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ABSTRACT Spectrum-based fault localization (SFL) is a popular lightweight automatic software fault
localization technique that uses coverage information of program execution to compute the likelihood of
root cause of failure(s) for each program component and ranks them descending by their suspiciousness
scores. However, some recent studies indicate an SFL technique to be useful only if the root cause(s) of
failures is ranked at top k. Due to the nature of the SFL technique, it is impossible that the root fault(s)
is always ranked at top k, which may interfere with the usefulness of SFL in practice. To solve this issue,
an SFL technique via enlarging the non-fault region to further improve fault absolute ranking was proposed.
The idea behind this is that we can intuitively improve fault absolute ranking for an SFL technique if some
non-fault components ranked higher were excluded from the fault ranking list. In the approach, we enlarge
the non-fault region iteratively to narrow down the suspicious region based on two scenarios, and then rank
those components in the suspicious region using existing SFL techniques. The empirical results indicate that
our approach significantly helps existing SFL techniques to further improve their usefulness.

INDEX TERMS Fault localization, absolute ranking, testing, debugging.

I. INTRODUCTION
Program debugging is time consuming, tedious and expen-
sive. The effort for the detection (testing), locating and cor-
rection (fixing) of faults consumes between 30% and 90%
of the development and maintenance budget of a project [1].
The use of dynamic coverage information collected during
program testing, which contains useful information about
fault localization, has been advocated to reduce debugging
costs. Spectrum-based fault localization (SFL) is a such
popular technique that uses the dynamic coverage infor-
mation and testing results, measures the likelihood of a
program component being a fault and ranks the compo-
nents in descending order to help programmers identify root
fault(s) [2]. Empirical studies show that SFL techniques
can effectively guide programmers to examine suspicious
codes and localize fault(s) [3]–[5]. However, the useful-
ness of these SFL techniques have not been thoroughly
investigated [6].

Parnin and Orso [7] perform an empirical research on the
usefulness of SFL. They find that several assumptions made
by existing SFL works do not hold in practice. Recently,
Xie et al. [8] revisit the usefulness of SFL via human
focus-tracking analysis. They highlight that an inaccurate
SFL result may lead to an even longer debugging process.
Kochhar et al. [9] show that 98% of practitioners consider a
fault localization technique to be useful only if it reports the
root fault(s) within the top 10 of the suspiciousness ranking.
However, due to the nature of SFL, it does not always rank
the root causes at top. Therefore, enhancement of absolute
fault ranking for a SFL technique is of great significance to
improve its usefulness in practice.

In a general fault localization process, programmers
begin with a set of hypotheses, modify the hypotheses,
select hypotheses for verification, and verify or refute the
selected hypotheses until the fault is localized [10]. From a
programmer’s decision view point, all components can be
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divided into three regions: suspicious region, neutral region
and non-fault region [11]. Hence, a process of fault localiza-
tion is essentially expressed as a series of two types of actions:
enlarging the non-fault region and reducing the suspicious
region via switching among the three regions.

However, in a SFL framework, all program components are
assumed as hypothesis faults and are ranked based on their
suspiciousness scores. Intuitively, some components ranked
higher can be identified as non-fault components, and those
components should be excluded from the suspicious region.
For example, a non-fault component ci in a buggy program
is ranked higher in a fault ranking list outputted by a SFL
tool. In the case, it is difficult to lower down the component’s
ranking based on general SFL techniques. Let us suppose
the buggy program contained a single fault, and the failed
testings satisfied with Fault&Failure Model(RIP) [12], which
means the root fault must be reached in all failed runs, and
cause software failures. Therefore, it is easily to see that ci
can be viewed as a non-fault if ci is not reached in a failed
execution. Therefore, we can use this information to exclude
the component ci from the suspicious region.
In this paper, we propose two novel SFL strategies to

further improve the fault absolute ranking. The idea behind
this is that we can intuitively improve fault absolute ranking
for existing SFLs if some non-fault components ranked higher
were excluded from the fault ranking list. In general, we first
identify non-fault components based on different fault local-
ization strategies iteratively, and then apply existing SFL
techniques to generate a fault ranking list for all components
in the suspicious region.

The remainder of this paper is organized as follows:
Section II describes the background. Section III describes
a motivation example. Section IV presents our technique.
Section V presents our empirical research. Section VI
presents a discussion. Section VII describes related works.
Finally, Section VIII concludes with proposals for future
work.

II. BACKGROUND
A. PRELIMINARY
1) BASIC CONCEPTS
Let P = {c1, c2, . . . , cm} be a buggy program contained m
components and 0 = {t1, t2, . . . , tn} be a set of test cases
for program P. Given an input di and expected output oi
for program P, a test case ti is considered as a two-tuple
(di, oi)(1 ≤ i ≤ n). The execution of P occurs upon inputting
di outputs o

′

i. We say P passes the test case ti if and only
if oi == o

′

i. Conversely, P fails on ti. Therefore, 0 can
be divided into two disjoint parts 0p and 0f . 0f and 0p be
defined as follows:

0p = {ti|o
′

i = P(di) and o
′

i = oi} (1)

0f = {ti|o
′

i = P(di) and o
′

i 6= oi} (2)

During the process of software creation, a large amount of
types of mistakes occur. To distinguish notations related with

software faults, the IEEE conventions [13] are adopted here.
• Fault (bug): A static defect in a software.
• Failure: An external, incorrect behavior,which can be
observed, with respect to the requirements or other
description of the expected behavior.

• Error: An incorrect internal state, which cannot
be observed directly, that is the manifestation of
faults/bugs.

There are three necessary conditions for a failure to
be observed, which are called the Fault&Failure Model.
The model was proposed independently by DeMilli and
Offutt [14] and Morell [15], and published as different nota-
tions. Current literature combines those notations as Reach-
ability, Infection, and Propagation(RIP model) [12]. The
means of three conditions are defined as follows:
• Reachability: The location(s) in the program that contain
the fault must be reached.

• Infection: The state of the program must be incorrect.
• Propagation: The infected state must propagate to cause
some output of the program to be incorrect.

FIGURE 1. RIP model.

Fig. 1 illustrates the RIP model. To detect a fault, a test
has to reach the location of the fault. This is illustrated
in Fig. 1 where the test reaches the fault. The execution of the
component in the faulty locationmust cause incorrect internal
states, that is, the states must be infected, as illustrated by the
narrow from fault to incorrect program states. For instance,
a statement result = a + b is calculate the sum of variable
a and b to assign the variable result. However, a programmer
makes a mistake and accidentally writes as result = a − b.
Thus, during the buggy program running, the program state is
different from the correct version after the program reaches
at the buggy location. The incorrect internal program states
then must propagate to an incorrect final sate possibly, which
was observed by programmers.

Therefore, in a failed program spectrum, one of root
fault(s) must be covered because a failure has been observed.
We apply this simple information to design two different
fault localization strategies: Scenario 1 and Scenario 2 in
the section IV.

2) ASSUMPTIONS
Assumption 1: The output of a program P is deterministic.

Namely, a program P always produces the same result in
different executions given a same input values.
Assumption 2:A failure occurred always satisfied withRIP

model.
SFL techniques are characterised bymeasuring suspicious-

ness scores based on coverage vector of components and
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their Result vector. Therefore, a SFL does not typically find
a fault if the fault can not be reached in program executions,
such as Missing code faults, variable declaration faults and
et al., which have no faults be covered in program executions,
although those cases can still be interpreted by RIP model.
Assumption 3: There exists a test oracle that determines

the status of a test execution for program P, i.e., ‘‘success-
ful’’ or ‘‘failed’’.

Constructing the test oracle is a difficult, independent
research problem. Assumption 3 is made to simplify the
approach. Given a test oracle, our approach may be fully
automated to collect Coverage Matrix and Result Vector.
Assumption 4: There exist many failed test cases, and we

can collectmany different program spectra by executing those
test cases.

Our approach requires many failed program spectra to rule
out non-fault components iteratively. Our approach cannot
improve a SFL technique if there is only one failed program
spectrum.

B. SPECTRUM-BASED FAULT LOCALIZATION
SFL techniques calculate the likelihood of a program com-
ponent being a fault for each component in the program [3].
They exploit the program spectrum, which includes informa-
tion about which component was covered in each execution,
from failed and successful program executions. Collecting
program spectra using an instrumented program version is
an lightweight analysis method, and a program spectrum
provides a dynamic view of the behavior of the system
under test [16]. As a SFL technique only registers whether
a component is covered during a certain execution, binary
flags(‘0’/‘1’) can be used for each component, and the pro-
gram spectra is also called a hit spectra [16].

The hit spectra is mapped as Coverage Matrix A, which is
a binary N ×M binary matrix, where N indicates the number
of executions, and M indicates the number of instrumented
program components of the buggy program. The result of
each execution can be viewed as a N -length error detection
vector, also calledResult Vector e, where ‘0’ indicates success
and ‘1’ indicates failure. The (A, e) works as an input for a
SFL approach. The Coverage Matrix and Result vector are
shown in Fig. 2 and are used to compute the suspiciousness
score for each component based on a certain suspiciousness
metric. All program components are then ranked in descend-
ing order based on their suspiciousness scores for program-
mers to manually check.

FIGURE 2. Program Spectrum and Error Detection Vector.

The key for a SFL is the similarity metric used to com-
pute the suspiciousness scores. There exist several similarity

TABLE 1. Four well-known suspiciousness metrics for SFL.

metrics that can be used to compute suspiciousness
scores [17]. Table 1 shows four suspiciousness metrics of
well-known fault localization techniques: Jaccard [4], Taran-
tula [2], Ochiai [4], and Dstar [29]. Given a program spec-
trum and Result Vector, we calculate n00, n01, n10, and n11.
For each program component j, n00(j) is the number of suc-
cessful executions in which component j is not covered, n01(j)
is the number of failed executions in which component j is
not covered, n10(j) is the number of successful execution in
which component j is covered, and n11(j) is the number of
failed executions in which component j is covered. Four well-
known suspiciousness metrics for SFL are defined in Table 1.

C. FAULT LOCALIZATION DECISION VIEW
Fig. 3 depicts a general fault localization decision view for
programmers [11]. All program components CSet were clas-
sified into three subsets.

FIGURE 3. Fault localization decision model.

Definition 1: CSetsuspicious is the suspicious set, which
describes a suspicious region that might contain root fault(s).
Definition 2: CSetnon−fault is the non-fault set.CSetnon−fault

describes a trusted region in which the components appear to
have no-faults.
Definition 3: CSetneutral is the neutral set. CSetneutral

describes a neutral region in which it is uncertain whether
the components contain faults.

At the beginning of fault localization, the programmer does
not know any of the components, and the initial state of each
subset is as follows:
• CSetsuspicious = ∅
• CSetneutral = {c1, c2, . . . , cm}
• CSetnon−fault = ∅
The process of fault localization can be viewed as a series

of movement actions among the three regions. At the final
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stage of the fault localization process, the fault component ci
has been located for a buggy program contained a single fault,
and the contents of the three subsets are as follows:
• CSetsuspicious = {ci}
• CSetneutral = ∅
• CSetnon−fault = {c1, c2, . . . , cm}/{ci}
In general, these movement actions are performed in the

programmer’s mind, and the actual process behavior cannot
be observed externally. To simplify the decision model, our
approach expresses the movement actions as a sequence of
two types of action: enlarging the non-fault region and nar-
rowing the suspicious region.

III. MOTIVATION EXAMPLE
We begin with an example shown in Fig. 4 to illustrate our
motivation. Considering program Example in Fig. 4, which
has a bug at block 2. The Example should calculate the sum
of variables a and b but instead is accidentally written as
result = a − b. Columns 1 to 2 show the block numbers
associated with the Example statements. Column 3 through
14 represent t1 − t12, respectively. The program spectrum
of component c are represented in the columns and indicate
whether the corresponding block is involved in the testing
(‘0’ for involved, ‘1’ for not involved). The successful/failed
status of the tests are given in the bottom row, where ‘1’
indicates a failure and ‘0’ indicates a success. The columns
representing failed test cases are highlighted. The Dstar tool
is used to measure the suspiciousness of a component c
being a fault. Each component c is assigned a normalized
suspiciousness score between 0 and 1.

FIGURE 4. An example contained single fault.

As mentioned in the above section, SFL techniques, such
as Dstar, focus on computing independently suspiciousness
scores for each component according to the selected suspi-
ciousness metric, which measures the correlation between
a component and failures, and ranks them. In our example,
c4 has the highest score of 0.33 among the seven components,
which is higher than root fault c2. In this case, it is difficult
to lower ranking for c4 or improve ranking for c2 based on
suspiciousness metric of general SFL. Based on program-
mers decision model, the three subsets were generated as
CSetsuspicious = {c1, c2, c3, c4, c5, c6}, CSetnon−fault = {c7},
CSetneutral = ∅ based on the Dstar tool.
Due to the example contained single-fault, the root fault

must be reached in all failed program spectra based on

RIP model. In other words, if a component is not covered by
a failed program spectrum, then the component is non-fault.

For a failed program spectrum collected by running t1,
we can infer c4, c5, c6, and c7 belong to the non-fault region.
Hence, for each failed program spectrum, we can infer which
components are non-fault components. Finally, we obtain
CSetsuspicous = {c1, c2}, CSetnon−fault = {c3, c4, c5, c6, c7}.
For the subset CSetsuspicious, we use a SFL technique, such as
Dstar, to compute suspiciousness scores and rank them. The
result is that the root fault c2 is ranked at top.

FIGURE 5. Four cases of fault triggering based on RIP model.

IV. OUR APPROACH
A. THE MAIN IDEA
The goal of our approach is to further improve fault absolute
ranking via enlarging non-fault region. Therefore, it is crucial
that how to identify which component is non-fault. According
RIP model, there exist four fault triggering schemas, which as
shown Fig. 5:
• CASE 1: The single root fault must be contained in all
failed spectra for single-fault programs;

• CASE 2: All root faults be contained in all failed spectra
due to the dynamic control flows during executing failed
test cases;

• CASE 3: Some root faults be contained in all failed
spectra, and others not;

• CASE 4: All root faults are not contained in all failed
spectra, but contained in some failed spectra.

Let us closely look the four cases, we can combined the
four cases into two scenarios. The CASE 1 and CASE 2 can
all be viewed as scenario 1, and the CASE 4 can be viewed
as scenario 2. For CASE 3, we divide two groups: one belong
to scenario 1 and others belong to scenario 2. The scenario 1
can be defined as all root fault(s) be contained in all failed
spectra; The scenario 2 can be defined as all root faults are
not contained in all failed spectra,but contained in some failed
spectra. Therefore, we can narrow down CSetsuspicious for a
buggy program if we know which scenario is belonged to.

After CSetsuspicious is obtained, the suspiciousness metric
ρb is defined such that the higher the suspiciousness score of
program component c is, the more likely c being a fault. In the
field of fault localization, several suspiciousness metrics ρb
exist. We select Dstar as our benchmark metric to compute
the suspiciousness for each component. Dstar was proposed
by Wong et al. in 2014, and it is more effective than others
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SFL techniques based on their experiments [29]. The formula
of Dstar is as follows:

ρDstarb (e) =
(n11(e))∗

n01(e)+ n10(e)
(3)

In formula 3, ∗ is a power of n11 whose value is greater
than or equal to 1. The relationship between the effectiveness
of Dstar and the value of ∗ is examined empirically, and it
is discovered that the effectiveness increases alone with ∗
before it reaches a critical value [29]. In our experimental
study, we set ∗ equal to 2.

B. STRATEGY FOR SCENARIO 1
In scenario 1, we easily know that those components that
do not involve once a failed program spectrum are non-fault
components. Let program P be {c1, c2, . . . , cm}, and its test
cases 0 = {t1, .., tn}. A Coverage Matrix A is collected by
executing 0. For a failed ti, the set of non-fault components
can be defined as Formula 4.

csetnon−fault (A, ti) = {cj|0 ≤ j ≤ m,Aij = 0} (4)

Taking the motivation example as an illustration, t3 is a
failed test case, and it is easy to infer that c3, c5, and c7 are
non-fault components; that is to say, csetnon−fault (A, t3) =
{c3, c5, c7}. According to Assumption 4, we have many failed
test cases that produce different program spectra for pro-
gram P. Therefore, we can enlarge the range of non-fault
components iteratively. The set of non-fault components can
be defined as Formula 5.

CSetnon−fault (A, 0f ) =
⋃
ti∈0f

csetnon−fault (A, ti) (5)

In the initial phase, CSet = {c1, c2, . . . , cn},
CSetsuspicious= ∅, and CSetnon−fault = ∅. For each failed
spectrum i, we enlarge the region of non-fault compo-
nents iteratively. Finally, CSetsuspicious can be computed as
Formula 6.

CSetsuspicious(A, 0f ) = CSet \ CSetnon−fault (A, 0f ) (6)

C. STRATEGY FOR SCENARIO 2
In scenario 2, all faulty components are covered in some
failed spectra, and not covered in all failed spectrum. There-
fore, there exist two types of components can be identified as
non-fault components:
• (1) Components are contained in all failed executions.
• (2) Components are never contained in all failed
executions.

For a failed ti, all covered components can be viewed
provisionally as suspicious components, and the set of sus-
picious components can be defined as Formula 7. Similarly,
components that are not executed can be viewed provisionally
as neutral components, and the set of neutral components be
defined as Formula 8.

csetsuspicious(A, ti) = {cj|0 ≤ j ≤ m,Aij = 1} (7)

csetneural(A, ti) = {cj|0 ≤ j ≤ m,Aij = 0} (8)

For each failed test case ti, we compute csetsuspicious (A, ti)
and csetneural(A, ti). For all failed test cases 0f , we identify
the two types of non-fault components as mentioned above.
For type (1), the set of non-fault components can be defined
as Formula 9. For type (2), the set of non-fault components
can be defined as Formula 10.

CSet1non−fault (A, 0f ) =
⋂
ti∈0f

csetsuspicious(A, ti) (9)

CSet2non−fault (A, 0f ) =
⋂
ti∈0f

csetneural(A, ti) (10)

In the initial phase, CSet = {c1, c2, . . . , cn},
CSetsuspicious = ∅, and CSetnon−fault = ∅. For each failed
program spectrum i, we can compute csetsuspicious (A, ti) and
csetneural (A, ti). Then, we compute CSet1non−fault (A, 0f )
and CSet2non−fault (A, 0f ). Finally, CSetnon−fault is computed
as Formula 11, and CSetsuspicious is computed as Formula 12.

CSetnon−fault = CSet1non−fault ∪ CSet2non−fault (11)

CSetsuspicious = CSet \ CSnon−fault (12)

V. EXPERIMENT
We built a fault localization prototype tool called SFLernc,
which represents SFL via Enlarging the Region of Non-fault
Components, to implement our approach, and we present an
empirical evaluation of SFLernc. To evaluate the effectiveness
of our approach, we run the SFL technique Dstar as a bench-
mark. In particular, we search for answers to the following
three research questions:
• RQ1Howprevalent the four fault triggering schemas are
in buggy programs?

• RQ2 What is the effectiveness of SFLernc on
Scenario 1?

• RQ3 What is the effectiveness of SFLernc on
Scenario 2?

TABLE 2. Subjects used for empirical studies.

A. EXPERIMENTAL DESIGN
1) SUBJECT PROGRAMS
For our studies, we used 7 C programs from SIR [18], which
contain tcas, tokens, tokens2, replace, tot_inf, schedule, and
schedule2, as experiment objects. Table 2 shows the detailed
characteristics of these programs. To meet Assumption 3,
we created a fault-free version of each program and con-
structed a test oracle to determine the status of a test execu-
tion for each program version. Columns 2 to 3 describe the
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number of uncommented code lines and basic blocks in these
programs, the 4th column shows the number of buggy pro-
gram versions, the 5th column shows the number of test cases
for each program version, and the last column gives a detailed
description for each program. These programs have been used
in many fault localization studies. We check those program
versions, and there does not exist Missing code faults in the
program versions. Each subject program version contains a
single fault or multi-faults. There are a total of 132 versions in
the subject programs. We exclude 20 versions that are seeded
by bugs residing in variable declarations or that have no failed
tests. In total, our experiments include 112 faulty versions of
the Siemens test suite from SIR [18].

2) IMPROVEMENT METRIC
Effectiveness metrics are an important way to perform accu-
rate and objective comparisons. There are two main met-
rics: PDG-based metric,Renieres2003, and Ranking-based
metric,Wong2014, which used to measure quality of fault
localization in the field.

The two metrics for SFLs normalize the fault ranking with
respect to the size of the program. For instance, the root
cause of program P with 1200 components at ranking 52,
when expressed as a percentage, suggests that only 4.33%
of the components should be checked. This result, at first
sight, may be fairly positive. However, in practice, this result
would not help programmers in the debugging process [7],
[8], [19]. Our goal is to further improve the absolute rank-
ing. Therefore, these two metrics cannot be used directly to
evaluate our approach. To measure the effectiveness of our
approach, we focus on improving the absolute ranking for
suspicious program components in the top k. Wang et al. [27]
propose a improvement metric to measure the absolute rank-
ing improvement. Let B be the absolute ranking of a root
cause generated by an SFL tool for a buggy version and A
be the absolute ranking of the root cause generated by our
approach for the same version. The improvement metric com-
paring the SFL technique with our approach can be defined
as Formula 13:

ImprovementSFLSFLernc (A,B) =
B− A
B
× 100% (13)

In this metric, we assume that a absolute ranking is improved
100% by our approach if the root fault was ranked at top
improved from top k. For the purpose, we assign the absolute
ranking’s index starting from 0( k−0k ×100% = 100%). Based
on the improvement metric, if a SFL ranked a root fault at
20 for a buggy program and our approach ranked it at 17,
we can say our improvement is 19−16

19 × 100% = 15.8%.

B. RESULTS
1) RQ1:HOW PREVALENT THE FAULT TRIGGERING
SCHEMAS IN PROGRAMS?
We are interested that how prevalent the four fault trigger-
ing schemas in our experiment subjects, which are widely
used in fault localization community. We firstly divide the

Siemens programs into two groups: single-fault programs and
multi-fault programs. The fault triggering schema of single-
fault programs is obviously CASE 1. There exist 100 single-
fault program versions and 12 multi-fault program versions.
Due to most of Siemens programs are single-fault programs,
therefore, the distribution does not answer this question.
Recently, Perez et al. conducted an experiment to study preva-
lence of single-fault fixes in real programs. They have found
1375 fixes on over 70 projects, and out of all fixes,82.5%were
single-faulted [24]. Therefore,CASE 1 should be dominant in
practice.

Yet, we are still interested that how prevalent the other
three fault triggering schemas in multi-fault programs. Due
to there exist fewer multi-fault programs in our experiment
subjects, we have extended the subject programs with pro-
gram versions where we can activate arbitrary combinations
of multiple faults in Siemens programs. For this purpose,
we limit ourselves to a selection of 83 out of the 105 faults,
based on a criteria such as faults being attributable to a single
line of code, to enable unambiguous evaluation.

TABLE 3. Additional program versions for Scenario 2.

We randomly select some combinations of the faults
for each program, and the detailed information is shown
in Table 3. In Table 3, C represents the number of injected
faults (cardinality). Columns 2 to 4 describe the number of
program versions which are randomly injected with C faults.
Fig. 6, 7, 8 depicts the three fault triggering schema dis-

tributions in those programs. The results show that the CASE
3 is dominate among the three CASEs, and the proportion of
CASE 2 and CASE 4 increase gradually with the number of
faults increasing.

FIGURE 6. Three CASEs distributions for 2 fault programs.

2) RQ2: SCENARIO 1
In this section, we compare our approach with Dstar in
Scenario 1. We first investigate 112 Siemens programs,
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FIGURE 7. Three CASEs distributions for 3 fault programs.

FIGURE 8. Three CASEs distributions for 4 fault programs.

then select 105 programs belong to Scenario 1 which con-
tain 100 single-fault programs and 5 multi-faults programs.
We run Dstar and our approach independently and collect
the two fault ranking lists.

FIGURE 9. Comparing Effectiveness for Scenario 1.

We use the improvement metric mentioned above to esti-
mate the improvement by our approach. We calculate the
improvement based on the two fault rank lists generated by
our approach and Dstar. Fig. 9 shows the results of the study.
In the 105 fault versions, our approach performs better than
Dstar tool on 63 versions, and 42 program versions have
no improvement that includes 14 program versions ranked at
top based on Dstar tool, which have no room to improve.
The results show that no program versions perform worse
than Dstar. In those 63 versions, the average improvement
is 52.1%, and it is worth mentioning that the root fault of 9
buggy programs are ranked at top in the fault ranking list.

3) RQ3: SCENARIO 2
To answer this question, we firstly use 7 multi-fault programs
belonged to Scenario 2 in the 112 Siemens programs to evalu-
ate the effectiveness of our approach SFLernc. Table 4 presents
the improvement in absolute ranking for the 7 programs.

For example, for replacev21 that contained 3 faults, our
approach ranks the root cause of failures at top 8, whileDstar
ranks the root cause of failures at top 37. Therefore, based on
the improvement metric, the improvement is 78.3%.

TABLE 4. Comparing Effectiveness of SFLernc with Dstar for Scenario2.

From Table 4, we observe that our approach effec-
tively improves the absolute ranking compared with Dstar,
except for program schedule2v7. One of the root faults for
schedule2v7 have already ranked at top based on Dstar,
hence, there was no room to improve. It is worth mentioning
that 3 program root faults were ranked at top.

Due to there exist few of multi-fault programs in Siemens
programs, we use the extend program versions mentioned
above section. There exist total 505 multi-fault program ver-
sions, we select 89 programs belong entirely to Scenario 2.
We use the improvement metric mentioned above to estimate
the improvement by our approach. We calculate the improve-
ment based on the two fault ranking lists generated by our
approach and Dstar.

FIGURE 10. Comparing Effectiveness for Scenario 2.

Fig. 10 shows the result of the study. The result shows that
there exist 59 versions perform better than Dstar (66.3%),
and 30 versions have no improvement (33.7%). There exist
13 program versions whose root faults are ranked at top based
on Dstar in the 30 program versions, which have no room to
improve. In the 59 improved program versions, the average
improvement is 67.7%. Therefore, the result reconfirm our
approach for Scenario 2 can further improve improve abso-
lute ranking for existing SFL techniques.

VI. DISCUSSION
Based on our approach, we combined with a SFL would lead
to the best performance for single-fault programs. The reason
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for our scenario 1 strategy is superiority for single-fault
programs is established in terms of the following theorem.
Theorem 1: For single-fault programs, given the available

set of observation (A, e), the fault ranking generated by sce-
nario 1 strategy is theoretically optimal.
Proof 1: For single-fault programs, the root fault has to

be covered in all failed runs. If a component which did
not involved in all failed runs can not explain all failed
runs, the component is viewed as non-fault component. This
implies that for the remaining components n11(e) is equal to
the number of failed runs, and n01(e) is equal to 0. Therefore,
the constant n11(e) can be ignored concerning the ranking.
The suspiciousness metric of Dstar can be written as:

ρDstarb (e) =
1

n10(e)
(14)

Aswe have already ruled out all components whose n11 < nf ,
the rank list outputted by SFLernc is optimal.
Although single-fault programs are dominate in prac-

tice [24], there still exist some multi-fault programs. More
importantly, we don’t know whether a program is a single
fault program or a multi-fault program, much less one of
which is fault triggering schema belonged to. Therefore,
we can not apply the two scenario fault localization strategies
directly. Let us look closer at the two strategies, the two sus-
picious component sets outputted by SFLernc are disjoined.
We could combine the two fault localization strategies to
locate fault(s).

However, how to combine the two strategies to perform
fault localization? Recently, Kochhar et al. show that 98%
of practitioners consider a fault localization technique to be
useful only if it reports the root fault(s) within the top 10 of
the suspiciousness ranking [9]. We agree with their opinions.
Therefore, there exist many heuristic methods to combine the
two strategies, such as we could first check top 5 outputted by
scenario 1, if we can not find the root fault, then we find next
top 5 outputted by scenario 2.

Considering single-fault programs are dominate in practice
and our experiment results, scenario 1 is prevalent. Therefore,
we recommend that programmers can check top 10 outputted
by scenario 1firstly. If they can not find root cause of failures,
then they try to check the top 5 outputted by scenario 2.
If they cannot find the root cause of failures in the two fault
ranking list, we suggest programmers switch to other fault
localization techniques to perform debugging.

In a word, it is very meaningful to perform debugging if
the root cause of failures is ranked at top in any the two
rankings. Additionally, if we find a root cause of failures in
the ranking generated by scenario 2, we can know there exist
multi-faults in the buggy program, and it is very important to
guide programmers to perform next task.

VII. RELATED WORKS
Over the past decade, many studies have been performed
on SFL. Various methods have been used to measure
the likelihood of faults for program components, such as
Tarantula,Jones2005, Ochiai,Abreu2009, Dstar,Wong2014,

SOBER,Liu2005 and many others (e,g, [20], [28]). Their
experimental results show that SFL can help programmers to
localize faults [5].

However, some recent studies indicate a SFL to be
useful only if the root cause(s) of failures is ranked at
(top k) [6], [9], [19], [23]. Particularly, Pearson et al. highlight
that fault localization techniques performance on artificial
faults is not predictive for real faults, and all SFL techniques
are equally good [23]. To improve the usefulness of SFL,
several SFL techniques have been combined with program
analysis, which could also be used to further improve the
absolute ranking. Zhang et al. [31] used edge profiles to
represent successful executions and failed executions and
contrasted them to model how each basic block contributes to
failures by abstractly propagating the infected program states
to their adjacent basic blocks through control flow edges.
Wang et al. [27] propose an lightweight fault localization
combined with fault-context to improve fault absolute rank-
ing. Naish et al. [22] highlighted that failed test cases that
cover fewer statements should be given more weight and
have more influence on the fault rank and associated vary-
ing weights with the failed test cases. Santelices et al. [26]
proposed an SFL using multiple coverage types. Different
thoseworks, our approach rule out the interfere with non-fault
components, and those SFL approaches can be combined
with our approach to further improve the absolute ranking.

There also exist some works are similar as our
approach. Xie et al. proposed a refinement method to improve
the accuracy of SFL [30]. In their approach, all the compo-
nents are divided into an unsuspicious group and a suspicious
group. They believe that suspicious group contains statements
which have shown up at least once in a failed spectrum,
while in the unsuspicious group, no statement has shown up
in any failed test run. In our approach, the non-fault region
is defined based on two fault triggering schemas. Although
they categorized all components into two groups which is
similar to our approach, their approach is different from
ours. Our approach is also different from Set-union and Set-
intersection, which are two heuristic models proposed by
Renieres and Reiss [25]. They both use a single failed spec-
trum and all successful program spectra. Set-union focuses
on the program component that is executed by the failed test
but not by any of the successful tests, and Set-intersection
excludes the component that is executed by all successful
tests but not by the failed test.

VIII. CONCLUSION
In this paper, we propose a fault localization technique named
SFLernc to automatically enlarge non-fault region to perform
fault localization. According to four fault triggering schemas,
we divide them into two fault localization strategies. By eval-
uating 112 programs and extended subjects, SFLern was
shown to effectively improve the absolute ranking compared
with SFL techniques in certain scenario.

In our future work, we plan to perform more empir-
ical studies to further evaluate the effectiveness of
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our approach. Moreover, this work is part of a large effort
to develop automatic debugging approaches. The next step
in our project is to build the relationship for suspicious com-
ponents and non-fault components to assist the programmer
to perform fault localization and to apply our technique
to program slice spectra to expand the range of non-fault
components.
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