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ABSTRACT Network densification with small cell deployment is being considered as one of the dominant
themes in the fifth generation (5G) cellular system. Despite the capacity gains, such deployment scenarios
raise several challenges from mobility management perspective. The small cell size, which implies a small
cell residence time, will increase the handover (HO) rate dramatically. Consequently, the HO latency will
become a critical consideration in the 5G era. The latter requires an intelligent, fast, and light-weight HO
procedure with minimal signaling overhead. In this direction, we propose a memory-full context-aware HO
scheme with mobility prediction to achieve the aforementioned objectives. We consider a dual connectivity
radio access network architecture with logical separation between control and data planes because it offers
relaxed constraints in implementing the predictive approaches. The proposed scheme predicts future HO
events along with the expected HO time by combining radio frequency performance to physical proximity
along with the user context in terms of speed, direction, and HO history. To minimize the processing and
the storage requirements whilst improving the prediction performance, a user-specific prediction triggering
threshold is proposed. The prediction outcome is utilized to perform advance HO signaling whilst suspending
the periodic transmission of measurement reports. Analytical and simulation results show that the proposed
scheme provides promising gains over the conventional approach.

INDEX TERMS Context awareness, control/data separation architecture, memory-full networking, mobility
management.

I. INTRODUCTION
The ambitious capacity and performance targets of the
fifth generation (5G) cellular system motivated academic,
industrial and standardisation bodies to identify three main
themes for the 2020 era. These include network densi-
fication with massive deployment of small cells, spec-
trum aggregation with wider allocations at high frequency
bands, and multiple-input multiple-output (MIMO) antenna
systems with improved spectral efficiency [1], [2]. Since
the propagation path loss increases dramatically at high
frequency bands, the latter can only be used in local
area and small cell deployment scenarios. In other
words, network densification and spectrum extension are
highly correlated and they share the same deployment
theme: small cells. Despite the potential gains, mobil-
ity management becomes complex in such scenarios, and
the conventional approaches may not be suitable from

signalling load, monitoring overhead and handover (HO)
latency perspectives.

Typically, any cellular system includes a network and
mobile devices, where the former consists of a core-network
and a radio access network (RAN). In cellular terminol-
ogy, the RAN consists of several base stations (BSs) that
transmit/receive data and control signals to/from the mobile
devices over the air interface. The users camp on the network
by selecting the BS that offers the highest signal strength (SS)
and/or signal quality (SQ). When the users move, the SS/SQ
of the serving BS degrades while the SS/SQ of a neighbouring
BS(s) increases. This results in a cell reselection operation (if
the user is in the idle mode) or a HO operation (if the user is
in the active mode).

Such an operation requires the user equipment (UE),
i.e., the mobile device, to continuously monitor SS/SQ of
the serving and the neighbouring BSs. The monitoring is
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performed at measurement gaps during which the UE cannot
transmit/receive data. For instance, with a measurement gap
periodicity of 200 ms the UE suspends the data transmis-
sion/reception every 200 ms. In dense deployment scenarios,
the rate of change in SS/SQ measurements will be higher
than in current systems due to the smaller cell size and
the large number of available candidates. A fast tracking
of this behaviour requires increasing the measurement gap
periodicity. In addition, a longer measurement gap may be
required when there are several candidate BSs to be mon-
itored (i.e., in dense deployment scenarios) or when the
neighbouring BSs are operating in several portions of the
spectrum. These enhancements for SS/SQ monitoring could
come at the expense of reducing the achievable data rate
and degrading the quality-of-service (QoS) because more
time domain resources are being reserved for the monitoring
process without being used for data transmission.

At the signalling dimension, the cell reselection process is
mobility-friendly, since cell reselection is performed by the
UE without (or with a minimal) signalling exchange. The
rationale to maintain the reselection decision at the UE side
can be justified since the reselection process does not require
resource release at the source BS or resource assignment at
the target BS. On the other hand, the HO process requires
signalling exchange in a fast, reliable and accurate manner to
avoid service disruption. Each HO includes a decision phase
where the target BS is determined, a preparation phase where
the source and the target BSs exchange the UE parameters
and allocate the radio resources, an execution phase where
theUE disconnects from the source BS and accesses the target
BS, and a completion phase where the data plane path at the
core-network is switched towards the target BS. These phases
require multiple signalling exchange as follows.
• Signalling exchange between theUE and the serving BS.
• Signalling exchange between the UE and the target BS.
• Signalling exchange between the serving BS and the
target BS.

• Signalling exchange between the serving/target BS and
the core-network.

This procedure is triggered for each HO, thus the signalling
load increases linearly with the number of HOs. Since the HO
rates are expected to increase significantly in dense deploy-
ment scenarios, the associated signalling load may increase
dramatically. In this regard, the overhead could degrade the
performance in both the RAN side and the core-network side.

From the latency perspective, the small cell size requires
fast HO procedures to ensure a successful HO. The latter
can be achieved only when the SS/SQ stays above a certain
threshold during the HO process, see [3] for the HO suc-
cess/failure conditions. Based on current standards such as
the long term evolution (LTE), the overall HO latency is in
the range of 100−200 ms which is sufficient for the current
density levels. Due to the high SS/SQ rate of change in dense
deployment scenarios, a faster and light-weight procedure is
required to ensure that the HO process is completed before
the success/failure threshold is reached.

In this paper, we tackle these challenges by proposing a
predictive mobility management scheme that predicts future
HO events along with the expected HO time to enable fast
and advance signalling exchange with minimal overhead and
latency in dense deployments scenarios. A futuristic dual con-
nectivity RAN architecture with logical separation between
control and data planes is considered due to its unique fea-
tures and intrinsic signalling-efficient design. The proposed
scheme includes short-term and long-term memories, and
it combines radio frequency (RF) performance to physical
proximity along with the UE contextual information in terms
of speed, direction and HO history. To minimise the pro-
cessing and the storage requirements whilst improving the
prediction and HO performance, a user-specific prediction
triggering threshold is proposed. A switching criteria between
advance and conventional HO signalling is defined, resulting
in a predictive HO schemewith two operationmodes. Analyt-
ical and system level simulation results show promising gains
of the proposed scheme over the conventional approach.

FIGURE 1. Dual Connectivity RAN with control/data plane separation.

The reminder of this paper is structured as follows:
Section II describes the network architecture and presents the
main components of the proposed scheme. Section III devel-
ops the prediction model utilising a memory-full approach,
while Section IV models the context-aware units to aid the
prediction outcome and the HO decision. Section V presents
and discusses numerical and simulation results. Finally,
Section VI concludes the paper.

II. NETWORK ARCHITECTURE AND PROPOSED SCHEME
We propose a memory-full context-aware HO scheme with
mobility prediction and advance signalling to achieve a light-
weight, signalling-efficient and fast HO procedure. We con-
sider the dual connectivity RAN architecture with con-
trol/data plane separation [4] as it has been identified by the
third generation partnership project (3GPP) as one of the
candidate 5G RAN features [5]. Fig. 1 shows a high level
overview of this architecture. It consists of a control base
station (CBS) layer and a data base station (DBS) layer. The
former is formed of macro BSs deployed at low frequency
bands to provide ubiquitous connectivity, while the latter is
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FIGURE 2. System model of the memory-full context-aware predictive handover scheme.

formed of small BSs deployed at high (or low) frequency
bands to provide on-demand high data rate transmission.
The control/data separation architecture (CDSA) requires the
active UE to maintain a dual connection with both the CBS
and the DBS, while idle UE (and detached UE accessing
the network) maintains a single connection with the CBS
only [4], [6], [7]. The DBS is invisible to both detached and
idle UE, and its on-demand connection with the active UE is
established and assisted by the CBS.

The dual connection feature of the CDSA coupled with
contextual information enable implementing fast and pre-
dictive HO schemes at the DBS layer. Predicting the UE
mobility (at DBS level rather than the exact location) allows
the source and the candidate DBSs to prepare and reserve
resources in advance, which in turn could simplify the HO
process and minimise the associated monitoring overhead,
RAN signalling and interruption time [8], [9]. In the conven-
tional RAN architecture, the predictive strategies have tight
constraints since an incorrect prediction with a break-before-
make HO can lead to detaching the UE from the network.
In other words, an incorrect prediction in the conventional
RAN does not only increase the HO latency and signalling
overhead, but also it requires a new UE-network connec-
tion establishment. On the other hand, the CDSA offers
relaxed constraints in implementing predictive HO manage-
ment strategies. An incorrect DBS prediction in the CDSA
does not require UE-network connection re-establishment,
since the UE maintains another low rate connection with
the CBS. In this direction, we propose predictive mobility
management at DBS-level under the CDSA architecture.

The proposed scheme depends on DBS SS and/or SQ
prediction performed by the UE. This prediction is aided by
UE context information such as location, direction and speed,
in addition to statistical information based on either the UE
HO history or the aggregated per-DBS Neighbour List (NL)

HO history. A short-term memory for the RF measurements
and a long-term memory for the HO history are considered,
hence we describe this scheme as a memory-full context-
aware mobility management approach. The predicted DBS
is reported on an event basis to the serving (i.e., the source)
DBS, which determines the reporting criteria and the HO
mode to be followed by the UE. The prediction process
is triggered only once when a certain prediction triggering
threshold is reached. As shown in Fig. 2, the memory-full
context-aware predictive DBS HO scheme comprises a loca-
tion and span estimation unit, a SS and SQ prediction unit,
a history prediction unit, a prediction analysis unit, a report-
ing unit, a HO mode decision unit and a HO mode switch
unit.

The UE periodically measures SS and SQ of the serving
DBS and the top-m other detectable DBSs at every mea-
surement gap as in current standards. The 3GPP Measure-
ment Reporting and Control (MRC) [10] may be re-used
as an example of this measurement and optional reporting
mechanism. The reported strongest or best quality DBSs are
limited to m per DBS categorisation as the measurement
interval is limited and measurement power consumption and
normal transmission need to be balanced against the accurate
measurement report (MR) cycle. The SS and SQ prediction
unit stores measurements of a subset of the top-m detectable
DBSs that reside within the angular span of the UE direc-
tion/speed. The location and span estimation unit triggers the
prediction process when the UE reaches the inner edge of cell
(EoC) boundary of the serving DBS. The latter can be defined
based on a distance threshold or a SS/SQ threshold. When the
prediction is triggered, the SS and SQ prediction unit uses the
stored measurements to predict SS and/or SQ of the serving
DBS and the candidate DBSs.

The prediction analysis unit evaluates the predicted SS/SQ
to determine if a certain DBS HO criteria is satisfied. If the
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FIGURE 3. Signalling flow diagram for predictive and non-predictive HO
scenarios, based on the LTE X2 HO procedure. Signalling messages in
non-predictive HO: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Signalling messages in
predictive HO with correct prediction (Network decision): 6, 7, 8, 9, 10, 11,
12. Signalling messages in predictive HO with correct prediction (HO
control delegated to UE): 7, 8, 9, 10, 11, 12. Signalling messages in
predictive HO with incorrect prediction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
Acronym ACK: Acknowledgement, SN: Sequence Number. Notice that the
HO hysteresis is not shown here because it is applied before the
signalling exchange.

predicted SS and/or SQ of a neighbouring DBSmeets the HO
criteria, then the prediction analysis unit queries the history
prediction unit. The latter provides the prediction analysis
unit with the probability of successful HO based on either the
UE HO history or the DBS aggregated HO history. Based on
these metrics as well as the predicted HO time, the prediction
analysis unit may command the reporting unit to generate a
new light-weight report called predictive measurement report
(PrMR) and sends it to the serving DBS. This PrMR is sent
only once as opposed to the periodic MR transmission in the
conventional HO approach. At the serving DBS side, the HO
mode decision unit evaluates the PrMR and commands the
UE to operate either in a predictive mode or revert back to
the conventional non-predictive mode. In the former case,
the conventional MR is suspended, the HO-related RAN sig-
nalling is performed in advance and HO control is delegated
to the UE. On the other hand, the non-predictive mode fol-
lows the conventional HO procedure where the HO decision

FIGURE 4. Exemplary operation of the signal strength and signal quality
prediction unit.

is taken by the serving DBS after the HO criteria is met.
Fig 3 shows a signalling flow diagram for the HO process
based on the LTEX2HO approach. The operation, algorithms
and interactions of the proposed units are formulated and
described in the following sections.

III. MEMORY-FULL PREDICTION UNITS
A. SIGNAL STRENGTH/QUALITY PREDICTION
Fig. 4 shows an exemplary operation of the SS and SQ predic-
tion unit. It contains a short-termmemory that stores the most
recent n active state measurements of the DBSs that reside
within the angular span of the UE direction/speed. In other
words, the SS/SQ prediction window size is n measurements
per DBS. The SS/SQ prediction is based on measurement
trends. To minimise the UE storage requirements and remove
signal fading/fluctuation effects, Grey system theory [11]
is adopted as the trending approach. The Grey theory has
been used in several fields, e.g., for disaster, season and
sequence prediction. It requires limited amount of input data
and implicitly averages this data. The basic concept depends
on translating the data sequence into a monotonic increasing
function, representing this function by a differential equation
and solving it to find the model’s parameters. For the problem
under study (i.e., SS/SQ prediction), a GM(1,1)1 Grey model
[11] can be constructed for each DBS as:
• The original SS/SQ measurements stored in the short-
term memory are represented as a time series given by

y〈0〉(i) =
(
y〈0〉(1), y〈0〉(2), ... , y〈0〉(n)

)
(1)

where the superscript 〈0〉 means original SS/SQ
measurements (i.e., before processing) and i =

1, 2, 3, ... , n is the measurement index.

1the first 1 means the model uses first order differential equations, while
the second 1 means there is one variable.
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• An accumulated generating operation (AGO) translates
y〈0〉(i) to a monotonic increasing function y〈1〉(i) as

y〈1〉(i) = AGO
{
y〈0〉(i)

}
=

(
y〈0〉(1),

2∑
i=1

y〈0〉(i), ... ,
n∑
i=1

y〈0〉(i)

)
. (2)

• Based on (2), an inverse accumulated generating opera-
tion (IAGO) can be formulated as

y〈1〉(i) = y〈1〉(i− 1)+ y〈0〉(i). (3)

• The GM(1,1) model is defined by the following equa-
tion:

dy〈1〉

du
+ a y〈1〉 = b (4)

where a is the development parameter and b is the grey
input. The solution to (4) at time index i is

y〈1〉(i+ 1) =
(
y〈1〉(1)−

b
a

)
e−a i +

b
a

=

(
y〈0〉(1)−

b
a

)
e−a i +

b
a
. (5)

By substituting the IAGO of (3) into (5), the predicted SS/SQ
one measurement gap in advance y〈0〉p (i+1) can be expressed
as

y〈0〉p (i+ 1) = e−a i
(
1− ea

) (
y〈0〉(1)−

b
a

)
. (6)

Similarly, the predicted SS/SQ j measurement gaps in
advance can be formulated as

y〈0〉p (i+ j) = e−a (i+j−1)
(
1− ea

) (
y〈0〉(1)−

b
a

)
. (7)

Equation (7) can be used to predicted a series of SS/SQ
measurements. However, the model parameters a and b need
to be calculated before the prediction is performed. These
parameters can be obtained by expressing the derivative in
(4) as

dy〈1〉

du
→ y〈1〉(i+ 1)− y〈1〉(i) (8)

and the right hand side of (8) can be replaced with y〈0〉(i+ 1)
based on the IAGO of (3), i.e.,

dy〈1〉

du
→ y〈0〉(i+ 1). (9)

The mean value of adjacent SS/SQ measurements is

z〈1〉(i) =
1
2
y〈1〉(i)+

1
2
y〈1〉(i− 1)→ y〈1〉(u). (10)

Based on (9) and (10), the Grey differential equation of (4)
can be rewritten as

y〈0〉(i)+ a z〈1〉(i) = b. (11)

Rearranging (11) and writing the resultant equation in a
matrix form yields

y〈0〉(2)
y〈0〉(3)
...

y〈0〉(n)

 =

−z〈1〉(2) 1
−z〈1〉(3) 1

...
...

−z〈1〉(n) 1

 ·
[
a
b

]
. (12)

Finally, a and b can be obtained by solving (12), i.e.,

[
a
b

]
=


−z〈1〉(2) 1
−z〈1〉(3) 1

...
...

−z〈1〉(n) 1


−1

·


y〈0〉(2)
y〈0〉(3)
...

y〈0〉(n)

. (13)

The SS and SQ prediction unit uses this model to predict SS
and SQ of the serving DBS and a subset of the top-m other
detectable DBSs. These results are fed to the prediction analy-
sis unit. It is worth mentioning that other trending techniques,
such as polynomial fitting or sample extrapolation, can be
used instead of the Grey model.

The expected HO time can be predicted based on the
rate of SS/SQ degradation. The measurement prediction is
performed in time domain and on a sample-basis. Thus if
the measurement gap 1g is constant (such as in current
standards), the SS and SQ prediction unit predicts a series of
measurements until the HO criteria is satisfied (see Fig. 4).
For example, if the prediction is performed for Ip samples in
advance (i.e., assuming that the current measurement index is
n, and the predicted SS/SQ that satisfies the HO criteria has
index n+ Ip), then the predicted remaining time for HO is

Predicted HO time = Ip ·1g. (14)

B. HISTORY PREDICTION
The history prediction unit provides statistical historical
information based on a long-term memory that helps the
prediction analysis unit to confirm or reject the measurement-
based HO prediction. It calculates the HO probability from
the serving DBS to the predicted DBS based on either the
aggregated NL HO history [12], [13] or the UE HO history.
The former is already available in current standards at the
network side in the form of a HO frequency table, and it pro-
vides statistical information based on the crowd behaviour.
Table 1 provides an illustrative example of the NLHO history
in a table format, where Ci,j is the NL-based aggregated HO
count from DBSi to DBSj. Typically, each row in Table 1 is
maintained by the source DBS. This NL HO history can be
translated into a transition probability. For instance, the NL-
based transition probability ti,j from DBSi to DBSj can be
obtained by

ti,j =
∑

u,∀u∈Ni

Ci,j
Ci,u

(15)

where Ni is the neighbour list of DBSi, i.e., a set of all the
DBSs that are neighbours to DBSi.
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TABLE 1. Aggregated handover history in the long-term memory.

FIGURE 5. UE location estimation and CoC/EoC prediction triggering
threshold.

The NL-based history can be used for DBSs covering areas
characterised by high batch HO rates. For example, where
multiple UE on a train perform simultaneous HOs. However,
the NL-based approach may not be suitable for individual
users since it provides a coarse and less accurate estimate
based on the crowd behaviour. This suggests a UE-based
approach where individual users maintain separate statistical
information based on their own history. This can be achieved
by maintaining HO history tables as in Table 1 for each user,
i.e., ti,j is computed for each user based on their own Ci,j
values, or alternatively ti,j can be computed by using our
online history-based prediction scheme in [9].

IV. CONTEXT-AWARE ASSISTANCE UNITS
A. LOCATION AND SPAN ESTIMATION
The main objective of this unit is minimising the UE process-
ing load and storage requirements. The prediction process in
Section III-A can be continuously executed until a target DBS
is found. However, such a continuous operation may not be
feasible from battery and processing perspectives. A more
practical design approach is to trigger the prediction process
when a certain triggering criteria is satisfied. This suggests
a two boundary DBS cell structure, where the prediction
is triggered at the inner boundary while the actual HO is
performed at the outer boundary. Fig. 5 shows two approaches
that can be used by the location and span estimation unit to
trigger the prediction process at the inner boundary, based
on the UE location w.r.t. the serving DBS, i.e., centre of
cell (CoC) or EoC. Notice that the CoC/EoC classification
is based on the inner boundary.

FIGURE 6. Predicted measurement precision with several advance
periods, 5 UE per DBS, V = 10 km/hr.

These approaches include position-based distance calcu-
lation and serving DBS signal measurements. The former
requires the serving DBS to broadcast its location, e.g., in the
form of longitude and latitude. Then, the distance between
the UE and the serving DBS can be calculated based on the
UE position (provided by either a GPS or other positioning
techniques). When this distance equals to or greater than a
certain threshold ds.thr and it is increasing, then the UE loca-
tion is EoC and the prediction process is triggered. The sec-
ond approach, i.e., the serving DBS signal measurements,
utilises the measured SS/SQ from the serving DBS to trigger
the prediction process. When the serving DBS SS/SQ drops
below a certain threshold y〈0〉s.thr , then the UE location is EoC
and the prediction process is triggered.

An appropriate setting of ds.thr and/or y〈0〉s.thr is of vital
importance in improving the performance of the proposed
scheme. A large ds.thr (i.e., low y〈0〉s.thr ) setting may result in
a too late prediction, i.e., the HO may happen before the
prediction process is triggered. On the other hand, a small
ds.thr (i.e., high y

〈0〉
s.thr ) setting may lead to a too early predic-

tion. This in turn increases the error probability, due to the
large gap between the time when the prediction is performed
and the time when the actual HO happens. In addition, radio
channel and/or UE direction will have a higher changing
probability when the actual HO happens. As an illustrative
example, Fig. 6 shows simulation results for the measurement
prediction precision with several prediction advance periods.
As can be noticed, the prediction of the ith SS/SQ measure-
ment is more accurate than the prediction of the jth SS/SQ
measurement, where i<j.

Assuming a constant speed V and a hysteresis-based HO
criteria, i.e., the HO happens if the following condition is true:

log
(
y〈0〉n

)
≥ log

(
y〈0〉s

)
+ log (2) (16)

where y〈0〉s and y〈0〉n are the SS/SQ of the serving and the
neighbouring DBSs, respectively, 2 is the HO hysteresis,
and the parameters in (16) are in the linear scale. A HO
hysteresis needs to be applied to the trend to ensure that
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prevailing conditions only are acted upon to avoid HO ping-
pong. For a general path loss model χ Rξ , where χ is the
distance-independent path loss component,R is the distance
between the Tx and the Rx, and ξ is the path loss exponent.
Then it can be proved that the actual HO happens after Ip
measurements referenced to the prediction triggering point,
where Ip is expressed as

Ip =

((
qs2
qn

) 1
ξ
(
ψ−ds.thr cos(φs)

cos(φn)

))
− ds.thr

V 1g

(
1+

(
cos(φs)
cos(φn)

) (
qs2
qn

) 1
ξ

) (17)

where qs and qn are the transmit power of the serving and the
neighbouring DBSs, respectively, ψ is the inter-site distance,
φs is the angle between the line connecting the DBSs and the
line connecting the serving DBS with the UE location when
the HO happens, φn is the angle between the line connecting
the DBSs and the line connecting the neighbouring DBS with
the UE location when the HO happens. It can be noticed
that (17) depends on the UE speed. Thus using a DBS-based
unified triggering threshold for all users implies that different
users will have different Ip values. In other words, if the
prediction is triggered at the same location for all users, then
low speed users will have to predict more measurements than
high speed users. This may increase the error probability and
decrease the prediction precision as shown in Fig. 6. This sug-
gests a UE-specific prediction triggering threshold ds.thr .UE
that takes into account network parameters as well as UE
parameters. This threshold can be obtained by solving (17)
for ds.thr , i.e.,

ds.thr .UE =

(
qs2
qn

) 1
ξ
(
ψ−Ip V 1g cos(φs)

cos(φn)

)
− Ip V 1g

1+
(
cos(φs)
cos(φn)

) (
qs2
qn

) 1
ξ

. (18)

The UE angular span is utilised to narrow down the can-
didate DBS set. A high speed user usually has a smaller
span (i.e., probability of changing the direction is small) as
compared with a low speed user. This allows the former to
store and process measurements of a smaller number of DBSs
as compared with the latter. The location and span estimation
unit calculates the UE angular span � by

� = 2π e−η V (19)

where η is the span gradient. Different DBSs can define
different values for η which can be learned from the users’
behaviour. For instance, a highway DBS may define a large
gradient which results into a small span (i.e., a lowmobility in
a highway may be attributed to traffic conditions rather than
to a direction change intention). A new span is defined when
the UE changes its speed abruptly, when the UE changes its
direction by an angle larger than the initial span, or at regular
time intervals. Based on the location of the top-m detectable
DBSs, the location and span estimation unit selects the DBSs

that reside within the UE span as candidates for the predic-
tion process and store their measurements in the short-term
memory. This result is fed to the SS and SQ prediction unit.

B. PREDICTION ANALYSIS AND HANDOVER
MODE DECISION
The prediction analysis unit evaluates the predicted SS/SQ
to determine if a certain HO criteria is satisfied. The latter is
left as an implementation issue to ensure a generic prediction
scheme that does not depend on a particular HO model. For
instance, the condition of (16) can be used as an example for
the HO criteria. The prediction analysis unit confirms/rejects
the measurement-based prediction based on the UE HO his-
tory and the predicted HO time. Consider ts,p as the transition
probability from the serving DBSs to the measurement-based
predicted DBSp, based on either the crowd behaviour or the
individual user behaviour as explained in Section III-B.
Define tmin as the minimum HO probability to confirm the
prediction from a history perspective. Then the prediction
analysis unit confirms the measurement-based prediction if
the following condition is true:

ts,p ≥ tmin (20)

and it commands the reporting unit to send a PrMR, which
contains the predicted DBS along with the predicted remain-
ing time for HO given by (14). Otherwise, the prediction
analysis unit rejects the measurement prediction. Notice that
the angular span is accounted for in the monitoring and pro-
cessing phase (i.e., ts,p belongs to one of the DBSs that reside
within the UE angular span). Fig. 7 provides a flowchart for
the operation flow of the prediction analysis unit.

The HO mode decision unit decides the type of HO to be
followed by the UE, i.e., predictive or non-predictive HO.
In the former, the conventional MRs are suspended, the HO
decision and preparation are performed in advance, and HO
control is delegated to the UE. It is worth mentioning that
the HO mode decision unit can be located at the UE side
and integrated with the prediction analysis unit, thus the
outcome of the latter implicitly defines the HO type. If the
final decision has to be taken based on additional policies
defined by the network (i.e., network-controlled UE-assisted
decision), then the HO mode decision unit can be moved to
the DBS side as shown in Fig. 2.

V. PERFORMANCE EVALUATION
A. PREDICTION THRESHOLD ANALYSIS
Fig. 8 shows effect of the UE speed on the expected HO time
(in measurement gaps) referenced to the prediction triggering
point, with a unified triggering threshold for all users. The
considered network parameters are: qs = qn = 38 dBm,
ψ = 130 m and 1g = 200 ms. A positive Ip value means
that the HO will happen after this value, while a negative
Ip value means a too late prediction (i.e., the HO already
happened before the prediction process is triggered). It can
be noticed in Fig. 8a that using a unified ds.thr value for
all users could result in a too early prediction especially for
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FIGURE 7. Flowchart of the operation flow and decisions of the
prediction analysis unit.

low speed users. For instance, with ds.thr = 20 m then a
low speed user with V = 5 km/hr will start the prediction
process 188 measurement gaps in advance before the actual
HO happens. As discussed in Section IV-A and depicted by
Fig. 6, such an early prediction has a higher probability of
error due to the fact that the prediction precision decreases
as the advance period increases. On the other hand, using a
large ds.thr setting of 100 m results in a too late prediction,
e.g., with V = 5 km/hr then the prediction process starts after
the actual HO happens by 99 measurement gaps.

Fig. 8b indicates that the speed effect on the expected
HO time (with a unified triggering threshold) is significantly
influenced by the HO hysteresis. It can be seen that increasing
the hysteresis 2 increases the slope (in absolute value) of
the HO time vs speed graph when ds.thr is constant for all
users. This indicates that a low hysteresis setting may be
appropriate when ds.thr is unified for all users. Nonetheless,
the HO hysteresis provides other benefits such as delaying
the HO to avoid HO ping-pongs and removing the SS/SQ
fluctuation effects. As a result, decreasing 2 may come at
the expense of increasing HO ping-pongs rates.

The observations in Fig. 8 motivate a UE-specific pre-
diction triggering threshold, which is studied in Fig. 9. It
can be noticed that ds.thr .UE is inversely proportional to the
UE speed. Expressed differently, low speed users start the

FIGURE 8. User speed vs expected handover time referenced to
prediction triggering point with a unified triggering threshold for all users.
(a) Effect of ds.thr , with hysteresis = 2 dB. (b) Effect of hysteresis, with
ds.thr = 60 m.

prediction process at a larger distance from the serving DBS
as compared with high speed users. This ensures that all users
predict the same number of SS/SQ measurements, which in
turn allows to set a maximum advance period in order to con-
trol the prediction precision and error probability. For exam-
ple, to ensure that the prediction process does not start more
than 8 measurement gaps before the actual HO happens, then
a user with V = 5 km/hr and V = 80 km/hr triggers the
prediction process at 70 m and 37 m, respectively, from the
serving DBS as shown in 9a. Since the expected HO time is
inversely proportional to the distance from the serving DBS,
then increasing the advance period Ip reduces ds.thr .UE . On the
other hand, Fig. 9b indicates that the UE-specific ds.thr .UE and
the HO hysteresis have a proportional relationship. This can
be linked to the fact that the hysteresis delays the actual HO.
Hence, for a fixed advance prediction period target, a higher
hysteresis setting increases the required prediction triggering
distance from the serving DBS.

B. PREDICTION STATISTICS AND GAINS
System level simulations have been performed to assess
performance and gains of the proposed DBS HO scheme.
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FIGURE 9. User speed vs UE-specific prediction triggering threshold.
(a) Effect of Ip, with hysteresis = 2 dB. (b) Effect of hysteresis, with Ip = 4.

Table 2 provides the considered simulation parameters which
are mostly aligned with the 3GPP specifications [14]. Fig. 10
shows prediction accuracy and statistics for several SS trig-
gering thresholds and HO hysteresis values. It can be noticed
that this scheme provides a 90% prediction accuracy when
y〈0〉s.thr ≥ −62 dBm and HO hysteresis is used (i.e.,2> 0 dB).
In addition, it significantly reduces the percentage of incor-
rect predictions that are not rejected by the prediction analysis
unit. Precisely, only 2.5%−9.6% of the predictions resulted
in HOs to DBSs other than the actual target DBSs. A very
low SS triggering threshold of y〈0〉s.thr = −64 dBm with a low
(or no) HO hysteresis setting results in a significant number
of too late predictions. This can be traced to the fact that a
low (or no) hysteresis results in an early HO while a low SS
triggering threshold delays the prediction process. Expressed
differently, in environments/scenarios where HO hysteresis is
not used, then the location and span estimation unit needs to
be configured to start the prediction process early (i.e., high
y〈0〉s.thr or small ds.thr setting).

To evaluate HO latency of the proposed scheme,
the approach of [17] has been followed by assuming that
the transmission delay for different messages between the

TABLE 2. Simulation parameters.

FIGURE 10. Prediction statistics of the measurement-based context-aided
predictive DBS handover scheme. (a) Effect of y〈0〉s.thr , with

hysteresis = 2 dB. (b) Effect of hysteresis, with y〈0〉s.thr = −62 dBm.

same source-destination pair is the same irrespective of the
message size. Similarly, the processing delay for different
messages at the same node is constant. In addition, it has been
assumed that the mobility management entity (MME) and
the serving gateway (S-GW) are located in the same location,
thus the transmission delay between these nodes is negligible.
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TABLE 3. Latency values for handover signalling messages.

FIGURE 11. Handover signalling latency reduction.

Table 3 provides the latency values which are based on the
feasibility study reported in [18] for the intra-LTE X2 HO
procedure.

Fig. 11 shows gains of the proposed scheme in terms of
signalling latency reduction w.r.t. the conventional HO pro-
cedure. Based on the latency parameters of Table 3, it can be
concluded that the memory-full context-aware predictive HO
scheme reduces the DBS HO latency by 33.6% as compared
with the conventional HO. Fig. 11 also indicates that the high-
est gains can be achieved either with a high hysteresis and a
low SS/SQ (i.e., a large UE/serving-DBS distance) triggering
threshold, or with a low hysteresis and a high SS/SQ (i.e.,
a small UE/serving-DBS distance) triggering threshold.

It is worth mentioning that the predictive HO scheme
proposed in this paper aims to reduce the HO latency rather
than reducing the HO signalling overhead (although the peri-
odic MR transmission is suspended in the proposed scheme).
This is achieved by exploiting the prediction outcome to
perform the HO decision and preparation phases in advance
before the HO criteria is met. The gains of this approach in
terms of reduction in HO latency are shown and discussed
above. However, the HO signalling overhead (after the HO
decision) with correct prediction remains the same as the
overhead without HO prediction. In the case of incorrect
prediction, the HO signalling overhead becomes higher than
the overhead without HO prediction. This can be traced to
the signalling model where additional messages are needed

TABLE 4. Normalised predictive handover signalling overhead and
latency vs prediction accuracy.

to cancel the reserved resources at the incorrectly predicted
DBS, as can be seen in Fig. 3. To quantify this penalty,
Table 4 shows the normalised predictive HO signalling over-
head (in terms of the number of the HO-related messages nor-
malised with the number of the HO-related messages in the
conventional non-predictive HO scheme), and the normalised
predictive HO latency (w.r.t. the conventional HO latency) vs
the prediction accuracy.

VI. CONCLUSION
Predictive HO signalling at DBS-level is proposed in this
paper. With the main objective of minimising the CDSA
HO-related RAN signalling latency and monitoring load,
a memory-full context-aware predictive DBS HO is pro-
posed. This scheme includes a proactive HO mode selec-
tion model to minimise the HO signalling latency, since the
predictive HO management strategies may not be suitable
in some cases, e.g., unpredictable users with highly random
mobility profiles or users visiting new DBSs. Considering
the dual connectivity feature of the CDSA, such a predictive
approach can be applied with relaxed constraints.

The proposed scheme is operated at the UE, and it predicts
the expected HO time in addition to the target DBS. It com-
bines physical proximity (i.e., location information at the UE)
to a virtualised UE view of DBS coverage, RF performance
derived from SS/SQ measurements, context information and
HO history. The SS/SQ measurements are modelled as a
time series in a Grey fashion to predict future HO events
and the remaining time for HO. In addition, the UE speed
and direction are utilised to minimise the storage and pro-
cessing requirements by narrowing down the candidate DBS
set based on the UE angular span. A UE-specific prediction
triggering threshold is formulated to improve the measure-
ment prediction precision whilst minimising the UE pro-
cessing load. For a certain advance prediction period (and
hence a certain precision target), it has been found that the
UE-specific triggering threshold is inversely proportional (in
distance format) and directly proportional (in SS/SQ format)
to the UE speed. The switching point between predictive
and conventional HO procedures is defined based on the
successful HO probability which is obtained from the history
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prediction model.
Simulation results show that the proposed predictive

scheme reduces the HO signalling latency by 33.6% as com-
pared with the conventional LTE X2 HO procedure. These
gains depend on network-defined HO parameters such as the
HO hysteresis and transmit power, in addition to the UE-
specific prediction parameters such as the prediction trigger-
ing threshold. This suggests an appropriate setting of both the
network-defined and the UE-specific parameters to achieve
the maximum gain.
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