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ABSTRACT In this paper, we propose an agent-based architecture for remote collaboration support systems
that enables the exchange of synchronous and asynchronous multimedia streams at remote sites using an
Internet of Multimedia Things (IoMT) approach. First, we design and implement Internet of Things (IoT)
applications that contain simple sensors and actuators. These applications are modularized into agent-
based subsystems that can be incorporated into an IoT application with agent operations. Our aim is to
develop remote collaboration support applications composed of video, data, and document channels. Because
the applications will exchange enormous multimedia streams between remote sites, we propose a novel
IoMT system architecture composed of several channel types that consist of various resource and network
components. Users can dynamically incorporate these channels into applications to update the IoMT system’s
effects. Finally, we demonstrate and discuss the experimental results of our application to validate its ability
to rapidly supply multimedia resources via multi-agent collaboration. Adding to its novelty, the developed
system is in practical use for collaboration between France and Japan.

INDEX TERMS Agent-based architecture, channel, Internet of multimedia things, multimedia resource,
remote collaboration support.

I. INTRODUCTION
Designing tools to support collaboration between remote
teams is a challenge. Systems integrating these tools are
necessarily complex because they must allow different types
of activities and capitalize on the documents and data
produced or used during collaborative work sessions, and
because the interactivity requirements of users, companies,
and organizations have become highly demanding in the
Internet age. In [1], we described the types of activities that
may be performed during remote collaboration.

Communication between remote teams is also very impor-
tant, and the use of a good video conference system is manda-
tory. Many solutions propose to integrate tools into closed
videoconference systems. Section II-D describes some of
these systems. Their drawback is that some integrated tools
are useless or maladapted to real-world needs, and that other
desirable tools may be missing. They are also often designed
to connect several individual users rather than remote teams.

They may provide some support for simple conversations
between people; however, they are insufficient to facilitate
true collaboration between teams.

Open solutions that include a videoconferencing system
are better solutions, but they must also provide options for
adding new tools based on a team’s requirements. Videos
recorded during work sessions are among the data produced
by teams and, thus, can be reused. Moreover, these solutions
link the data produced by disparate tools for better added
value.

Recently, Alvi et al. [2] proposed the Internet of Multi-
media Things (IoMT) as a ‘‘novel paradigm in which smart
heterogeneous multimedia things can interact and cooperate
with one another and with other things connected to the Inter-
net to facilitate multimedia-based services and applications
that are globally available to the users.’’ The open solution
concepts that we recommend are completely in accord with
this paradigm, which could come to define such systems.
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In this context, the main characteristics of a videoconferenc-
ing tool as a component of a global solution for supporting the
collaboration of remote teams can be summarized as follows:

• End-to-end delay: Network characteristics should
ensure an acceptable delivery rate for multimedia
content.

• Several points of view: Several multimedia devices
(microphones, cameras, etc.) should be added in a plug-
and-play manner to deliver different points of view to
teams.

• Access: Multimedia content should be processed and
stored for both synchronous and asynchronous access.

One of the most challenging research issues concerning
collaboration support between remote teams lies in the design
of an agent-based architecture model that meets users’ needs
according to different collaboration objectives, situations, and
sizes. Components of support systems should be added and
removed dynamically based on changes in the context of the
collaborations.

To tackle this issue, we prototype several IoT applications
that incorporate multimedia devices into programs working
in a server. In these applications, sensors and actuators are
modularized into agent-based subsystems to be dynamically
incorporated into IoT applications. We formalize a five-layer
model for IoT applications that is inspired by Alvi’s IoMT
architecture [2].

However, the architecturemodel of IoT applications cannot
be applied to our remote collaboration model [1] because
it cannot incorporate and control multimedia communica-
tion and cloud facilities in closed applications. Therefore,
we introduce a novel concept of channels that incorporate,
establish, and control multimedia communication and cloud
resources into an IoMT system architecture. Based on this
architecture, we develop a remote collaboration support sys-
tem and conduct experiments to validate the rapid availability
of multimedia resources on each site, as well as threemethods
for adding new compatible channels: adding agents, updating
effects, and adapting mechanisms [3].

Section II presents some related work concerning
domains in which such architectures must be considered.
In Section III, we introduce the notion and structure of fast
availability of multimedia resources in IoT applications stem-
ming from previous studies. In Section IV, we define multi-
media channels and synchronous and asynchronous activities
in remote collaboration. In Section V, we design an agent-
based architecture for remote collaboration support systems
that include multimedia channels. Section VI discusses the
results of experiments conducted between sites in Japan and
France.

II. RELATED WORK
A. IoT ARCHITECTURES
As identified by Atzori et al. [4] and Razzaque et al. [5],
the IoT consists of three components: the things themselves,
an adapted middleware, and semantics. If we consider the
first two components to be generic, then we must accept

that the semantic aspect of the data exchanged through the
middleware depends on the system’s application [6].

In the Architectural Reference Model (see ARM1 for
details) defined in the IoT-A European research project [7],
things consist of three types of devices—sensors, tags, and
actuators—and can provide data to different external systems.
The physical entities are the identifiable parts of the physical
environment and can be almost any object or environment.
The virtual entities are virtual counterparts of the physical
objects, defining their functionalities, whereas things receive
and provide data to fulfill these functionalities.

In [2], Alvi et al. proposed an architecture for IoT systems.
We have reproduced the figure shown on page 91 of this work
in Figure 1, keeping only the titles of the architecture layers
for comparison with our own architecture, which is described
in Section V-B.

FIGURE 1. IoT architecture surveyed by Alvi et al. [2].

B. IoMT AND MULTIMEDIA RESOURCES
Alvi et al. [2] defined the IoMT as ‘‘the global network
of interconnected multimedia things which are uniquely
identifiable and addressable to acquire sensed multimedia
data or trigger actions as well as possessing capability to
interact and communicate with other multimedia and not
multimedia devices and services, with or without direct
human intervention.’’ They also noted that ‘‘the services and
resources layer is meant to provide the discovery and search
functionalities, so that things are not restricted to provide
data to a single specific vertical deployment but are available
to external systems for the benefit of the connected things
ecosystem.’’

Indeed, we also consider that multimedia resources must
allow horizontal communication with other multimedia
resources (e.g., when sending video streams), and vertical
communication toward the core of the applications to which
they belong. Alvi et al. [2] also reported that ‘‘virtual enti-
ties augment the things with additional functionalities imple-
mented by the cloud.’’ However, it is important that each
resource component does not directly implement the interface
needed to communicate with other entities situated in the
cloud, such as services or agents, but uses an appropriate
translator, which we call a resource connector [8], [9].

1Final Architectural Reference Model for the IoT: http://www.
iot-a.eu/public/public-documents/d1.5/view
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Botta et al. [10] introduced the role of cloud entities
inside IoT architectures. They coined the term ‘‘CloudIoT
paradigm’’ and provided a CloudIoT application landscape.
This paradigm involves new types of applications, and new
advances are required to reach this level of integration. Most
current studies consider communication, storage, and com-
putation to be advantages of cloud integration. However,
the implementation of our platform mainly involves storage
(of videos, documents, etc.) and computation. Communi-
cation for stream transfer is considered to be peer-to-peer
communication.

C. MULTIMEDIA DEVICES FOR COLLABORATION SUPPORT
Our IoT vision implies a much wider category of IoT objects
than the use of simple objects such as sensors. Any type
of touchscreen device may potentially be an IoT object.
However, their ability to serve as both input and output
devices makes their integration into applications more
difficult.

Multitouch displays are increasingly integrated into office
environments [11] and other public areas. We must consider
two types of displays: horizontal and vertical. Large vertical
touch displays (boards) are easy to install and are mainly
single-user displays because of their orientation and because
they can show any application designed for simple screens.

Jones et al. [12] presented the TATIN-PIC project,
the domain of which is preliminary project design. Project
management activities gain added value when using large
touch devices. Writing something on a tabletop requires
opening a virtual keyboard, making it hard to edit even a
short text [13]. Technological advances are still needed to
more naturally render creative activities. Moreover, the use of
mobile devices that interact with these surfaces to overcome
their limitations is still necessary [14].

D. VIDEOCONFERENCE TOOLS
In this section, we give examples of communication tools
(Skype, WebEx, etc.) and IoT platforms, and show why they
do not fulfill our requirements.

Skype2 is not intended for professional communication,
but for personal communication. It links one or more individ-
uals already registered to the platform. A chat and messaging
system distributes comments and textual information and
transfers documents. A main disadvantage of Skype is that
these documents may be scattered across conversations, and
no direct capitalization is available to benefit meetings.

WebEx3 brought online meetings that include videoconfer-
encing with screen-sharing viewing modes to regular people.
Presenters can be switched, desktops can be shared, ideas
can be sketched on a virtual whiteboard, and meetings can
be recorded. WebEx is an interesting tool that achieves most
of the requirements of our architecture, even if it is a closed
system. However, remote collaboration support tools need

2Features of Skype: https://www.skype.com/en/features/
3https://www.webex.com/

several video streams from different cameras and syn-
chronous data applications, making them much more sophis-
ticated than a simple virtual whiteboard, in which each idea
can be managed independently.

E. VIDEOCONFERENCING METRICS
During videoconferences, users must feel comfortable when
communicating. They should have perfect speech intelligibil-
ity and perceive satisfactory lip synchronization when people
are speaking. Hence, measuring the quality of videoconfer-
encing applications is important for researchers.

Bartoli et al. [15] considered intrastream and interstream
synchronization of speech and video in videoconferencing
services over IP networks. They developed specific algo-
rithms for preventive control of the speech stream and reactive
control of the video stream.

Because users must feel comfortable when communicating
via these applications, analyzing their performance and the
quality of experience they provide is mandatory. Lu et al. [16]
recommended studying the following aspects of videoconfer-
encing applications: i) traffic load control and balancing to
better use limited bandwidth resources and enable stable con-
versation and ii) stream re-encoding to limit overall traffic.

We find in [17] three levels of signals: i) standard, with
320 × 240 pixels of video resolution and a 15 frame-per-
second (fps) video signal rate; ii) high quality, with 640×480
pixels of resolution and a frame rate of 30 fps; and iii) high
definition (HD), with the highest resolution, 1280 × 720
pixels, and a frame rate of 30 fps. In our experiments, we con-
sider high-quality signals.

III. AGENT-BASED ARCHITECTURE OF IoT APPLICATIONS
FOR MODULARIZATION OF MULTIMEDIA RESOURCES
A. RESOURCE CONNECTOR FOR MODULARIZATION OF
IoT RESOURCES
Figure 2 shows the generic structure of a module. It contains
a multimedia device that is incorporated into an application,
a resource (a plugin program) to control the device, and a
resource connector that enables the resource to communicate
with service execution agents for an application. The resource
connector is an agent program that exchanges agent messages
with the service execution agents and incorporates resources
as plug-in programs. The resource connector has a knowledge
base for saving specifications of a resource and a multimedia
device as described by the resource’s developer. A service
execution agent can find a proper multimedia device using a
cooperative agent protocol by broadcasting a request message
that contains a requirement specification demanded by the
application’s user [8], [9].

For example, in Figure 2, an input module has a stream
directed from a multimedia device (a microphone) toward
a resource (a speech-to-text (STT) engine), and a resource
connector composes an agent message that contains the rec-
ognized text in a format that is defined in the knowledge base
of the resource connector. Alternatively, an output module
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FIGURE 2. Generic structure of a module to incorporate resources into
IoT applications via a resource connector and service execution agents.

produces a stream toward a multimedia device (a speaker)
via a resource (a text-to-speech (TTS) engine) that is input
by a resource connector that receives an agent message from a
service execution agent that contains text (see the right side of
Figure 2). That is, each resource connector translates an agent
message from (or to) a service execution agent to (or from)
a stream corresponding to characteristics of a multimedia
device using its knowledge base.

A module composite application uses more than one mod-
ule. Its core communicates with the agent space, and each of
its modules communicates with agents via the resource con-
nector (see Figure 2). The application can add and exchange
devices dynamically thanks to service execution agents and
resource connectors. A resourcemay, in some cases, also send
commands and data to another resource.

B. AGENT LAYER TO INCORPORATE MODULES
INTO IoT APPLICATIONS
Figure 2 details the lower layers of our system architecture,
and Figure 3 shows the five-layer architecture of complete
IoT applications that include a resource connector agent layer
to incorporate modules into an application working inside the
application layer. The agents communicate with applications

FIGURE 3. Agent-based architecture for the Internet of Things.

via the IPC protocol and with resource connectors via an
agent-based protocol, as shown in Figure 2.

We now explain our five-layer architecture for IoT applica-
tions before proposing an agent-based architecture for IoMT
systems. The device layer consists of the devices that inter-
act with users and objects in physical space; the resource
layer consists of programs that control devices and the data
captured by these devices; and the resource connector layer
consists of agent programs that communicate with the agents
of the service execution agent layer.

C. AGENT-BASED ARCHITECTURE FOR PROTOTYPING IoT
APPLICATIONS TO STUDY RAPID RESOURCE AVAILABILITY
In this section, we introduce a notion of system expandability.
A system is expandable if a new kind of resource required by
a user can be managed by a new subsystem during operation.

To studymethods for making a system expandable, we pro-
totype several small applications built on the proposed agent-
based architecture. Each application involves one or more
modules linked to devices and to the service execution agent
to fulfill its objectives.

Virtual-space instruction application (Figure 4a):
In this application, users must follow the instruc-
tions received and behave accordingly. Users wears

FIGURE 4. IoT applications developed based on the proposed
agent-based architecture. (a) Virtual-space instruction application.
(b) Local conference support application.
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FIGURE 5. Structure of a channel composed of four modules.

head-mounted display glasses and a headset, and
receive via a TTS component an instruction that
remains visible using an augmented reality compo-
nent of the glasses. Once a step is achieved, the user
reports it to the system using an STT recognition
component, and the system presents the next step.

Gesture recognition application:
A Kinect camera can detect the presence of an
individual in a room and follow this presence. The
detection of movements and hand and arm gestures
produces events that are sent to modules based on
personal agents. Small behaviors can then be inter-
preted from these events by artificial intelligence
algorithms.

Posture detection application:
The position of a person sitting on a chair can
be recognized and analyzed using chair pressure
sensors. The application uses these data to measure
the person’s center of gravity and recognize how
the individual is sitting. Furthermore, in response
to these results, the application reproduces this state
on a 3D virtual display.

Conference application:
A conference presenter using a slideshow displayed
on a touch screen is filmed by a camera (Figure 4b).
Attendees can send messages stored by the system,
and the use of the slideshow (slide duration during
the conference, sentences and words in the slide
elements, etc.) is analyzed by agents. Then, after
the conference, a video viewer allows review of the
video together with the comments sent during the
conference and the slide analysis data.

D. ON THE EXPANDABILITY OF RESOURCES
Each application described in the previous section involves
several modules connected by resource connectors and

service execution agents. We expand the first application into
an integrated application by adding service execution agents
from the second and third applications to it. If we expand
the first application by adding these resources to the first
application directly (manually), we should modify the first
application to adjust its data format and protocol accord-
ing to resource specifications. Using the proposed agent-
based architecture, we could connect the first applicationwith
resource connectors by sending several agent messages.

Furthermore, for the fourth application, we develop
resource connectors that control several sizes of multitouch
displays and launch them before a meeting between two
users. We assume that three other members join during the
meeting. Then, the fourth application exchanges the previous
small multitouch display for a bigger multitouch display by
rapidly sending agent messages.

Therefore, we consider that the proposed agent-based
architecture makes applications expandable. In the next
section, we extend the proposed agent-based IoT application
architecture to an IoMT application architecture.

IV. CHANNELS FOR THE INTERNET OF MULTIMEDIA
THINGS
A. MULTIMEDIA FACILITIES FOR COLLABORATION
SUPPORT
A collaboration support tool for remote teams requires dif-
ferent functionalities. The main facilities for synchronous
activities between sites are as follows:

Communication and awareness facilities:
One or more cameras in one location must transmit
video streams to the other location. One station
must receive and display the video streams captured
elsewhere. To collaborate between remote sites,
these facilities must necessarily communicate their
states each other (e.g., functions such as video chat
consisting of this stream).
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Data facilities:
Data created with a specific synchronized tool in
one place must be accessible with the same tool in
the other location.

Document facilities:
Documents of interest chosen in one place must be
accessible in the other.

Figure 11a shows a part of the meeting viewer, which is an
application we developed that shows corresponding camera
views between locations. When several cameras are attached
to the same computer, it is possible to open several meeting
viewers on the same screen, providing better awareness of the
atmosphere in the remote meeting location.

Other facilities concern the support of asynchronous
activities. For example, someone not attending a meeting
might be interested in viewing the video registered during a
session. These types of facilities require two elements. First,
the architecture must encompass an information system for
storing videos and documents that have been exchanged.
If these media are compliant with universal formats (such as
PDF documents or JPEG images), they can be delivered with-
out problems. Second, adapted viewers are required. In our
system, videos are stored with annotations, which allows
users to more easily search for notable events that occurred
during the sessions.

B. IoMT SYSTEM CHANNELS
To fulfill all these facilitation requirements, we logically
organize the architecture as a set of parallel, directed
channels distributing streams from one place to another.
A channel is defined by four modules—input device, sender,
receiver, and output modules—as shown in Figure 5. A chan-
nel is organized by a service execution agent, according
to application requirements, to send a stream to another
application.

Streams can be continuous or discrete. Continuous streams
include video streams, whereas discrete streams are streams
in which data and events are exchanged. This organization
is rapidly available in the sense that new video channels
can be added according to the number of available cameras,
and new instances of documents and data channels can be
activated. It is possible to imagine that new types of channels
could be added, but they should be developed based on this
channel structure. The number of open channels may be
even or odd, depending on the number of connected devices.
Figure 6a shows simple video channels, and Figure 6c shows
a more complex application in which seven channels are
opened.

C. SYNCHRONIZED DATA CHANNEL FOR REMOTE
COLLABORATION APPLICATIONS USING
MULTITOUCH DISPLAYS
Figure 7 shows a pair of synchronized data sharing
(SDS) applications that comprise a subsystem, as shown in
Figure 6b, of a remote collaboration support system. An SDS

FIGURE 6. An agent-based collaboration tool: an IoMT system
composed of video and data channels organized by agents. (a) Video chat
application. (b) Data exchange application. (c) Remote meeting support
system.

application working in a local site cooperates with input and
output service execution agents. The input service execution
agent cooperates with input and sender resource connectors;
the output service execution agent cooperates with receiver
and output resource connectors.

An input resource connector controls an input resource
to capture events on a multitouch display and to send the
event data to a sender resource that is controlled by a
sender resource connector. A receiver resource connector
controls a receiver resource to receive data streams and
send them to an output resource to display events described
in the stream that is controlled by an output resource
connector.

The concept of a channel, as described in Section IV-B,
is necessary for realizing remote collaboration. However,
the architecture proposed in Section III cannot deal with
expandable use of each channel. To implement such a chan-
nel, this architecture separates the flow of data between the
service execution agent layer and the multimedia device and
communication Layer. This data separation ensures that the
layer above the resource connector does not need to handle
the resource data stream. Therefore, this architecture can real-
ize a structure that is adaptable to various forms ofmultimedia
resource data.
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FIGURE 7. Synchronous data sharing subsystem composed of two data channels and multitouch displays.

FIGURE 8. Structure of a composite channel for a synchronous multimedia communication and asynchronous
multimedia communication.

V. COLLABORATION SUPPORT SYSTEM DESIGN BASED
ON AN AGENT-BASED IoMT ARCHITECTURE
A. TYPES OF CHANNELS FOR SYNCHRONOUS AND
ASYNCHRONOUS MULTIMEDIA COMMUNICATION
As shown in Figure 8, an edge resource directly controls
a device that interacts with the environment and users
(e.g., an interactive display) or a communication facil-
ity of the Internet and a local network. Therefore, edge
resources perform real-time processing, and mainly operate
synchronously. A cloud resource controls objects in the cloud
(e.g., a multimedia database). Clouds resources mainly per-
form asynchronous operation. Modularization of resources
and objects in the cloud is also configured by the resource
connector described in Section III.

A system consists of different components and subsys-
tems that need to exchange data. Some edge resources

FIGURE 9. Proposed agent-based architecture for an IoMT system.
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(e.g., senders, receivers) must be given the address of the
corresponding end point for sending streams directly and
synchronously (see Figure 8). This address is given to edge
resources by the service execution agents. Other type of
edge resources send data to a cloud resource to store in the
cloud and read asynchronously. We designed a composite
channel composed of synchronous communication to send
streams directly to a corresponding edge resource, and asyn-
chronous communication to send them to a cloud resource
for storage, as shown in Figure 8. These types of channels
can be chosen by applications according to performance
requirements, costs, and sharing using execution agents and
resource connectors.

B. PROPOSED AGENT-BASED ARCHITECTURE FOR AN
INTERNET OF MULTIMEDIA THINGS APPROACH
We propose a novel IoMT architecture that introduces the
agent-based architecture described in Section III and the
channel concept described in Section IV to an IoMT architec-
ture, as proposed by Alvi et al. The agent-based framework
can turn a multimedia device and its control program into an
agent-based module and let service execution agents organize
them dynamically as subsystems, given application require-
ments. The channel components of the subsystems exchange
data among modules controlled by resource connectors.

Figure 9 shows the proposed agent-based architecture for
developing IoMT applications.

Multimedia device and communication layer:
Different types of edge devices in Section V-A (e.g.,
cameras, displays, and touch and multitouch dis-
plays) are components of this layer. Touch devices
can be used as both input start points and output end

points of channels. Different multimedia commu-
nication facilities and protocols, e.g., wireless net-
works, MQTT, and WebRTC, are also components
of this layer.

IoMT service and resource layer:
Resources can communicate with things and other
resources through channels and with the involve-
ment of resource connectors in the applications.
One special type of resource is the cloud resource,
which manages data, knowledge, videos, and anno-
tation bases.

Resource connector layer:
Interfaces between resources and agents that trans-
late a resource’s internal data representation into a
format compliant with the semantic model of the
agents. Resource connectors are presented in more
detail in [18]. They can communicate with agents in
messages adapted to the agent language protocol.

Service execution agent layer:
A service execution agent is a process that sends
and receives agent messages to and from resource
connectors to launch and operate modules accord-
ing to requests from an application. Service execu-
tion agents provide APIs for applications to send
requests and receive responses.

Application layer:
Application cores ensure the logic of an application.

A triple of a resource connector, resource, and device or
communication is called a module. A synchronous channel
is a mechanism to convey streams between devices via some
communication facility. An asynchronous channel is a mech-
anism that convey streams from (or to) a device to (or from)
an object in the cloud. A composite channel combines both

FIGURE 10. A video channel subsystem in a remote brainstorming support system.

17074 VOLUME 6, 2018



Y. Kaeri et al.: Agent-Based System Architecture Supporting Remote Collaboration via an IoMT Approach

FIGURE 11. Video channel application based on the proposed IoMT
architecture. (a) A meeting viewer on a display: an edge resource of a
local team. (b) A meeting viewer on a display: an edge resource of a
remote team.

channel types, as shown in Figure 8. These channels are
dynamically composed of modules by requests from service
execution agents.

C. VIDEO CHANNEL SUBSYSTEM DESIGN FOR REMOTE
COLLABORATION SUPPORT
The proposed architecture comes in several representations
based on applications and channels. Figure 10 shows a video
channel subsystem of a collaboration support system that is
composed of several modules, and both composite channel
directions. The modules are launched by a service execution
agent in response to requests from application components at
two local sites and a cloud server.

A viewer, a multimedia resource opened at one team’s
location, displays both the local and remote teams

(Figures 11a and 11b). The viewer receives a stream from
a video sender (attached to a camera), and a stream from
the video receiver is linked to a display. A video sender
sends a video stream to a distant video receiver and video
storage. The viewer agent and the viewer channel agent
send commands to the video senders and receivers through
adapted resource connectors. The video channel subsystem is
one application involved in the remote collaboration support
composite application.

The architecture may come in several different subsystem
representations. Figure 12 shows the different synchronous
application types and the launcher application. Each syn-
chronous application must have two similar instances that are
end points of a channel. The images presented in the figure at
the device layer are the meeting viewer (for the video channel
application), the data editor (for the data channel application),
and the document viewer (for the data channel application).
The launcher is used to open instances of the applications at
each site.

VI. IMPLEMENTATION AND EXPERIMENTS
A. IMPLEMENTATION OF A REMOTE COLLABORATION
SUPPORT SYSTEM
The system in Figure 12 is the result of a research project
carried out at the Chiba Institute of Technology4 (CIT) in
Japan and the University of Compiègne5 (UTC) in France
over several years. These experiments have permitted us to
elaborate the concepts presented here, to overcome obstacles
due to network communication, and to account for the secu-
rity features set up in universities. Moreover, as this project
is itself a remote collaboration project, it has also served as a
good benchmark.

4CIT site: http://www.it-chiba.ac.jp/english/
5UTC site: https://www.utc.fr/en.html

FIGURE 12. Integrated remote brainstorming support system application based on the proposed IoMT architecture.
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FIGURE 13. Experimental contexts of our remote collaborative supporting
system. (a) Experimental context from the CIT site. (b) Experimental
context from the UTC site.

Figure 13a and right side of Figure 11b shows the context
of experiments at the CIT. At the Faculty of Information and
Network Science Department, the team used a large touch
board to display the meeting viewer and another touch screen
to display the data editor. Three cameras allowed different
views of the room. Figure 13b shows the context of the
experiments at the UTC. Its Innovation Center6 allowed us
to benefit from a room equipped with a large touch board and
a large touch table top.7 Three cameras, attached to the board,

6UTC Innovation Center: https://www.utc.fr/en/innovation.html
7These materials were designed and built by UbiKey:

http://www.ubikey.fr/

proposed different axes and viewpoints in the room. Micro-
phones were coupled with the cameras. The cloud server was
managed by the CIT team.

We implemented the system as in the design in Section 8.
Edge resources were implemented using C# (.NET Frame-
work 4.5.1) and cloud resources were implemented using
Python 3.6.

In our platform, stream communications were based on the
WebRTC infrastructure,8 which provides browsers, mobile
devices, and IoT-device-based applications with real-time
communication capabilities.WebRTC communicates stream-
ing data, but also needs a mechanism to coordinate com-
munications and to send control messages. It was therefore
necessary to modify the event streams that synchronize two
instances of the data editor. In this study, WebRTC was used
as a network protocol of resources controlled from the net-
work component and to implement the agent layer’s protocol.

Our applications needed to traverse firewalls. Hence,
we used a STUN server to get IP addresses and a TURN
server as a relay. For the experiments, we employed a data
channel server, a data repository, a video channel server
consisting of a STUN/TURN server using Coturn,9 a sig-
naling server using PeerServer,10 and a video repository
we implemented using the PHP and Python languages and
MariaDB. All servers were deployed on ConoHa,11 an Open-
Stack cloud.

B. REMOTE COLLABORATION SUPPORT SYSTEM
EXPERIMENTS
1) UTILITY OF A REMOTE COLLABORATION SUPPORT
SYSTEM BASED ON THE PROPOSED
IoMT ARCHITECTURE
We measured the delays in video and data channels between
the CIT and UTC sites. Figure 14 shows the experimental
system used to measure these delays. Local programs and
devices at both sites access the cloud servers to construct two

8WebRTC site: https://webrtc.org/
9Coturn site: https://code.google.com/p/coturn/
10PeerServer: https://github.com/peers/peerjs-server
11ConoHa site: https://www.conoha.jp/en/

FIGURE 14. Measurement of the communication latency of the video channel application.

17076 VOLUME 6, 2018



Y. Kaeri et al.: Agent-Based System Architecture Supporting Remote Collaboration via an IoMT Approach

channels. The resolution of each camera was 640 × 480 and
the frame rate was 30 fps.

First, we implemented a measurement application from
Boyaci et al. [19] to measure accurate turnaround times.
This application converts the current time into QR code and
outputs the video in the video channel using a virtual cam-
era. These functions were implemented with OpenCV12 and
ZXing.NET13; we used XSplit Broadcaster14 for the virtual
camera.

Next, we measured the delay with a ping command to cal-
culate the system latency from the measured turnaround time.
Figure 14 shows result of this measurement. The turnaround
time was 694.32 ms (including Internet line delays for each
site to the cloud server), and the system delay was 126.12 ms
(including processing in the cloud server). Furthermore,
the channel delay in one direction was measured as 63.06 ms.
In this experiment, when evaluating Skype under the same
conditions, the turnaround time was 1109.46 ms, and the
system delay at the time of measurement was 541.26 ms.
The delay on the Skype channel in one direction was
270.63 ms.

2) CHANGEABILITY OF THE REMOTE COLLABORATION
SUPPORT SYSTEM BASED ON IoMT ARCHITECTURE
We conducted experiments to add video and data channels to
a system that was opened by a user who managed the remote
meeting to examine the system’s changeability [3]. In these
experiments, we tested the typical requirements shown in
Figure 13. The initial system configuration consisted of two
video channels comprising a camera and a display at each
site, as shown in Figure 10.

After several minutes, the user at the CIT site operated the
system with a control panel (launcher) at his local PC to add a
data channel to the initial configuration. Agents at both sites
sent messages to resource connectors at the CIT and UTC
sites. In this experiment, we assumed the two agents knew the
identifiers of the local and remote resource connectors that
launch data channel components for controlling a multitouch
display for collaboration, and network components for send-
ing and receiving data channel streaming. Figure 15 shows a
view of two video channels for the CIT site and a data channel
that was added to the display by the user.

After several minutes, the user again operated the launcher
to add two video channels, to add one more viewer to the
display, and to see different pictures from different cameras,
as shown in Figure 15. Then, because a new viewer was
displayed over the data channel, the user moved the data
channel viewer in the display on the screen in Figure 15. The
requirements shown in Figure 13 were conducted success-
fully after those in Figure 15.

12OpenCV site: http://opencv.org/
13ZXing.NET site: https://zxingnet.codeplex.com/
14XSplit Broadcaster site: https://www.xsplit.com/

FIGURE 15. An add-channel operation on the remote collaborative
supporting system.

C. DISCUSSION
First, to verify the expandability of the data and video chan-
nels, we conducted experiments using the implementation
described in Section VI-A. Expandability was defined in
Section III-C as a user’s ability to add to or replace system
resources during operation.

As shown in Figure 12, a video chat application in
Figure 6a, composed of two video channels, and a data
exchange application in Figure 6c, composed of two data
channels (as shown in Figure 7) were simultaneously opened
for the first stage of the tests. During the session, we sup-
posed that participants required better awareness for remote
collaboration using a launcher-interface application. Then,
the request was given to two video channel applications
in Figure 12 and three video channels were added to the initial
system, as shown in Figure 6e. System operation was faster
than operation by participants themselves for performing the
same change. To treat various requirements for changing
system properties, we should incorporate intelligence into
the launch interface application and the integrated remote
brainstorming support application in future work.

To investigate expandability criteria, we tested the qual-
ity of video and audio transmission and the swapping of
cameras inside the meeting viewer application. Once it was
completely finalized, we did not use other videoconferencing
systems for our distant collaborationmeetings.Whenwe used
an independent videoconferencing system, it seemed neces-
sary to explainwhat wewere doingwith the data editor (‘‘I am
creating a new note on. . . ’’ or ‘‘I am moving note . . . into
cluster . . . ’’). With our own videoconferencing system and its
good reception, the independent systemwas no longer useful.
Moreover, with our own system, what people do locally is
easily understood in the remote location.

The delay in our system seems to have necessary and
sufficient performance for a conference support system. Our
measurement tests demonstrated the complete usability of the
meeting viewer. The rate of the transmission was completely
satisfactory, and the participants could speak together and
have discussions as if they were in the same room.
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VII. CONCLUSION
In this paper, we proposed an innovative agent-based archi-
tecture for systems supporting remote collaboration based
on an IoMT approach. Such applications involve basic IoT
elements and devices such as cameras, microphones, sen-
sors, and multimedia communication lines. Our architecture
is divided into five layers: applications, service execution
agents, resource connectors, IoMT services & resources, and
IoMT devices & communications.

We introduced the concept of modules presented by a
triple of the bottom three layers corresponding to each device
and communication such as touch displays, synchronous and
asynchronous communication lines, and cloud storage. The
parallel channels require several graphical user interfaces
opened at the same time and, more importantly, a display
surface. Those channels can be incorporated into applications
dynamically by users to enhance the expandability of the
IoMT system.

This practical system supports conferences among mul-
tiple sites. In the future, we would like to provide this
system to users as a service and obtain feedback from
them.
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