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ABSTRACT In this paper, we propose a method to design an on-line event feedback supervisor (EFS)
for a class of Petri nets whose augmented unobservable subnets are acyclic forward synchronization and
backward conflict-free (FSBCF) nets. In more detail, an FSBCF net is an ordinary Petri net in which each
place has at most one output transition, and each transition has at most one input place. The designed EFS
is able to compute a set of transitions that need to be forbidden based on the current observation of the
system. In particular, the EFS is maximally permissive, i.e., it ensures that the controlled system never enters
into illegal markings while minimally restricting its behavior. Finally, we use an example to illustrate the
effectiveness of the proposed method.

INDEX TERMS Discrete event systems, Petri nets, forbidden states, supervisory control.

I. INTRODUCTION
With the improvement of resource utilization efficiency,
the problem of preventing certain states (called forbidden
states) often arises in a discrete event system (DES). Putting
the system in such states may reduce the production effi-
ciency or even result in a catastrophic consequence. Solving
the forbidden state problem consists in designing a supervisor
to prevent the system entering into forbidden states. Due to
the intuitive graphical representation and powerful algebraic
formulation, Petri nets have been widely used in dealing with
such a problem [1]–[21].

In the Petri net framework, the set of legal states is typi-
cally formalized as generalized mutual exclusion constraints
(GMECs) [4]. In detail, a GMEC is defined as a constraint
that limits a weighted sum of tokens contained in a subset
of places. The markings that satisfy the given GMECs are
said to be legal markings, otherwise they are called illegal
(forbidden) markings. If the transitions in a Petri net are
all controllable and observable, the given GMECs can be
easily enforced on the Petri net by a set of additional places,
called monitors, which guarantees maximal permissiveness.
Yamalidou et al. [5] design monitors using the notion of place
invariance.

For a Petri net with uncontrollable transitions, the com-
plexity of the forbidden state problem is enhanced since it is

possible that a legal marking reaches a forbidden marking by
firing uncontrollable transitions. In such a case, the designed
supervisor must restrict the evolution of the systemwithin the
set of admissible markings. Moody and Antsaklis [7] present
the notion of admissible GMECs, which describes a subset of
admissible markings. They provide an algorithm to transform
given inadmissible GMECs into admissible ones, which can
be directly enforced on the net in the form of monitors using
the place invariance approach proposed in [5].

Chen [11] proposes the concept of uncontrollable influ-
ence subnet, and proves that GMECs can be transformed in
terms of the uncontrollable influence subnet only. It signifi-
cantly reduces the computational complexity of the problem.
Luo et al. [12] transform GMECs into admissible GMECs
for Petri nets whose uncontrollable influence subnets are for-
ward conflict-free (FCF) nets. Although the transformation
is optimal, it is based on the notion of crux path whose
computation is exponential w.r.t. the structure of the Petri
nets. To reduce the computational complexity of the method
in [12], Wang et al. [13] propose a new optimal trans-
formation method with polynomial complexity for the
Petri nets whose uncontrollable influence subnets are
FSBCF nets.

Since the firing of an unobservable transition cannot
be detected, all unobservable transitions are also implicity
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uncontrollable [7]. Literature that focuses on forbidden state
problem of Petri nets with unobservable transitions is insuffi-
cient either in breadth or in depth. Luo and Zhou [14] propose
a method based on constraint transformation to enforce linear
constraints on Petri nets with unobservable transitions and
uncontrollable transitions. In particular, they provide an algo-
rithm to equivalently transform linear constraints into admis-
sible dynamic constraints for a Petri net whose uncontrollable
subnet is a state machine.

In this paper we design an on-line event feedback supervi-
sor to enforce a given GMEC on a Petri net whose augmented
unobservable subnet is an acyclic FSBCF net. In more detail,
the supervisor takes advantage of the structural properties of
such type of nets, and computes the set of transitions that
need to be forbidden according to the current observation.
It minimally restricts the behavior of the net while ensuring
that the closed-loop system never reaches the set of forbidden
markings.

The paper is organized as follows. Section II provides
some background on Petri nets and introduces the notations
used in the paper. In Section III, we first recall the notions
of GMEC and augmented unobservable subnet, then intro-
duce the notion of event feedback supervisor. Section IV
provides an algorithm for designing a maximally permis-
sive event feedback supervisor. An example is given in
Section V to illustrate the effectiveness of the algorithm.
Finally, Section VI concludes the paper and points out the
line of our future research in this area.

II. PRELIMINARIES
In this section, some basic notions of Petri nets are reviewed.
They are taken from [22] and [23].

An ordinary Petri net (PN) is a 3-tuple N = (P,T ,F),
where P is the set of places and T is the set of transitions.
F ⊆ (P× T ) ∪ (T × P) is called the flow relation of the net.
Let a ∈ P ∪ T be a node of net N . The preset of a is defined
as •a = {b ∈ P ∪ T | (b, a) ∈ F}. While the postset of a is
defined as a• = {b ∈ P∪T | (a, b) ∈ F}. A transitionwithout
any input (output) place is called a source (sink) transition.
A placewithout any input (output) transition is called a source
(sink) place. ∀A ⊆ P∪T , •A =

⋃
a∈A
•a, and A• =

⋃
a∈A a

•.
The incidence matrix [N ] of N is a |P| × |T | integer matrix
such that [N ](p, t) = 1 if p ∈ t• \• t , [N ](p, t) = −1 if p ∈
•t \ t•, otherwise, [N ](p, t) = 0. For a place p (transition t),
its incidence vector is denoted by [N ](p, ·) ([N ](·, t)).
A marking m of a PN N is a mapping from P to

N = 0, 1, 2, . . .: m(p) denotes the number of tokens
in place p. (N ,m0) denotes a PN system with an initial
marking m0.
A transition t is enabled at a marking m if ∀p ∈ •t,

m(p) ≥ 1. This fact is denoted by m[t〉, while m[σ 〉 is used to
denote that the transition sequence σ = t1t2 . . . tk is enabled
at m. We denote π : T ∗ → N|T | the function that associates
to σ a vector y = π (σ ) ∈ N|T |, namely the firing vector of σ ,
where y(t) = k if transition t is contained k times in σ . The
set of all sequences that are enabled at the initial marking m0

is denoted by L(N ,m0), i.e., L(N ,m0) = {σ ∈ T ∗ | m0[σ 〉}.
ε is used to denote the empty sequence.

Firing t yields a newmarkingm′ such that ∀p ∈ P,m′(p) =
m(p) + [N ](p, t), which is denoted by m[t〉m′. Marking m′′

is said to be reachable from m if there exists a transition
sequence σ such that m[σ 〉m′′. The set of markings reachable
from m in N is called the reachability set of (N ,m) and is
denoted by R(N ,m).
A string a1, a2, . . . , an is called a path if ai+1 ∈ a•i , where

ai ∈ P ∪ T and i ∈ {1, 2, . . . , n − 1}. If there exists a path
from ai to aj, we say that ai can access aj, or aj can be accessed
from ai. Note that each node can access itself. A circuit is a
path in which the first and last nodes are identical. A PN with
no directed circuits is said to be acyclic.

A transition is called uncontrollable if its firing cannot
be forbidden, and a transition is called unobservable if its
firing cannot be detected. Since the firing of an unobservable
transition cannot be detected, all unobservable transitions are
also implicity uncontrollable. On the other hand, an uncon-
trollable transition may or may not be unobservable [7].
Therefore, the set T of transitions in a PN is partitioned into
three disjoints subsets: T = Tco ∪ Touc ∪ Tuo, where Tco is
the set of controllable and observable transitions, Touc is the
set of observable but uncontrollable transitions, and Tuo is the
set of unobservable transitions. In this paper, we study a class
of PNs whose observable transitions are also controllable,
i.e., Touc = ∅ and Tco = To, where To is the set of observable
transitions. Hence, we simply write T = To ∪ Tuo.
Given a transition sequence σ ∈ T ∗, we denote Po(σ ) the

projection of σ over To, and ν = Po(σ ) the corresponding
(observed) word. Word u ∈ T ∗o is a prefix of ν ∈ T ∗o if there
exists u′ ∈ T ∗o such that ν = uu′.
Given a word ν ∈ (To)∗, we denote

S(ν) = {σ ∈ L(N ,m0) | Po(σ ) = ν}

the set of transition sequences consistent with ν; and

C(ν) = {m | m0[σ 〉m, σ ∈ S(ν)}

the set of reachable markings consistent with ν.
A forward synchronization and backward conflict-free

(FSBCF) net is an ordinary PN in which each place has at
most one output transition, and each transition has at most
one input place. Since there is no transition has more than one
input places in an FSBCF net, a token may flow downstream
along each unobservable path, no matter what the distribution
of the other tokens is [12].

III. PROBLEM STATEMENT
In this section, we first recall the notions of GMEC, then
propose the definition of augmented unobservable subnet and
the definition of event feedback supervisor.

A. GMEC
In the PN framework, a control specification may be typically
formalized as GMECs [4].
Definition 1 [4]: A generalized mutual exclusion con-

straint (GMEC) is a couple (ω, k), where ω ∈ N1×|P| is
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a vector that assigns to each place a non-negative number;
k ∈ N, such that ω · m ≤ k .

We denote ω(p) the number assigned to place p, and
Pf = {p ∈ P | ω(p) 6= 0} the set of forbidden places. For the
sake of simplicity, we assume that there is only one forbidden
place in the PN, i.e., Pf = {pf }, where pf is the forbidden
place.

Given a PN system (N ,m0) with a GMEC (ω, k), the set
of legal markings is

L(ω, k) = {m ∈ R(N ,m0) | ω · m ≤ k}.

The set of illegal (forbidden) markings is

L(ω, k) = {m ∈ R(N ,m0) | ω · m > k}.

In fact, some legal markings may inevitably reach for-
bidden markings by firing only unobservable transitions.
In the following we call the legal marking set not containing
such markings admissible marking set, which is denoted by
A(ω, k), i.e., it is

A(ω, k) = {m ∈ L(ω, k) |
@σ ∈ (Tuo)∗ : m[σ 〉m′ ∧ m′ ∈ L(ω, k)}.

To guarantee safeness it is necessary to restrict the net’s
evolution within the admissible marking set.

B. AUGMENTED UNOBSERVABLE SUBNET
Now we introduce the definition of augmented unobservable
subnet.
Definition 2: Let (N ,m0) be a PN with a GMEC (ω, k),

and Pf the set of forbidden places. (Nω, m̃0) is the augmented
unobservable subnet of N , where Nω = (Pω,Tω,Fω) and
• Pω ⊆ P is the set of places that satisfy the following
conditions:
– Pf ⊆ Pω;
– If p ∈ Pω and t ∈ •p ∩ Tuo, then •t ⊆ Pω;
– If p ∈ Pω and t ∈ p• ∩ Tuo, then t• ⊆ Pω.

• Tω = •Pω ∪ Pω•;
• Fω is the restriction of F to (Pω × Tω) ∪ (Tω × Pω);
• ∀p ∈ Pω, m̃0(p) = m0(p).

FIGURE 1. A PN system.

Example 1: Consider the PN system shown in Fig. 1 with
a GMEC (ω, k), where To = {t4 − t7}, Tuo = {t1 − t3},

ω = (0, 0, 1, 0, 0, 0, 0) and k = 2. The forbidden place is
p3. The augmented unobservable subnet (Nω, m̃0) is shown
in Fig. 2, where Pω = {p1 − p5}, Tω = {t1 − t7}.

FIGURE 2. The augmented unobservable subnet of the PN in Fig 1.

By Definition 2, we know that a source unobservable tran-
sition in Nω is also a source transition in N . Since a source
unobservable transition cannot be detected and forbidden
by an external agent, it may be impossible to design an
admissible supervisor to enforce a GMEC on the PN. In the
remaining discussion, we assume that Nω contains no source
unobservable transitions.

C. EVENT FEEDBACK SUPERVISOR
We define a control input as a subset γ ⊆ To, in which
all transitions are forbidden to occur. An event feedback
supervisor is defined as follows.
Definition 3: Let 0 ⊆ 2To be the set of all possible control

inputs. An event feedback supervisor (EFS) is a mapping:

f : (To)∗ → 0.

In other words, an EFS consists in selecting a set γ of
observable transitions to forbid, in response to an observed
word ν ∈ (To)∗. In the following, we denote (N ,m0)|f the
controlled PN system, i.e., the PN system that is under the
supervision of the EFS f .
A word ν ∈ (To)∗ is said to be admissible if ∀ν′ ∈

prefix(ν), C(ν′) ∈ A(ω, k).
Definition 4: An EFS f is admissible if all words gener-

ated by (N ,m0)|f are admissible.
In other words, an EFS is admissible if (N ,m0)|f evolves

only within the admissible marking set.
Definition 5: An EFS f is maximally permissive if

1) It is admissible, and
2) For any admissible EFS f ′ and for any admissible word ν,

it holds that f (ν) ⊆ f ′(ν).

Given a PN system (N ,m0,L) whose augmented unob-
servable subnet is an FSBCF net, and a GMEC (ω, k), our
objective is to design a maximally permissive EFS f to
enforce the GMEC on the PN system. In particular, we make
the following assumptions.

A1) The structure of PN N and the initial marking m0 are
known, and m0 is admissible, i.e., m0 ∈ A(ω, k).

A2) There is only one forbidden place in the PN.
A3) The augmented unobservable subnet is acyclic.
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Remark 1: From [13], we know that there may exist
A-circuits in an FSBCF net, which may produce at most an
infinite number of tokens. Assumption A3 is necessary to
avoid dealing with such a case.

IV. MAIN RESULTS
In this section, we propose a method to design a maximally
permissive EFS.

A. BASIC NOTATIONS
Given two nodes a, b ∈ Pω ∪ Tω, we use 5(a, b) to denote
the set of paths in (Nω, m̃0) satisfying the following three
conditions:

1) a 6= b,
2) the head node and the ending node of the path are a and

b, respectively,
3) between a and b (except a and b) there are no transitions in

the path, or between a and b (except a and b) all transitions
in the path are unobservable.

Example 2: Consider again the augmented unobservable
subnet in Fig. 2, we have 5(t7, p5) = {t7p1t1p3t3p5, t7p5}
and 5(t7, t4) = {t7p1t1p2t2p4t4, t7p1t1p3t3p4t4}.
After observing a word ν, since pf may acquire or lose

tokens via unobservable paths, we need to compute the maxi-
mum number of tokens that may contained in pf (denoted by
Mpf (ν) hereinafter). Obviously, by Definition 2, the observ-
able transitions whose firing may influence such a number
belong to Tω.

We define the following notions of increasing place (the
place that can access pf via an unobservable path), increas-
ing transition (the observable transition that is the input
of pf or that can access pf via an unobservable path) and
decreasing transition (the observable transition that is the out-
put of pf or that can be accessed from pf via an unobservable
path).
Definition 6: Let pf be a forbidden place. We define the

set of

• increasing places of pf as

PI (·, pf ) = {p ∈ Pω | 5(p, pf ) 6= ∅}. (1)

• increasing transitions of pf as

TI (·, pf ) = {t ∈ Tω ∩ To | 5(t, pf ) 6= ∅}. (2)

• decreasing transitions of pf as

TD(pf , ·) = {t ∈ Tω ∩ To | 5(pf , t) 6= ∅}. (3)

The forbidden place pf can obtain tokens from the places
in PI (·, pf ) and the firing of transitions in TI (·, pf ). In par-
ticular, since Nω is an acyclic FSBCF net, a token may flow
downstream into pf along each unobservable path, no matter
what the distribution of the other tokens is. We denote 8(ν)
as the maximum number of tokens that pf can obtain from
the places in PI (·, pf ) and the firing of transitions in TI (·, pf )

after a word ν. Clearly, the following two equations hold:

8(ε) =
∑

p∈PI (·,pf )

m̃0(p) · |5(p, pf )|, (4)

8(ν) =
∑

p∈PI (·,pf )

m̃0(p) · |5(p, pf )|

+

∑
t∈TI (·,pf )

y(t) · |5(t, pf )|, (5)

where y = π (ν).
Example 3: Consider again the augmented unobservable

subnet in Fig. 2. By Definition 6, we have PI (·, p3) = {p1},
TI (·, p3) = {t5, t7} and TD(p3, ·) = {t4, t6}. Moreover,
8(ε) = 1 and 8(t5t7) = 3.
The firing of an increasing transition can increase the max-

imum number of tokens in pf for sure. However, the firing
of a decreasing transition t does not necessarily decrease
the maximum number of tokens in pf . The reason consists
in some places or the firing of some transitions may also
increase the number of tokens in the set •t of places via
unobservable paths.

Given two nodes a, b ∈ Pω ∪Tω, we use 5̃(a, b) to denote
the set of paths in (Nw, m̃0) satisfying the following four
conditions:
1) a 6= b,
2) the head node and the ending node of the path are a and

b, respectively,
3) between a and b (except a and b) there are no transitions in

the path, or between a and b (except a and b) all transitions
in the path are unobservable,

4) the path does not contain forbidden places.
Example 4: Reconsider the augmented unobservable sub-

net in Fig. 2. We have 5̃(t7, p5) = {t7p5} and 5̃(t7, t4) =
{t7p1t1p2t2p4t4}.
Now we define the following notions of influencing place

(the place that is the input of t or that can access t via an
unobservable path in which each place is not a forbidden
place) and influencing transition (the observable transition
that can access t via an unobservable path in which each place
is not a forbidden place).
Definition 7: Let t be a decreasing transition of pf .

i.e., t ∈ TD(pf , ·). We define the set of
• influencing places of t as

PID(·, t) = {p ∈ Pω \ Pf | 5̃(p, t) 6= ∅}. (6)

• influencing transitions of t as

TID(·, t) = {t ′ ∈ Tω ∩ To | 5̃(t ′, t) 6= ∅}. (7)

For any t ∈ TD(pf , ·), the place in •t is able to obtain
tokens from i) the place pf , ii) the places in PID(·, t), and
iii) the firing of transitions in TID(·, t). We denote 9t (ν) the
maximum number of tokens in the place in •t that obtained
from the places in PID(·, t) and the firing of transitions in
TID(·, t). Clearly, the followings two equations hold:

9t (ε) =
∑

p∈PID(·,t)

m̃0(p) · |5̃(p, t)|, (8)
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9t (ν) =
∑

p∈PID(·,t)

m̃0(p) · |5̃(p, t)|

+

∑
t ′∈TID(·,t)

y(t ′) · |5̃(t ′, t)|, (9)

where y = π (ν).
Example 5: Consider again the augmented unobservable

subnet in Fig. 2. By Definition 7, we have PID(·, t4) =
{p1, p2, p4}, PID(·, t6) = {p5}, TID(·, t4) = {t5, t7} and
TID(·, t6) = {t7}. Moreover, 9t4 (ε) = 3 and 9t4 (t5t7) = 5.
Theorem 1: Let (Nω, m̃0) be an augmented unobservable

subnet, ν be an observed word and y = π (ν). Let Mpf (ν)
be the maximum number of tokens in pf after the observed
word ν.

1) Let ν = ε, it holds that

Mpf (ε) = m̃0(pf )+8(ε). (10)

2) Let t ∈ TI (·, pf ), it holds that

Mpf (νt) =Mpf (ν)+ |5(t, pf )|. (11)

3) Let t ∈ TID(·, t) \ TI (·, pf ), it holds that

Mpf (νt) =Mpf (ν). (12)

4) Let t ∈ TD(pf , ·), we have
a) if

[8(ν)−Mpf (ν)] · |5(pf , t)| +9t (ν)− y(t) > 0,

(13)

then it holds that

Mpf (νt) =Mpf (ν). (14)

b) if

[8(ν)−Mpf (ν)] · |5(pf , t)| +9t (ν)− y(t) ≤ 0,

(15)

then it holds that

Mpf (νt) =Mpf (ν)− 1. (16)

Proof: Conditions 1) to 3) follow from the fact that Nω
is an acyclic FSBCF net, and a token may flow downstream
along each unobservable path no matter what the distribution
of the other tokens is.

After the word ν, the place in •t obtains at most [8(ν) −
Mpf (ν)] · |5(pf , t)| tokens from pf , and at most9t (ν) tokens
from the places in PID(·, t) and the firing of transitions in
TID(·, t). Therefore, the number of tokens in the place in
•t is at most [8(ν) −Mpf (ν)] · |5(pf , t)| + 9t (ν) − y(t).
Inequation (13) means that the place in •t may have enough
tokens to enable t . Otherwise, at least a token in pf
flows downstream into the place in •t to enable t . Hence,
condition 4) holds. �

B. ON-LINE EFS DESIGN
An admissible EFS f must ensure that any observed word ν
generated by (N ,m0)|f satisfies:

ω(pf ) ·Mpf (ν) ≤ k. (17)

We design the EFS f using Algorithm 1.

Algorithm 1 [On-Line EFS Design]
Input: A system (N ,m0,L) with a GMEC (ω, k).
Output: An on-line EFS f .
1. Compute the augmented unobservable subnet (Nω, m̃0).
2. Compute the sets PI (·, pf ), TI (·, pf ) and TD(pf , ·).
3. For all t ∈ TD(pf , ·), compute PID(·, t) and TID(·, t).
4. Let ν = ε and f (ν) = ∅.
5. Compute 8(ν) and Mpf (ν) using (4) and (10),

respectively.
6. While true, do
6.1 for all t ∈ TI (·, pf ), do

• compute Mpf (νt) using (11).
• if Mpf (νt) · ω(pf ) > k , then

f (ν) = f (ν) ∪ {t}.
end if

end for
6.2 all transitions in f (ν) are forbidden to occur, andwait

until a new observable transition t ∈ To \ f (ν) fires.
6.3 if t ∈ TI (·, pf ), then

• compute Mpf (νt) using (11).
end if

6.4 if t ∈ TID(·, t) \ TI (·, pf ), then
• compute Mpf (νt) using (12).
end if

6.5 if t ∈ TD(pf , ·), then
• compute 8(ν) and 9t (ν) using (5) and (9),
respectively.

• if (13) holds, then
compute Mpf (νt) using (14).

else
compute Mpf (νt) using (16).

end if
end if

6.6 let ν = νt and f (ν) = ∅.
end while.

Theorem 2: Let (N ,m0) be a PN system with a GMEC
(ω, k). The EFS f designed by Algorithm 1 is maximally
permissive.

Proof: The proof includes two parts, i.e., 1) the EFS
f is admissible, and 2) for any admissible EFS f ′ and any
admissible word ν, it holds that f (ν) ⊆ f ′(ν).
Condition 1) follows from the facts that m0 is admissi-

ble (by assumption A1), and that after each observation all
observable transitions leading the system to a non-admissible
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marking are forbidden to occur (by Step 6.1 and Step 6.2
of Algorithm 1).

By contradiction, assume that there exists an admissible
EFS f ′ and an admissible word ν such that f (ν) ⊃ f ′(ν). Let
t ∈ f (ν) \ f ′(ν). The transition t is allowed to occur by f ′ but
forbidden to occur by f . By Algorithm 1, it must hold that

Mpf (νt) · ω(pf ) > k.

In other words, the controlled PN system (N ,m0)|f ′ may
enter into a forbidden marking after the word νt . Therefore,
f ′ is not admissible. This is a contradiction. �
We conclude this section with a brief discussion on the

complexity of the proposed method. From Algorithm 1,
we know that themost burdensome part consists in computing
the sets: PI (·, pf ), TI (·, pf ), TD(pf , ·), PID(·, t) and TID(·, t),
whose complexity is polynomial w.r.t. the sum of the number
of nodes and the number of arcs in the PN. In fact, the com-
putation of such sets is quite simple since the augmented
unobservable subnet is an acyclic FSBCF net. In particular,
this part may bemoved off-line. The on-line part of the EFS is
also with low computational cost since it only performs some
simple algebraic operations after each observed transition.

V. EXAMPLE
In this section, we continue to consider the PN system in
Example 1, where ω = (0, 0, 1, 0, 0, 0, 0) and k = 2. We
design the EFS f using Algorithm 1. The procedures are
detailed as follows.

1) We first compute the sets introduced in Section IV-A:

• PI (·, p3) = {p1} and 5(p1, p3) = {p1t1p3}.
• TI (·, p3) = {t5, t7}, 5(t5, p3) = {t5p1t1p3} and
5(t7, p3) = {t7p1t1p3}.

• TD(p3, ·) = {t4, t6}, 5(p3, t4) = {p3t3p4t4} and
5(p3, t6) = {p3t3p5t6}.

• PID(·, t4) = {p1, p2, p4}, 5̃(p1, t4) = {p1t1p2t2p4t4},
5̃(p2, t4) = {p2t2p4t4}, 5̃(p4, t4) = {p4t4};
PID(·, t6) = {p5}, 5̃(p5, t6) = {p5t6}.

• TID(·, t4) = {t5, t7}, 5̃(t5, t4) = {t5p1t1p2t2p4t4},
5̃(t7, t4) = {t7p1t1p2t2p4t4}; TID(·, t6) = {t7},
5̃(t7, t6) = {t7p5t6}.

2) Let ν = ε. It isMp3 (ε) = 1. Let ν′ = t5 and ν′′ = t7.

• Consider the sequence ν′. We compute Mp3 (t5)
using (11) andMp3 (t5) = 2.

• Consider the sequence ν′′. We compute Mp3 (t7)
using (11) andMp3 (t7) = 2.

By Algorithm 1, f (ν) = ∅.
3) Let ν = t7. Compute Mp3 (t7) using (11) and

Mp3 (t7) = 2. Let ν′ = t7t5 and ν′′ = t7t7.

• Consider the sequence ν′. We computeMp3 (ν
′) using

(11) and Mp3 (ν
′) = 3.

• Consider the sequence ν′′. We compute Mp3 (ν
′′)

using (11) and Mp3 (ν
′′) = 3.

By Algorithm 1, both t5 and t7 should be forbidden to
occur, i.e., f (ν) = {t5, t7}.

4) Let ν = t7t6. By (5) and (9), we have 8(t7) = 2 and
9t6 (t7) = 1. Since [8(t7)−Mp3 (t7)] ·1+9t6 (t7)−0 > 0,
we compute Mp3 (t7t6) using (14) and Mp3 (t7t6) =
Mp3 (t7) = 2. Let ν′ = t7t6t5 and ν′′ = t7t6t7.
• Consider the sequence ν′. We computeMp3 (ν

′) using
(11) and Mp3 (ν

′) = 3.
• Consider the sequence ν′′. We compute Mp3 (ν

′′)
using (11) and Mp3 (ν

′′) = 3.
By Algorithm 1, both t5 and t7 should be forbidden to
occur, i.e., f (ν) = {t5, t7}.

5) Let ν = t7t6t6. By (5) and (9), we have 8(t7t6) = 2
and 9t6 (t7t6) = 1. Since [8(t7t6) − Mp3 (t7t6)] · 1 +
9t6 (t7t6)− 1 = 0, we compute Mp3 (t7t6) using (16) and
Mp3 (t7t6t6) =Mp3 (t7t6) − 1 = 1. Let ν′ = t7t6t6t5 and
ν′′ = t7t6t6t7.
• Consider the sequence ν′. We computeMp3 (ν

′) using
(11) and Mp3 (ν

′) = 2.
• Consider the sequence ν′′. We compute Mp3 (ν

′′)
using (11) and Mp3 (ν

′′) = 2.
By Algorithm 1, f (ν) = ∅.

VI. CONCLUSIONS
This paper proposes an on-line EFS for a class of PNs
whose augmented unobservable subnets are acyclic FSBCF
nets. The EFS takes advantage of the structural properties of
such class of nets, and selects a set of transitions to forbid
in response to each observation. It minimally restricts the
behavior of the PNwhile ensuring that the closed-loop system
evolves only within the set of legal markings. Our future work
will focus on extending the method to more general classes
of PNs.
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