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ABSTRACT Natural image quality assessment (NIQA) wins increasing attention, while NIQA models are
rarely used in the medical community. A couple of studies employ the NIQA methodologies for medical
image quality assessment (MIQA), but building the benchmark data sets necessitates considerable time and
professional skills. In particular, the characteristics of synthesized distortions are different from those of
clinical distortions, which make the results not so convincing. In clinic, signal-to-noise ratio (SNR) is widely
used, which is defined as the quotient of themean signal intensitymeasured in a tissue region of interest (ROI)
and the standard deviation of the signal intensity in an air region outside the imaged object, and both regions
are outlined by specialists. We take advantage of the knowledge that SNR is routinely used and concern
whether SNRmeasure can perform as a baseline metric for the development ofMIQA algorithms. To address
the issue, the inter-observer reliability of SNR measure is investigated regarding to different tissue ROIs
[white matter (WM); cerebral spinal fluid (CSF)] in magnetic resonance (MR) images. A total of 192 T∗2,
88 T1, 76 T2 and 55 contrast-enhanced T1 (T1C) weighted images are analyzed. Statistical analysis indicates
that SNR values show consistency between different observers to the same ROI in each modality (Wilcoxon
rank sum test, pw ≥ 0.11; and paired sample t-test, pp ≥ 0.28). Moreover, whether off-the-shelf NIQA
models can predict MR image quality is considered by using SNR values as the reference scores. Four
NIQA models (BIQI, BLIINDS-II, BRISQUE, and NIQE) are evaluated, and the correlation between SNR
values and NIQA results is evaluated. Pearson correlation coefficient (rp) shows that WM-based SNR values
correlates well with BIQI, BLIINDS-II and BRISQUE in T∗2 images (rp ≥ 0.77), BRISQUE and NIQE in
T1 images (rp ≥ 0.75), BLIINDS-II in T2 images (rp ≥ 0.67), and BRISQUE and NIQE in T1C images
(rp ≥ 0.58), while CSF-based SNR values correlates well with BLIINDS-II in T∗2 images (rp ≥ 0.64) and T2
images (rp ≥ 0.60), and all pp < 10−4. The prediction performance analysis further proves the result from
the correlation analysis. Conclusively, SNR measure is reliable to different observations and can perform as
a baseline indicator for the development of MIQA algorithms. In general, BRISQUE and BLIINDS-II are
full of potential to be conditionally used as objective MIQA models toward human brain MR images. This
paper presents the first attempt of using SNR measure to bridge the gap between NIQA and MIQA, and
large-scale experiments should be further conducted to confirm the conclusion in this paper.

INDEX TERMS Signal-to-noise ratio, natural image quality assessment, medical image quality assessment,
magnetic resonance imaging.

I. INTRODUCTION
Natural image quality assessment (NIQA) wins increas-
ing attention [1]–[8] and a variety of NIQA models are
available [2], [9]–[14], such as BIQI [15], BLIINDS-II [16],

BRISQUE [17] and NIQE [18]. Furthermore, a large number
of novel algorithms, improvement of existing methods and
applications of NIQA models to other fields are presented in
each year [19]–[23]. However, the general NIQA models are
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rarely used in themedical community [24]. One reason comes
from the fact that various artifacts in medical images are not
seen in natural images. These artifacts, hardware-related and
human-related, hamper the direct application of the state-
of-the-art NIQA models for medical image quality assess-
ment (MIQA). Another cause is from imaging characteristics,
and for accurate decision making, images are acquired from
different modalities. Last but not the least, high-quality
images support clinical diagnosis, while the quantification of
medical image quality is not a reliable indicator of diagnostic
accuracy.

The quality of medical images is closely related to
image interpretation, disease diagnosis, surgical planing
and treatment delivery. In each day, various types of
imaging modalities are used, such as ultrasound, com-
puterized tomography (CT) and magnetic resonance (MR)
imaging, not to speak of these devices under clinical
trial [25]–[27]. MIQA has been used in quality assur-
ance [28]–[30], comparison of image restoration meth-
ods [31]–[35] and clinical diagnosis [36]–[39]. Generally,
MIQA can be divided into subjective and objective assess-
ment [40]–[43]. In routine work, subjective assessment is
common, such as hand-hold ultrasound imaging for diag-
nosis and X-ray imaging for lung cancer screening. Objec-
tive assessment can be further categorized into full- and
no-reference estimation. The former require high-quality ref-
erence images, while the reference is hard or unavailable
to access in medical community. To tackle this problem,
researchers make use of the images from advanced imag-
ing devices as the reference to validate the designed algo-
rithms with images from common devices. However, this
kind of approaches causes new problems, such as uncontrol-
lable motion and different imaging characteristics [44]–[46].
Relatively, no-reference MIQA is more useful but challeng-
ing, because no information regarding the reference is avail-
able for the assessment.

To the best of our knowledge, a couple of MIQA stud-
ies utilize NIQA methodologies. The first study [47] builds
a benchmark data set which includes 6 types of synthe-
sized distortions based on 25 MR images. The distortions
include Rician noise, Gaussian white noise, Gaussian blur,
Discrete Cosine Transform, JPEG and JPEG2000 compres-
sion. It involves 28 subjects and a total of 21,700 human
evaluation to quantify the MR image quality. The study
investigates the correlation between the subjective scores and
13 full-reference NIQAmodels. The second one [48] is based
on the benchmark database built in the first study. It modifies
a general NIQA model of BRISQUE [17] to predict the qual-
ity of MR images. However, the drawbacks of both studies
come from the high cost, large disparities between the simu-
lated distortions and the real-world medical imaging. In addi-
tion, limited MR images and two MR imaging sequences are
concerned.

In medical community, one daily used indicator of image
quality is signal-to-noise ratio (SNR) [49]–[54]. It has been
applied in the estimation of the development of new hardware

and image processing algorithms [37], [47]. How to calculate
SNR is based on the signal intensities of two separate regions
from a single image. Thus, SNR measure is also known as a
‘‘two-region’’ approach. One region is outlined to determine
the tissue signal and the other is to measure the background
noise [49]–[51]. And accordingly, fair comparison of med-
ical image quality with SNR is burdensome across stud-
ies [40]. Above all, SNR values change in accordance with
the outlined regions. Specially, different tissue regions are
outlined for specific purposes; and even for the same purpose,
the regions delineated by two observers or delineated twice
by one observer are not the same. Besides, a number of
factors influence the quality of acquired images. Taking MR
imaging for instance, these factors are not limited to device
venders, magnetic field strengths, pulse sequences, field of
view, matrix size, slice thickness and reconstruction methods.
In addition, image acquisition is prone to noise and artifacts
which are embodied in diverse imaging characteristics across
modalities.

In this study, we take advantage of the knowledge that SNR
is routinely used and concern whether SNR can perform as
a baseline metric for the development of MIQA algorithms.
To address the issue, the inter-observer reliability of SNR
measure is first evaluated. In total, 192 T∗2, 88 T1, 76 T2
and 55 contrast-enhanced T1 (T1C) weighted MR images are
analyzed.White matter (WM) and cerebral spinal fluid (CSF)
are outlined as the tissue region of interest (ROI) for SNR
measure. After the consistency of SNR measure is verified,
we further consider the potentiality of using SNR measure
as a baseline indicator for the development of MIQA mod-
els. Consequently, the performance of four general NIQA
(BIQI, BLIINDS-II, BRISQUE and NIQE) models are stud-
ied. Based on the 411 in vivo human brain images and 4 MR
sequences, this study not only has verified the reliability of
SNR measure, but also has shed light on developing auto-
matic, objective and no-reference MIQA algorithms by using
SNR as the baseline indicator.

II. MATERIALS AND METHODS
A. DATA COLLECTION
On a 3.0 Tesla MR scanner (SIEMENS, Germany) by using
an 8-channel brain phased-array coil, a total of 411 images
are collected among which 192 are T∗2 weighted images of
normal brain, while 88 T1, 76 T2 and 55 contrast-enhanced
T1 (T1C) weighted images of brain with tumors.
Specifically, T∗2 images are acquired by using gradient-

echo pulse sequence (flip angle: 15◦; field of view:
220×220 mm2; image matrix: 384×384; slice thickness:
3.0 mm; repetition time (TR): 200 ms; and echo time (TE)
ranging from 2.61 ms to 38.91 ms with an equal interval
3.3 ms) [32]. On the other hand, T1, T2 and T1C images
are scanned by using spin echo sequence with different TR
(535 ms, 3500 ms and 650 ms) and TE (8 ms, 105 ms
and 9 ms) pairs. Besides, flip angle is 15◦, field of view
220×220 mm2 and slice thickness 1 or 2 mm. In particular,
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thematrix size of T1 and T1C images ranges from 512×432 to
668×512 and the matrix size of T2 images is from
384×324 to 640×640.

B. EXPERIMENT DESIGN
The whole experiment can be divided into three phases.
At first, the reliability of SNR measure is evaluated between
different observations regarding the same tissue ROI in each
imaging sequence. Wilcoxon rank sum test [55] and paired
sample t-test [56] are used to analyze the inter-observer dif-
ference. The significant level is p = 0.05.
Secondly, the correlation between SNR values and NIQA

results is analyzed by using Pearson correlation coeffi-
cient (rp) [57]. Note that R (http://www.R-project.org) is used
to perform the statistical analysis in the first and the second
phase.

At last, when SNRwm or SNRcsf performs as the surrogate
of the reference MIQA indicator, the prediction performance
of NIQA models (BIQI, BLIINDS-II, BRISQUE and NIQE)
is evaluated with two criteria. One criterion is Pearson linear
correlation coefficient (PLCC) which quantifies the predic-
tion accuracy. The other is Spearman rank-order correlation
coefficient (SROCC) which measures the prediction mono-
tonicity. The values of PLCC and SROCC range in [0, 1] and
a higher value indicates better rating prediction. In the end,
Kendall rank-order correlation coefficient (KROCC) is also
estimated. Note that before PLCC, SROCC and KROCC esti-
mation, a nonlinear regression is applied to map the predicted
scores to the reference score scope by using a five-parameter
logistic function as follows,

Q(s) = q1(
1
2
−

1
1+ eq2(s−q3)

)+ q4s+ q5, (1)

where s and Q(s) are the input score and the mapped score,
and qi (i=1,2,3,4,5) are optimized during the nonlinear
fitting.

C. SNR MEASURE
There are two approaches to measure SNR. One method is to
delineate two separate regions from a single image [49], [50].
By taking the signal (S) to be the mean pixel intensity
in a tissue ROI (µROI ) and the noise (δ) to be the stan-
dard deviation of pixel intensities values in a background
air region (σAIR), SNR value to the image is quantified as
below,

SNRROI =
S
δ
= 0.655×

µROI

σAIR
. (2)

The factor of 0.655 is due to the Rician distribution of the
background noise in amagnitudeMR image. It arises because
noise variations can be negative and positive. In addition,
the delineated background region should be free of anatomi-
cal structures and ghosting artifacts.

The other one takes image homogeneity into consideration.
If the image is not with so good homogeneity, the SNR may
be derived from the following method [58]. First, two images

are acquired by consecutive scans with identical receiver and
transmitter settings. Then, subtract the images one from the
other to generate a difference image. Provided the image has
not suffered from ghosting artifacts or any other instability,
the only difference between the two original images should be
due to noise. Using either of the original images, the signal (S)
is defined as the mean pixel intensity value in an original
tissue ROI (µoROI ), and the noise (δ) is the standard deviation
in the same region on the subtracted image (σsROI ), then SNR
is estimated as below,

SNRROI =
S
δ
=
√
2×

µoROI

σsROI
. (3)

The factor
√
2 arises due to the fact that the standard devia-

tion is derived from the subtraction image and not from the
original image.

In this study, we use the first approach (2) for SNR
measure of MR image quality, since the second method
is targeted to estimate the quality of MR images with
inhomogeneity.

D. IMAGE PRE-PROCESSING
To each image, pixel intensities are linearly scaled to
8-bit storage ([0, 255]). Two ROIs (WM and CSF) and two
AIR regions are outlined. A non-physician (observer A, OA)
and a physician (observer B, OB) with more than 15-year
experience are asked to localize each region with six points
independently. They agree on that the size of outlined tis-
sue regions should be as large as possible. As to T1, T2
and T1C images, they further agree on that ROIs should
be homogeneous and keep away from tumor regions. Then,
outlined regions are refined by using a close-form curve-
fitting method [59] which takes the six points to each out-
lined region as the control points and utilizes Hermite cubic
curve [60] for smooth interpolation between the successive
points in a clockwise direction. At last, the refined regions
are as input to the in-house built code withMATLAB to quan-
tify the values of WM-based SNR (SNRwm) and CSF-based
SNR (SNRcsf ).

FIGURE 1. Tissue and air regions for SNR measure. (A), (B), (C) and (D)
respectively shows one T∗

2, T1, T2 and T1C weighted MR images. Note that
red sparkles are primarily points manually localized by observers.
Outlined WM, CSF and AIR regions are in closed curves with different
colors, pink, blue and yellow, respectively. Note that images have been
cropped for display purpose.

Figure 1 shows four cases of outlined regions. Red sparkles
are primarily points localized by observers, and refined WM,
CSF and AIR regions are in closed curves with pink, blue and
yellow lines, respectively.
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FIGURE 2. Quantitative analysis of the inter-observer reliability of SNR measure using Bland & Altman plots. The solid lines indicate the mean
values (Mean) of two SNR observations and the dashed lines indicate the 95% confident interval of the difference between the observations.

E. NO-REFERENCE NIQA ALGORITHMS
This study tests 4 no-reference NIQA models primarily used
in computer vision field. These algorithms utilize natural
scene statistics (NSS) model to estimate the general qual-
ity of natural images. Specially, BIQI [15] needs no prior
knowledge of the distorting process after trained and it can be
extended to any kinds of distortions. BLIINDS-II [16] needs
minimal training and adopts a simple probabilistic model
for score prediction. BRISQUE [17] uses the scene statis-
tics of locally normalized luminance coefficients to quantify
possible losses of ‘‘naturalness’’ in the image due to the
presence of distortions, thereby leading to a holistic measure
of quality. NIQE [18] constructs a ‘‘quality-aware’’ collection
of statistical features based on a simple and successful space
domain NSS model.

All four NIQA algorithms are implemented with
MATLAB and the codes provided by the authors are eval-
uated without any modifications. For full details of these
algorithms, please refer to corresponding literature [15]–[18].

III. RESULTS
A. INTER-OBSERVER RELIABILITY
Figure 2 shows the inter-observer reliability of SNR values by
using Bland & Altman plot which illustrates the difference
against the average of two observations [61], [62]. In each
plot, the horizontal and the vertical axis respectively denotes
the average and the difference of two SNR observations.
Furthermore, the blue solid line is drawn at the mean differ-
ence (Mean) between SNR measures, and the brown dashed
ones are drawn at the limits of agreement which are defined
as the Mean plus and minus 1.96 times of the standard devia-
tion (SD) of the difference of SNR measure. Fig. 2 indicates
that major points (>89%) are localized between the limits of
agreement.

Table 1 shows the inter-observer reliability of SNR mea-
sure analyzed with Wilcoxon rank sum test (pw) and paired
t-test (pp). It is observed that the minimal pw is 0.11 and
the minimal pp is 0.28, both of which is larger than 0.05.

TABLE 1. Inter-observer reliability of SNR measure in each modality.

Meanwhile, it is found that the p-value from SNRwm is larger
than that from SNRcsf in each imaging sequence.

B. CORRELATION BETWEEN SNR VALUES
AND NIQA RESULTS
Table 2 shows Pearson correlation coefficients (rp) between
SNRROI values and NIQA results, in which the left to the
right lists is the names of NIQA models, the rp between
NIQA results and SNRwm and SNRcsf values, respectively.
The bold-faced values denote rp ≥ 0.60. When SNRwm
values play as the surrogate of the reference MIQA indicator,
the result from BIQI, BLIINDS-II and BRISQUE correlates
strongly on T∗2 (rp ≥ 0.77), the result from BRISQUE and
NIQE correlates strongly on T1 (rp ≥ 0.76), the result from
BLIINDS-II correlates strongly on T2 (rp ≥ 0.67), the result
from BRISQUE and NIQE correlates moderately on T1C
(rp ≥ 0.61) images; while when SNRcsf values perform as the
MIQA indicator, the result fromBLIINDS-II showsmoderate
correlation on T∗2 (rp ≥ 0.64) and T2 (rp ≥ 0.61) images.

C. PERFORMANCE OF NIQA MODELS
ON MEDICAL IMAGES
Table 3 shows the prediction accuracy of NIQA models
(the left) on the medical MR images when using SNRwm
(the middle) and SNRcsf (the right) as the reference scores
of image quality. The bold-faced values denote the PLCC
values larger than 0.60. It is observed that, when SNRwm
performs the reference score, BRISQUE demonstrates the
notable performance that show good prediction on T∗2,
T1 and T1C weighted images, followed by BLIINDS-II
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TABLE 2. Quantitative analysis of the correlation between ROI-based SNR values and NIQA results. The left is the NIQA models, the middle and the right
are the correlation between NIQA results and the SNRwm and the SNRcsf values, respectively. Note that the SNRwm and the SNRcsf values respectively
perform as the surrogate of the reference MIQA indicator to evaluate the prediction correlation of four no-reference NIQA models primarily used in
computer vision field.

TABLE 3. PLCC values of NIQA models when SNR measure performs as the baseline indicator of medical image quality. The left lists the name of NIQA
models, the middle and the right are the PLCC value of NIQA models when the SNRwm and the SNRcsf measure respectively plays as the surrogate of the
reference scores.

TABLE 4. SROCC values of NIQA models when SNR measure performs as the baseline indicator of medical image quality. The left lists the name of NIQA
models, the middle and the right are the SROCC value of NIQA models when the SNRwm and the SNRcsf measure respectively plays as the surrogate of
the reference scores.

TABLE 5. KROCC values of NIQA models when SNR measure performs as the baseline indicator of medical image quality. The left lists the name of NIQA
models, the middle and the right are the KROCC value of NIQA models when the SNRwm and the SNRcsf measure respectively plays as the surrogate of
the reference scores.

(T∗2 and T2), NIQE (T1 and T1C) and BIQI (T∗2); while
when using SNRcsf as the reference score, only BLIINDS-II
shows the remarkable prediction over T∗2, T1 and T2 weighted
images.

Table 4 demonstrates the SROCC values of NIQA models
(the left) on MR images when using SNRwm (the middle) and
SNRcsf (the right) as the reference. The bold-faced values
in red and blue denote the SROCC values larger than 0.60.

When using SNRwm as the reference, BRISQUE again
achieves good prediction on T∗2, T1 and T1Cweighted images,
followed by BLIINDS-II (T∗2 and T2), NIQE (T1 and T1C)
and BIQI (T∗2); while when using SNRcsf as the reference,
only BLIINDS-II shows notable results over T∗2 and T2
weighted images.

Table 5 summerizes the KROCC values of NIQA mod-
els (the left) when using SNRwm (the middle) and SNRcsf
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FIGURE 3. Perceived medical image quality. To each imaging sequences (T∗

2, T1, T2 and T1C), two MR images are illustrated. Note that images
have been cropped for display.

(the right) as the reference. The bold-faced values in red and
blue denote the values larger than 0.50. When using SNRwm
as the reference, BRISQUE obtains fair prediction on T∗2, T1
and T1C weighted images, followed by NIQE (T1 and T1C)
and BLIINDS-II (T∗2); while when SNRcsf values perform
as the reference scores, only BLIINDS-II shows fair results
over T∗2 weighted images. It should be mentioned that only
KROCC values from BRISQUE results larger than 0.60 in
terms of SNRwm scores on T∗2 weighted images.

D. PERCEIVED IMAGE QUALITY
Figure 3 demonstrates eight MR images for medical image
quality comparison. In each sequence, two images are
selected. Based on two SNR measures, to the T∗2, T1, T1C
and T2 weighted images in the top row, the average value
of SNRwm and SNRcsf is 42.10 and 42.05, 31.97 and 5.51,
27.03 and 5.80, and 104.28 and 396.14, respectively. Simi-
larly, the average value of SNRwm and SNRcsf is 30.82 and
40.28, 63.00 and 12.55, 98.56 and 11.95, and 43.43 and
309.67 to theMR images in the bottom row. Visually, the CSF
region is as dark as the background air region in T1 and T1C
MR images, and the intensity of CSF region changes dramat-
ically from T1, T1C to T∗2 and T2 imaging.
To each image, the predicted score of NIQA models after

non-linear fitting and its baseline score of SNRwm are shown
in pair in Figure 4, where the horizontal axis indicates
SNR measures and the vertical axis indicates nonlinearly
fitted NIQA scores. For differentiation, the points in red,
green, blue and pink colors stand for the results from BIQI,
BLIINDS-II, BRISQUE and NIQE, respectively. Moreover,
the markers of circle and square correspond to the first (OA)
and the second (OB) observation of SNR measure. The line

FIGURE 4. Comparison of the predicted score of NIQA models after
non-linear fitting and the baseline score of SNRwm. The points in red,
green, blue and pink colors stand for the results from BIQI, BLIINDS-II,
BRISQUE and NIQE, respectively. Moreover, the markers of circle and
square correspond to the first (OA) and the second (OB) observation of
SNR measure. The line connecting two points further quantifies the
difference of two baseline SNR measures (absolute horizontal distance)
and two predicted score after fitting with different SNR observations as
the reference (absolute vertical distance).

connecting two points further quantifies the difference of two
baseline SNR measures (absolute horizontal distance) and
two non-linearly predicted scores with different SNR mea-
sure as the reference (absolute vertical distance). As shown
in Figure 4, the absolute difference of two SNR measures
are less than 15 in each plot. Meanwhile, the nonlinearly
fitted scores of each NIQA model are close to each other
when using SNRwm values from OA and OB as the surrogate
indicator of medical image quality.
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FIGURE 5. Comparison of the predicted score of NIQA models after
non-linear fitting and the baseline score of SNRcsf . The points in red,
green, blue and pink colors stand for the results from BIQI, BLIINDS-II,
BRISQUE and NIQE, respectively. Moreover, the markers of circle and
square correspond to the first (OA) and the second (OB) observation of
SNR measure. The line connecting two points further quantifies the
difference of two baseline SNR measures (absolute horizontal distance)
and two predicted score after fitting with different SNR observations as
the reference (absolute vertical distance).

Figure 5 compares the non-linearly fitted scores of NIQA
models and the baseline scores of SNRcsf . As aforemen-
tioned, the axis, the markers, the colors and the line are
interpreted in the same way. It suggests that the absolute
difference of two SNR measures are less than 10, except the
difference of 200 is found in the second case of T2 weighted
MR image. Meanwhile, the SNRcsf is less than 16 in T1 and
T1C weighted MR images, while it increases to 45 in T∗2
images and then reaches 430 in T2 weighted MR images.

IV. DISCUSSION
This study has verified the inter-observer reliability of SNR
measure regarding different tissue ROIs in each of four MR
imaging sequences. The correlation analysis and the predic-
tion performance of four NIQA models by using SNR values
as the baseline indicator have further verified the feasibility
of two models, BLIINDS-II and BRISQUE, for automated,
objective and no-reference MIQA applications. Accordingly,
SNR measure can conditionally perform as a baseline indica-
tor for the future development of MIQA algorithms.

The inter-observer reliability of SNR measure is validated
with Bland & Altman plot (Figure 2) and Pearson correlation
analysis (Table 1). And thereby, a non-physician can indepen-
dently perform the SNR measure as well as an experienced
physician does. Moreover, both pw and pp from SNRwm are
respectively larger than those from SNRcsf in each imaging
protocol. This result indicates that WM is a relatively better
choice than CSF as the tissue ROI in the quality estimation
of MR brain images. That is mainly because the intensity of
CSF regions in different sequences changes more obviously
than those of WM regions (Figure 3), which influences the
quantification of SNRcsf values (Figure 5).

The Pearson correlation analysis between SNR values
and NIQA results suggests a good correlation between
BLIINDS-II and SNRcsf on T∗2 and T2 images (Table 2).
Since in T∗2 and T2 weighted MR images, CSF region
presents relatively higher intensity over other tissue regions
that enhances the reliability of SNRcsf measure (Figure 3).
In comparison to CSF region, WM is once again proved to be
a relatively better choice in the quality estimation of brain
MR images, since more NIQA models correlate well with
SNRwm. This phenomenon is verified in the perceived image
quality analysis (Figure 3, 4 and 5). Moreover, the predic-
tion performance of NIQA models on medical images has
been investigated (Table 3, 4 and 5). Notably, BRISQUE
works well on T∗2, T1 and T1C sequences, while BLIINDS-II
shows superiority on T∗2 and T∗2 images independent of the
selection of tissue regions. Therefore, with necessary mod-
ifications, it is possible to transfer NIQA models primarily
designed in computer vision field for medical image quality
estimation [48].

SNR is an important quantity and two preconditions should
be considered for its measure based on the ‘‘two-region’’
approach. First, it requires a spatially homogeneous distri-
bution of noise over the whole image. Second, the statistical
intensity distribution of the noise should be known, so that
the noise properties measured in a background area can be
used to deduce the noise distribution overlaying the anatomic
structures in the foreground. Fortunately, these preconditions
can be laid aside because of the development of advanced
MR imaging sequences [52], [54], [63]–[67].

This study involves 411 MR images from four imaging
sequences. We take advantage of the knowledge that SNR
is daily used in clinic and concern the inter-observer relia-
bility of SNR measure. After the inter-observer reliability is
verified, we further consider the feasibility of using SNR as
the baseline indicator for the development ofMIQAmethods.
Four off-the-shelf NIQA models are evaluated and the result
is promising. First, NIQA models show good correlation to
SNRwm measure on one to three protocols. That means, with
considerably modifications, NIQA models can be delicately
applied to specific MR imaging modalities for quality esti-
mation. Second, the images in each modality are not acquired
with the same imaging sequence, such as different TE in T∗2,
slice thickness and matric size in T1, T2 and T1C. Accord-
ingly, SNR measure has certain ability of generalization that
places great demands on the development of MIQA models.

Further improvement can be made from several points.
This study measures local image quality and the SNR val-
ues correspond to the delineated regions in the brain MR
image. In fact, SNR can be formulated from global signal
intensity by replacing the signal from a tissue region with
the signal from the whole object region [40]. More general
approaches include utilizing Shannon’s theory to represent
the image content and to model the spatial spectral power
density of the image [41] or analyzing the air background
of structural brain magnitude images [68]. Notably, some
studies explore to connect SNR values and the diagnostic
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accuracy or detectability [30], [36], [69], since the ultimate
purpose of medical imaging is for detectability or diagnosis
of a certain disease.

V. CONCLUSION
This study has verified the inter-observer reliability of ‘‘two-
region’’ SNR measure regarding different tissue regions of
interest in the brain MR images. The correlation analysis of
SNR values andNIQA results indicates that SNR can perform
as a baseline indicator to assess MR image quality. Further-
more, by using SNR values as the surrogate of image quality
scores, the prediction performance of NIQA models suggests
that both BRISQUE and BLIINDS-II can be conditionally
used for automated, objective and no-reference MIQA. This
study presents the first attempt of using SNR to bridge the gap
between NIQA and MIQA. A large-scale experiment should
be further conducted to confirm the conclusion in this work.
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