtained using (24). Since this technique does not need a
guard interval, and provided we assume that the interfer-
ence power on a given subcarrier is normally distributed,
the throughput formula yields

R = 1f

∑
k∈Kon

log2

(
1+

SINR(k)
0

)
, (28)

where the SINR is given by (23) or (38), and 0 is also the
SINR gap. Since IEEE 1901 [21] proposes the PAM as the
primary mapping for the ELT-MCM PHY, and assuming that
an M -QAM is like 2 M -PAM independent modulations [1],
[3], we have

0 ≈
1
3

[
Q−1

(
SER
2

)]2
. (29)

V. SIMULATION RESULTS
The theoretical throughput of the ELT-MCM and windowed
OFDM system will be compared in this section consider-
ing an in-home PLC scenario. There are several approaches
for modeling in-home PLC channels [10], [36], [38]–[40].
In this paper, we focus our attention on the model proposed
in [38], which is a statistical approach that synthesizes dif-
ferent classes with a finite number of multi-path compo-
nents. Our simulations consisted in averaging the outcomes
of 100 transmissions through different impulse response
realizations representative of class 1 (strong signal attenua-
tion), class 5 (medium signal attenuation) and class 9 (little
signal attenuation), which have been computed using the
script available on-line in [41]. In addition, we assume that
the channel remains constant during each multicarrier sym-
bol, and perfect channel knowledge is also assumed at the
receiver. Furthermore, there is no kind of error-correcting-
code. In particular, we assume the following conditions for
each multicarrier scheme:
• Wavelet OFDM PHY: Following the specifications
deployed by IEEE 1901, the ELT-MCM system employs
the prototype filter recommended forM = 512 subcarri-
ers and κ = 2. There are 360 active subcarriers (used for

FIGURE 2. Comparison of (a) FFT OFDM PHY (windowed OFDM) with
(b) 0-ASCET, (c) 1-ASCET and (d) 2-ASCET Wavelet OFDM PHY (ELT-MCM)
in the presence of Class 9 channels.

data modulation) in the range from 1.8 MHz to 28 MHz,
and the frequency spacing (1f ) is 61.03515625 kHz.

• FFT OFDM PHY: The specifications of the windowed
OFDM system are also based on [21]. This system uses
4096 subcarriers with up to 1974 usable subcarriers in
the range of [1.8 − 50] MHz, and the subcarrier spac-
ing is approximately 24.414 kHz. Support for carriers
above 30 MHz is optional. Of the subcarriers below
30 MHz, 917 are active. In addition, the standard fixes
a mandatory payload symbol guard interval (GI) equal
to 556, 756 or 4712 samples. In order to ensure a fair
comparison, approximately equal occupied bandwidth
should be considered for both transceivers. For this
reason, we assume in our simulations M = 4096 and
917 active subcarriers for the windowed OFDM. Fur-
thermore, the GI is chosen to be 756 to provide good
system performance and to not penalize this transceiver.

Following the same process as in [25] and [26], ELT-MCM
will be evaluated with 0-ASCET (1-tap), 1-ASCET (3-tap),
and 2-ASCET (5-tap), while a zero-forcing equalizer will be
used in windowed OFDM.

In the first simulation, the windowed OFDM throughput is
compared with that of the wavelet OFDM, over class 9 in-
home PLC channels (little signal attenuation). Fig. 2 depicts
the theoretical throughput obtained under these conditions.
As can be appreciated, a significant difference can be seen:
Windowed OFDM outperforms ELT-MCM, almost tripling
the throughput at high SNR values. Moreover, since the PLC
channel is one of the most hostile channels, the 0-ASCET is
not enough to compensate for the channel distortion.

In the second comparison, we investigate the performance
of both multicarrier schemes under the same conditions as
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FIGURE 3. Comparison of (a) FFT OFDM PHY with (b) 0-ASCET, (c) 1-ASCET
and (d) 2-ASCET Wavelet OFDM PHY in the presence of Class 5 channels.

FIGURE 4. Comparison of (a) FFT OFDM PHY with (b) 0-ASCET, (c) 1-ASCET
and (d) 2-ASCET Wavelet OFDM PHY in the presence of Class 1 channels.

the first experiment, but in the presence of PLC channels
of class 5 (medium signal attenuation). Fig. 3 shows the
resulting throughputs, and as can be seen, the highest val-
ues are achieved by the ELT-MCM system with 2-ASCET.
These results are obtained when 1-ASCET or 2-ASCET are
employed. Actually, the ELT-MCM throughput associated
with 2-ASCET is 179.5% higher for SNR=20 dB.
As third scenario, both multicarrier schemes have been

analyzed in the same conditions than in the first simulations
but with class 1 PLC channels (strong signal attenuation).

FIGURE 5. Mean value of throughput in presence of Class 1 and Class 5
channels, assuming AWGN as channel noise.

FIGURE 6. Background noise PSD related to a heavily disturbed in-home
channel.

As shown in Fig. 4, the throughput of windowed OFDM
system is considerably reduced and it is outperformed by the
ELT-MCM, which shows better results than those shown in
the first simulation. Finally, to easily prove the gain related
to ELT-MCM over windowed OFDM, the mean value of the
data rate related to the second and third simulations is shown
in Fig. 5.

In the following set of experiments, the AWGN has been
replaced by PLC background noise (BGN). BGN is the noise
associated with a heavily disturbed channel, and it has been
modeled as strong BGN following [37]. Its power spectral
density is depicted in Fig. 6.

In this example, the resulting throughput is obtained once
again over class 9 in-home PLC channels for both windowed
OFDMand ELT-MCM. Fig. 7 depicts the theoretical through-
put obtained under these conditions: windowed OFDM out-
performs ELT-MCM in the same way as it did with AWGN,
tripling the throughput.
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FIGURE 7. Comparison of (a) FFT OFDM PHY with (b) 0-ASCET, (c) 1-ASCET
and (d) 2-ASCET Wavelet OFDM PHY in the presence of Class 9 channels
and strong BGN.

FIGURE 8. Comparison of (a) FFT OFDM PHY with (b) 0-ASCET, (c) 1-ASCET
and (d) 2-ASCET Wavelet OFDM PHY in the presence of Class 5 channels
and strong BGN.

We investigate now the performance of both multicarrier
schemes over PLC channels of class 5 under strong BGN.
The resulting throughputs are shown in Fig. 8, and as can
be seen, the highest values are achieved by the ELT-MCM
system with 2-ASCET. Actually, the ELT-MCM throughput
associated with 2-ASCET is 156% higher for SNR=20 dB.

Finally, both multicarrier schemes have been compared
over class 1 PLC channels. As shown in Fig. 9, the throughput
of windowed OFDM system is considerably reduced and

FIGURE 9. Comparison of (a) FFT OFDM PHY with (b) 0-ASCET, (c) 1-ASCET
and (d) 2-ASCET Wavelet OFDM PHY in the presence of Class 1 channels
and strong BGN.

FIGURE 10. Mean value of throughput in presence of Class 1 and Class 5
channels, assuming BGN as channel noise.

it is outperformed by the ELT-MCM. To easily prove the
gain associated to the ELT-MCM system in the above set of
simulations, the mean value of the throughput in the presence
of Class 5 and Class 1 channels is depicted in Fig. 10.

Based on the experiments, it can be appreciated that the
ELT-MCM performs better than windowed OFDM when the
signal attenuation increases (more hostile channels). This
phenomenon can be explained analyzing the interference
power (PISI + PICI ) of both multicarrier schemes. Fig. 11
represents the interference power of windowed OFDM and
ELT-MCM assuming a maximum allowed power spectral
density of −55 dBm/Hz (defined by the standard) and the
first channel realization. It can be seen how the windowed
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FIGURE 11. (a) FFT OFDM PHY and (b) ELT-MCM interference power in
each PLC channel.

OFDM interference power rises when the channel hostility
rises too, reaching an average of −10 dBm/Hz for the PLC
channel class 1 (66 dB higher than the interference power
obtained for the class 9). On the other hand, the ELT-MCM
interference power remains more uniform for little, middle
and strong signal attenuation, proving that wavelet OFDM
is more robust to hostile channel than windowed OFDM.
Furthermore, the throughput of windowed OFDM varies con-
siderably among the channel tested, e.g., from 64 Mbps to
125 Kbps as shown in Fig. 3(a). Meanwhile, the performance
of ELT-MCM is more homogeneous, achieving throughput
between 19 Mbps and 11 Mbps under the same conditions
(see Fig. 3(d)).

VI. CONCLUSION
Wavelet OFDM is one of the multicarrier techniques
deployed by the IEEE P1901 working group for broadband
PLC. This paper has derived theoretical expressions for the
different powers, corresponding to the desired signal, as well
as to the intersymbol and the intercarrier interferences, and

the noise, which are present at the receiver side for this kind
of FBMC. With these expressions, the throughput of wavelet
OFDM for baseband communications has been calculated.
A performance comparison with windowed OFDM has also
been provided, on the basis of simulations. In terms of
throughput, wavelet OFDM is a viable and attractive solution
because it has outperformed the windowed OFDM in hostile
PLC channels, even though using fewer active subcarriers.

APPENDIX
THE SINR OF THE LA-ASCET
The simplest equalizer with only one coefficient per sub-
carrier does not provide good performance in hostile chan-
nels. In order to improve its performance, the multiplications
employed in 0-ASCET must be replaced by FIR filters, i.e.,

ck [n] =
LA∑

µ=−LA

ck,µ · δ [n− µ],

sk [n] =
LA∑

µ=−LA

sk,µ · δ [n− µ],

leading to a new equalizer of higher order, referred to as the
LA-order ASCET, and denoted by LA-ASCET [16], [34], [35].

In this case, the demodulated (k0,m0)th symbol, in the
absence of noise when the system uses a LA-ASCET, is

x̂k0,m0 =

LA∑
µ=−LA

∑
k∈Kon

∑
m∈Z

xk,m ·
(
Qck0,m0−µ

(k,m) · ck0,µ

+Qsk0,m0−µ
(k,m) · sk0,µ

)
. (30)

As in the previous case, the equations can be split into two
groups: the signal (k,m) = (k0,m0) and the interferences
(k,m) 6= (k0,m0). For the first group,

9T
k0,m0

=

LA∑
µ=−LA

xk0,m0 ·

(
Qck0,m0−µ

(k0,m0) · ck0,µ

+Qsk0,m0−µ
(k0,m0) · sk0,µ

)
, (31)

includes the desired symbol. Otherwise, the interference part
can be defined as

ITk0,m0
=

LA∑
µ=−LA

∑
m∈Z
m6=m0

xk0,m ·
(
Qck0,m0−µ

(k0,m) · ck0,µ

+Qsk0,m0−µ
(k0,m) · sk0,µ

)
, (32)

and

Jk0,m0 =

LA∑
µ=−LA

∑
k∈Kon
k 6=k0

∑
m∈Z

xk,m ×
(
Qck0,m0−µ

(k,m) · ck0,µ

+Qsk0,m0−µ
(k,m) · sk0,µ

)
. (33)
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The desired signal power can be expressed as

P9 (k0) = σ 2
x

LA∑
µ=−LA

∣∣∣∣Qck0,m0−µ
(k0,m0) · ck0,µ

+Qsk0,m0−µ
(k0,m0) · sk0,µ

∣∣∣∣2. (34)

On the other hand, the interference power can be obtained as

PISI (k0) = σ 2
x

LA∑
µ=−LA

∑
m∈Z
m 6=m0

∣∣∣∣Qck0,m0−µ
(k0,m) · ck0,µ

+Qsk0,m0−µ
(k0,m) · sk0,µ

∣∣∣∣2, (35)

and

PICI (k0) = σ 2
x

LA∑
µ=−LA

∑
k∈Kon
k 6=k0

∑
m∈Z

∣∣∣∣Qck0,m0−µ
(k,m) · ck0,µ

+Qsk0,m0−µ
(k,m) · sk0,µ

∣∣∣∣2. (36)

The noise power can be calculated as

Pr (k0) = σ 2
r

N+2LA∑
τ=0

∣∣∣hk0,µ[τ ]+ hsk0,µ[τ ]∣∣∣2 , (37)

where

hk0,µ [n] = hk0 [n] ∗ ck [n],

hsk0,µ [n] = hsk0 [n] ∗ sk [n].

As a result, (34), (35), (36) and (37) allow obtaining the SINR
at the k0th subcarrier:

SINR (k0) =
P9 (k0)

PISI (k0)+ PICI (k0)+ Pr (k0)
. (38)
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