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ABSTRACT System security is one of the key challenges of the cyber-physical systems. Bayesian approach
can estimate and predict the potentially harmful factors of the general system, but it has many limitations
that can lead to undesirable effects in the complex systems. This paper presents a new modeling and
monitoring framework to avoid the traditional Bayesian network disadvantage. Amultivariate causal analysis
method is proposed to establish a compact system structure. Combined with network parameter learning,
we constructed a corresponding multivariate alarm predict graph model, in which the qualitative and
quantitative relationships among the process variables are revealed distinctly. Then this model is used to
accurately predict the future possible alarm events via the probability inference. Similarly, it also can be
used to detect faults and find the source of the fault. The effectiveness of the proposed method is verified
in public data sets and the Tenessee Eastman process. Simulation results show that the established causal
relationship is completely consistent with the actual mechanism, and the alarm state of the critical variable
is accurately predicted.

INDEX TERMS Alarm prediction, multivariate causality analysis, process monitoring modeling, parameter
learning.

I. INTRODUCTION
Modern industrial process is a multidimensional complex
system of integrated computing, network and physical envi-
ronments, namely Cyber-Physical Systems (CPS) [1]. It real-
izes the real-time sensing, dynamic control and information
service of large-scale engineering system through the deep
collaboration of 3C (Computer, Communication and Control)
technology [2], [3]. It is hard to build its precise mechanism
(or mathematical) model for system monitoring. Fortunately,
the development of information technology has provided new
ideas to solve this problem. A large amount of process vari-
ables are measured regularly to promote data-driven statis-
tical process monitoring techniques [4]–[7]. These methods
extract the useful information from the acquired data and
build a statistical monitoring model to describe the operat-
ing status of the entire process. Many excellent results of
fault detection and diagnosis have been obtained based on
multivariate statistical analysis [8]–[11]. However, the tra-
ditional multivariate statistical monitoring methods, such
as principal component analysis (PCA) [12], independent
component analysis (ICA) [13], [14], Fisher discriminant

analysis (FDA) [15] and partial least-squares (PLS) [16],
rely too heavily on the process data to focus on the intrinsic
characteristics and connections among the system variables.
How to figure out the interrelationships within system? Can
we simplify the description of the complex process based
on the variable interrelationships and process data simulta-
neously? To answer these questions, we devote to combine
the effects of physical relationships and process data to make
the monitoring model more persuasive.

As we all known, there are many ways to describe the
system characteristic according to the observational data and
expert knowledge, such as graph model [17], neural network
model [18], fuzzy model [19]. The graph model is composed
of points and lines to describe the system structure and the
causal relationships among variables. It provides an effective
method for studying various systems, especially the complex
systems. Bayesian network(BN), a typical graphmodel, is the
main method to deal with the knowledge representations and
uncertainties based on the probability theory [20]. BN obtains
the causality and probability within the process components
and the system variables from the prior knowledge and
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process data. The Bayesian network consists of the structure
learning and the parameter learning, in which the structure
learning aims to determine the causalities within system vari-
ables and the parameter learning will reveal the quantitative
relationship of these causalities. BN has been successfully
applied to fault diagnosis, financial analysis, automatic target
recognition, military and many other areas [21], [22].

Bayesian network structure learning has some deficiencies
when it is applied to the CPS system, such as complex training
mechanism and variable causalities. In order to simplify the
network structure, lots of assumptions should be presupposed
and it inevitably causes the loss of generality. A variety of
causal discovery methods have been proposed in recent years
that were claimed to be able to find the causalities [23]–[26].
Usually, a generative model (linear or nonlinear) is built
to explain the data generating process, i.e. the causali-
ties. The most typical is the linear non-gaussian acyclic
model (LiNGAM) proposed by Shimizu [27]. Its full struc-
ture was shown to be identifiable without pre-specifying a
causal order of the variables. The improve LiNGAM method
can estimate a causal order of variables without any prior
structure knowledge, and provide better statistical perfor-
mance [28]. A nonlinear causality of a pair of variables is
discovered in [29], [30], and the proposed method shows a
limitation when dealing with the multivariate variables. All
these approaches exploit the complexity of the marginal and
conditional probability distributions in one way or the other.
Despite the large number of methods for bivariate causal dis-
covery has been proposed over the last few years, their prac-
tical performance has not been studied very systematically.
Most CPSs do not meet the linear and bivariate assumptions,
the effectiveness of these methods have yet to be improved.

Alarm prediction and fault backtracking play an important
role in the safety monitoring of the industrial CPSs. The
research on the alarm system mainly focuses on the opti-
mization of alarm structure and alarm threshold [31], [32],
and few focus on the alarm prediction problem. It is very
valuable to establish an alarm predict model and predict the
alarm values of some key variables based on the internal
variables relationship. Bayesian network model and the rel-
ative inference methods will show significant advantage in
the alarm prediction and fault backtracking [33], [34]. There
are several bottlenecks in CPSs’ safety monitoring, including
the discovery of multivariate causalities, simplification of
internal structure and precise prediction of fault variables.

We propose amore generalizedmultivariate post-nonlinear
acyclic causal model for the complex industrial process in
this paper. The proposed multivariate post-nonlinear acyclic
causal model, as an alternative network, can easily find the
multi-variable’s causality. It shows more compact structure
and consistency with mechanism, compared to the Bayesian
network structure. In addition, it avoids the complex learning
mechanism of traditional Bayesian networks, thus making
it easier to implement without compromising accuracy. The
complete monitoring model is established via combining
the causal discovery algorithm and the Bayesian parameters

FIGURE 1. Overall design block diagram.

learning algorithm. The qualitative and quantitative relation-
ships among the process variables are revealed to the greatest
extent. Then this model is used to accurately predict the
operation status of the critical process variables. Similarly,
it also can be used to detect faults and find the source of
the faults. The overall block diagram of our work is shown
in Figure 1.

The paper is structured as follows. Section 2 is the method-
ology and the following problems are discussed in detail: how
to find the causal relationship for the nonlinear continuous
multiple variables; Bayesian network parameter learning and
probabilistic inference for the proposed multivariate post-
nonlinear acyclic causal model. The verification of the pro-
posed method is shown in Section 3, and two experiments are
finished aiming at the public data sets and the TE simulate
platform. Finally, Section 4 draws the conclusions.

II. METHODOLOGY
A. ESTABLISHING CAUSAL STRUCTURE
Model-based causal discovery assumes a generative model
to explain the data generating process. When the existing
knowledge about the data model is unavailable, the assumed
model should be sufficiently general so that it can be
adapted to approximate the real data generation process.
Furthermore, the model should be identifiable such that
it could distinguish causes from effects. A nonlinear and
multivariable process always possesses the following three
characteristics:

1. The multivariate causalities are usually nonlinear.
2. The final target variable is affected by its cause vari-

ables and some noise who is independent from the
causes.

3. Sensors or measurements may introduce nonlinear dis-
tortions into the observed value of the variables.

To discover the causality of multivariable in CPSs, a more
generalized multivariate post-nonlinear acyclic causal model
with inner additive noise is proposed. Themodel is in the form
of graph theory and Bayesian network structure. Assume that
there is a directed acyclic graph (DAG) to represent the rela-
tionship among multiple observed variables. Mathematically,
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the generating process of Xi is

Xi = fi,2(fi,1(PAi)+ ei), (1)

where the observed variables Xi,i = {1, 2, . . . , n} is arranged
in a causal order, such that no later variable causes any
earlier variable. PAi is the direct causes of Xi. fi,1 denotes the
nonlinear effect of the causes, and fi,2 denotes invertible post-
nonlinear distortion in variable Xi. ei is the independent dis-
turbance which is a continuous-valued random variable with
non-gaussian distributions of non-zero variances. Model (1)
satisfies the aforementioned three conditions: function fi,1
accounts for the nonlinear effect of the causes PAi; ei is the
noise effect during the transmission from PAi to Xi; invertible
function fi,2 refects the nonlinear distortion caused by the
sensor or measurement.

Randomly select a pair of variables Xi and Xj, i,j =
{1, 2, . . . , n} from a multivariable system, respectively.
Assume that the pair (Xi,Xj) has the causal relation Xi→ Xj.
It’s data generating process can be described in a generated
model,

Xj = fj,2(fj,1(Xi)+ ej), (2)

where ej is independent from Xi. Define si , fj,1(Xi), sj , ej,
and si is independent from sj.
Rewrite the generating process Xi→ Xj as follows:

Xi = f −1j,1 (si),

Xj = fj,2(si + sj). (3)

Xi and Xj in (3) are post-nonlinear (PNL) mixtures of
independent sources si and sj. So the PNL mixing model can
be seen as a special case of the general nonlinear independent
component analysis (ICA) model. Here we use non-linear
ICA method to solve this problem (3) [35].

Generally there are two possibility to describe the causal
relation between any two random variables Xi and Xj,
(Xi → Xj and Xj → Xi). We should identify the correct rela-
tion by judging which one satisfies the assumed model (2).
If the causal relation is Xi → Xj (i.e., Xi and Xj satisfy the
model (2)), we can invert the data generating process (2) to
recover the disturbance ej, which is expected to be indepen-
dent from Xi. Two steps are used to examine possible causal
relationships between variables.

In the first step, recover the disturbance ej corresponding to
the assumed causal relation Xi→ Xj based on the constrained
nonlinear ICA. If this causal relation holds, there exist non-
linear functions f −1j,2 and fj,1, we have

ej = f −1j,2 (Xj)− fj,1(Xi), (4)

where ej is independent from Xi. Thus perform nonlinear ICA
using the structure in Figure 2 and the outputs of system (5)
are

Yi = Xi,

Yj = ej = gj(Xj)− gi(Xi)). (5)

FIGURE 2. The constrained nonlinear ICA system used to verify if the
causal relation xi → xj holds.

The nonlinearities gi and gj is modeled by Multi-layer
perceptrons (MLP’s), and the parameters in gi and gj are
learned by making Yi and Yj as independent as possible,
i.e., minimizing the mutual information between Yi and Yj,

I (Yi,Yj) = H (Yi)+ H (Yj)− H (Y ), (6)

where H (Y ) is the joint entropy of Y = (Yi,Yj)T ,

H (Y ) = −ElogpY (Y )

= −ElogpY (X )− log |J |

= H (X )+ Elog |J |. (7)

The joint density of Y = (Yi,Yj)T is pY (Y ) = pX (X )/|J |.
J is the Jacobian matrix of the transformation from (Xi,Xj) to
(Yi,Yj), i.e.,

J =
∂(Yi,Yj)
∂(Xi,Xj)

,

|J | =

∣∣∣∣1 0
g′i g′j

∣∣∣∣ = |g′j|. (8)

Substitute (8) and (9) into (7), we have

I (Yi,Yj) = H (Yi)+ H (Yj)− Elog|J | − H (X )

= −ElogpYi (Yi)− ElogpYj (Yj)− Elog|g
′
j| −H (X ),

(9)

where H (X ) does not depend on the parameters in gi and
gj and can be considered as constant. The minimization
problem (10) is solved by gradient-descent methods, and the
details of the optimization are skipped.

In the second step,verify if the estimated disturbance Yj is
independent from the assume cause Yi based on the statisti-
cal independence tests. We adopt the kernel-based statistical
test [36], with the significance level = 0.01. Denote the
test statistics as testi→j. If testi→j > testj→i, indicating that
Yi and Yj are not independent, that is Xi → Xj does not hold.
Repeat the above procedure (with Xi and Xj exchanged) to
verify if Xj → Xi holds. If testi→j < testj→i, usually we can
conclude that Xi causes Xj. gi and gj provide an estimate of
fj,1 and f

−1
j,2 , respectively.
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For a complex CPSs, there are n process variables. Follow-
ing a test sequence, X1 → X2, X1 → X3, . . . , Xn−1 → Xn,
we need to test the N group statistics.

N = n+ (n− 1)+ (n− 2)+ . . .+ 1 =
n(n− 1)

2
. (10)

The total computation is in direct proportion to 2 × N .
In the simulation, in order to facilitate the display, we select
the eight variables to calculate. As the number of variables
increases, the amount of computation will increase as well.
The measured statistics in the positive order (or in the reverse
order) are stored as

A = [testX1→X2 , testX1→X3 , . . . , testXn−1→Xn ],

B = [testX2→X1 , testX3→X1 , . . . , testXn→Xn−1 ]. (11)

Comparing the corresponding elements of the vectors A
and B, the causal direction of this pair of variables is deter-
mined by finding a smaller statistic. Finally, we can find the
causality of all variables by using cyclic search, and integrate
it into a DAG.

B. PARAMETER LEARNING OF CAUSALITY
BAYESIAN NETWORK
Themultivariate causalitymodel gives a framework similar to
Bayesian networks to find the internal structure of the com-
plex systems. This graphical structure expresses the causal
interactions and direct/indirect relations as probabilistic net-
works. Its parameter represents the intensity of the complex
inter-relationships among the cause-effect variables.

Consider a finite set U = {X1, . . . ,Xn} of discrete ran-
dom variables where each variable Xi may take on several
discrete status from a finite set. A Bayesian network is an
annotated directed acyclic graph that encodes a joint proba-
bility distribution over a set of random variablesU . Formally,
a Bayesian network forU is a pairB = 〈G,2〉.G is a directed
acyclic graph whose vertices is correspond to the random
variables X1, . . . ,Xn. 2 is the parameters set that quantifies
the network with θijk = p(xki |pa

j
i) and

∑
k θijk = 1, where

xki is the discrete status of Xi and pa
j
i is one of components

in the complete parent set PAi of Xi in G. Every variable Xi
is conditionally independent of its non-descendants given its
parents (Markov condition). The joint probability distribution
over set U is

PB(X1, . . . ,Xn) =
n∏
i=1

PB(Xi|PAi) =
n∏
i=1

θXi|
∏
pai . (12)

The parameters of the causality Bayesian network are
mainly learned from the sample data statistics analysis. The
maximum likelihood estimation method (MLE) is one of the
most classical and effective algorithms in parameter learning.

Given a dataset D = {D1, . . . ,DN } of all BN nodes,
the goal of parameter learning is to find the most probable
values for 2. These values best explain the dataset D, which
can be quantified by the log likelihood function logp(D|θ ),

denoted LD(θ ). Assume that all samples are drawn indepen-
dently from the underlying distribution. According to the
conditional independence assumptions of BNs, we have

LD(θ ) = log
n∏
i=1

qi∏
j=1

ri∏
k=1

θ
nijk
ijk , (13)

where qi is the number of combinations of the parent nodes
paji, and ri is the number of the node Xi status. nijk indicates
how many elements of D contain both xki and paji. If the
dataset D is complete, MLE method can be described as a
constrained optimization problem:

max LD(θ ),

st. gij(θ ) =
ri∑
k=1

θijk − 1 = 0, ∀ i = 1, . . . , n,

∀ j = 1, . . . , qi. (14)

The global optimum solution is

θijk =
nijk
nij
, (15)

where nij =
∑

k=1,...,ri nijk .

C. CAUSALITY NETWORK PREDICTION
Causality Network prediction or inference is to calculate
the probability of the hypothesis variables at certain sta-
tus according to the network topology and conditional
probability distribution of the evidence variable. An infer-
ence or query P(Q = q|E = e0) is to calculate the posterior
probability of a query variable Q being at its specific value q
in the condition of given evidence e0 for node E .
There are many existing network inference algorithms,

such as variable elimination algorithm, and junction tree algo-
rithm (JT). These algorithms utilize the hypothesis variables
and specific independence relations induced by evidence in
the Bayesian network to simplify the updating task. JT imple-
ments the inference procedure in four steps [37],

1. Cluster the nodes into several cliques,
2. Connect the cliques to form a junction tree,
3. Propagate information in the network,
4. Answer a query.
The inference starts from a root clique. The core step of

message propagation consists of a message collection phase
and a distribution phase. The cliques of the junction tree are
connected by separators such that the so-called junction tree
property holds. When a message is passed from one clique X
to another clique Y , it is mediated by the sepset S between the
two cliques. Every conditional probability distribution of the
original Bayesian network is associated with a clique such
that the domain of the distribution is a subset of the clique
domain(we use the notation dom(φ) to refer to the domain of
a potential φ). The set of distributions 8X associated with a
clique X are in standard junction tree architectures combined
to form the initial clique X .

φX =
∏
φε8X

φ. (16)
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For a clique, a potential or a message is a mapping from the
value assignments of the nodes to the set [0, 1.0]. A message
pass from X to Y occurs with two procedures: projection
and absorption based on the HUGIN architecture [38]. The
projection procedure saves the current potential and assigns
a new one to S:

φoldS ← φS , andφS ←
∑
X\S

φX . (17)

The absorption procedure assigns a new potential to Y using
both the old and the new tables of S:

φY ← φY
φS

φoldS
. (18)

where φS is the current separator potential, φoldS is the old
separator potential, φX is the clique potential for X , φY is the
clique potential for Y .
The query answering step has two procedures. First,

the marginalization procedure calculates the joint probability
of Q and E = e0 : P(Q,E = e0) =

∑
X{Q} φX . Second,

the normalization procedure calculates the inference result:

P(Q = q|E = e0) =
P(Q = q,E = e0)∑

Q P(Q,E = e0)
. (19)

The fault of operational variables is an intervention that
have various effect on the production process. The main task
in causal inference is to predict the system output under the
faulty intervention.

III. SIMULATION RESULTS
In order to evaluate the performance of the proposed method,
we report the experiment results from three aspects: the causal
direction identification of multi-variables, network parameter
learning and probability inference.

A. PUBLIC DATA SETS EXAMPLE
Four published data sets proposed by Mooij and Janzing [39]
is used to test the effectiveness of the nonlinear multivari-
ate causal model. The cause-effect pairs are available at
http://webdav.tuebingen.mpg.de/cause-effect/. This database
with different data is considered as the benchmark for testing
causal detection algorithms. Data set (1) contains the ground
altitude and temperature sampled at 349 stations, US. Data set
(2) is census income dataset which contains weighted census
data extracted from the 1994 and 1995 current population
surveys conducted by the U.S. Census Bureau. The variables
include age and wage per hour. Data set (3) gives the attribute
information (age and heart rate) from Cardiac Arrhythmia
database. Data set (4) include the population with sustainable
access to improved drinking water sources (%) total, and the
infant mortality rate (per 1000 live births) both sexes, 2006.
These four data sets have different attributes, which is suf-
ficient to show the general and comprehensive nature of
the data. Figure 3 gives the scatterplots of the selected data
set (1-4). Table 1 summaries the causal results obtained by
the multivariate causality model.

FIGURE 3. Scatterplots of the data sets, (a), (b), (c), (d) correspond to
data 1, 2,3 4, respectively.

TABLE 1. The causal result of the public datasets.

TABLE 2. Results of independence test under different assumed causal
directions.

Table 2 shows the results of independence test on x and y
for Data sets (1-4) under different assumed causal directions.
The statistics under different causal direction assumptions are
calculated separately.

Comparing the test statistics under two assumed causal
directions in Table 2, the causal direction of each set all are
determined as x → y, which is consistent to the real causal
relationship. We can conclude that the proposed method can
correctly identify the causal direction regardless the diversity
of data.

B. TE PROCESS
1) TE PROCESS CAUSAL STRUCTURE
In order to illustrate the applicability of the proposed method
in the actual complex industrial process, we establish the net-
work topology of TE process and predict the alarm variables.
TE platform simulates an actual chemical process, as shown
in Figure 4, which is widely used as a benchmark to test the
process control and fault diagnosis technology. TE process

6364 VOLUME 6, 2018



X. Chen et al.: Process Monitoring Based on Multivariate Causality Analysis and Probability Inference

FIGURE 4. TE industrial process flow diagram.

TABLE 3. Forecasted variables in the TE process.

consists of five major unit operations, including a reactor,
a product condenser, a vapour-liquid separator, a recycle
compressor, and a product gas stripper. First, the gaseous feed
is converted to a liquid product by reaction in the reactor,
where the condensate is contained in the reactor to absorb
the heat generated by the reaction, and the product with some
unreacted material mixed is discharged in gaseous form.

TE process has 12 manipulated variables, 22 continuous
measurements, and 19 composition measurements. TE sys-
tem generates various alarm information under several pre-
defined specific faults. Table 3 lists 8 process variables to
forecast their alarm status.

From the mechanism analysis of TE process, we know
that when the feed X2 increases, the material is first entered

into the reactor, so the reactor level X4 must increase. So the
reactor feed X2 directly affects the reactor level X4. The
temperature of cooling water X8 and the feed of the reactor
X2 are the main causes of the reactor temperature X5. The
reactor pressure X3 is synchronized with the reactor temper-
ature X5 changes according to the general physical principle.
In addition, once the reaction in the reactor is more intense,
the compressor module power X7 will be synchronized to
strengthen due to the sequential loop. At the same time,
the reactor pressure X3 will act on the recovered flow X1
and the material level X6 in the separator. We can determine
the initial structure of the causality network, Bnet0 shown
in Figure 5, by the expert prior knowledge and the sample
data correlation analysis.

The pre-defined fault is random variations in A, B, C
compositions in stream 4. The corresponding data of eight
variables are collected from the simulation platform. The
reaction length is 700 hours in order to ensure that the data
is sufficient to reflect the system process. We obtain 500 sets
of sampling data after the equal time decimate. The causal
direction of the paired variables is shown in Table 4. The
directed acyclic graph, Bnet1, is constructed using the pro-
posed causal method and the corresponding data, which is
shown in Figure 6(a). An alternative network, Bnet2, are
shown in Figure 6(b), which is obtained from the traditional
BN structure learningmethod-K2 algorithm [40] which needs
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FIGURE 5. The network Bnet0 from the mechanism analysis.

TABLE 4. Causal direction of TE variables.

to set the node order. Figure 6(c) shows the network struc-
ture Bnet3 learned with the expectation maximization (EM)
algorithm.

Comparing the process analysis structure Bnet0 and
Bnet1 determined by the proposed causal method, it is seen
that Bnet1 is exactly consistent to Bnet0. The structure
determined using the proposed method exactly matches the
mechanism and expert knowledge, which indicates that the
causal structure is credible and accurate. However, Bnet2 and
Bnet3 learned from the traditional BN methods is not consis-
tent with the mechanism and shows a big gap from the actual
conditions. This demonstrates that the general BN learning
method fails when applied to the complex nonlinear systems,
while the proposed multivariate causality model proves its
superiority.

2) TE PARAMETER LEARNING
Once the TE network structure is determined, the alarm
prediction model can be obtained by learning the network
parameters. In general, the process alarm event can be divided
into five alarm levels, namely, high_high alarm (HH), high
alarm(H), normal(N), low alarm(L) and low_low alarm(LL),
corresponding to the number 1,2,3,4,5. The first step is to

FIGURE 6. The network compare: (a) Bnet1, (b) Bnet2, (c) Bnet3.

discretize the continuous variables into five alarm levels by
setting different thresholds, shown in Table 5.

Here we adopt the MLE algorithm to learn the network
parameters and get a complete probability table. Suppose
that the initial probability of the alarm level in the normal
condition is theoretically divided equally. Then we can get
the conditional probability tables for all variables based on
Bayesian network parameter learning. Considering two root
nodes X2 and X8, their corresponding probabilities for five
status are 0.0843, 0.2211, 0.4704, 0.2026 and 0.0217, respec-
tively. The probability of other descendant variables as shown
in Figure 7. We use hot plot to show the probability since
the precise value has nothing meaning for alarm prediction
and inference. The color represents the probability range
between 0 and 1.

We are concerned about the probability of close to 1,
because this is the key point in determining the inference
results. When the probability is less than 0.5, the result situa-
tion will not likely appear in the actual inference. Figure 7(a)
shows the probability of X5 under the combined action of X2
and X8. The abscissa is the state condition of X8 and X2, and
the ordinate is the color corresponding to the probability value
of X5. P(X5 = 1|X8 = 1, 2 and X2 = 1) ≈ 1 in the lower left
corner of (a). It means that X5 occurs the low_low alarm with
the probability close to 1 when X2 and X8 are in the low_low
alarm state. P(X5 = 5|X8 = 4, 5 and X2 = 5) ≈ 1 in the
upper right corner of (a) means that X5 occurs the high_high
alarmwith the probability close to 1whenX2 andX8 are in the
high_high alarm state. These inference results are consistent
with the actual mechanism.

Figure (b)-(e) reflect the probability relationship between
bivariate variables. Figure 7(b) shows the probability of X4
under the action of X3. P(X4 = 5|X3 = 5) ≈ 1 in the upper
right corner of (b) means that the probability of X4 occurs the
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TABLE 5. The range of thresholds for alarm variables in different states.

FIGURE 7. Conditional probability of the descendant variables:
(a) P(X5|X8, X2), (b)P(X4|X3), (c) P(X3|X5), (d) P(X7|X5), (e) P(X1|X3),
(f) P(X6|X3).

high_high alarm close to 1 when X3 in the high_high alarm
state. However, P(X4 = 1|X3 = 5) = 0 in the lower right
corner of (b) means that X4 occurs the high_high alarm with
the probability close to 0 when X3 in the low_low alarm state.
P(X4 = 1andX4 = 2|X3 = 2) ≈ 0.5 in the green area of (b)
means the probability of X4 occurs the low alarm or low_low

TABLE 6. Alarm level prediction of compress work X7.

alarm almost same when X3 in the low alarm state. Similarly,
we can analyze the results consistent with the mechanism
in Figure 7(c)-(e).

3) TE ALARM PREDICTION
Alarm prediction is a top-down inference according to the
evidences inference conclusion. The probabilistic analysis
calculates the likelihood of each status for the result variable
may occur. The discrete status corresponding to themaximum
probability is the alarm prediction result.

Using the established multivariate causality network
model, compress work X7 is predicted when its parent vari-
ables X2, X8 and X5 are known. The prediction results for
model Bnet1 are shown in Table 6.

The total prediction accuracy for the 20 simulation exper-
iments is 75%. When the maximum probability of the pre-
dicted value is greater than 0.5, the prediction result is confi-
dent. Furthermore, the predictions with a high probability is
consistent with the true status. When the maximum probabil-
ity of the predicted value is less than 0.5, the prediction result
is not believable and accurate. The mispredictions confuse
the adjacent status, such as the normal status 2 and Low
alarm 3 (or high alarm 2). The simulation results show that
the multivariate causality network can find the intrinsic rela-
tionships among various process variables, and give precise
fault or alarm prediction.
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IV. CONCLUSION
We propose a multivariate causality model to analyze the
causal direction of multi-variable and final determine the
network topology. The proposedmethod can describe the sys-
tem structure more accurate than the traditional BN structure
learningmethod, when the industrial process is high complex.
Combined with network parameters learning and evidence
inference technique, we can accurately monitor the industrial
process. The validity of the proposed method is verified
via the public data and TE process. We obtain a compact
variable network and confident alarm prediction of the TE
process based on causal analysis and probability inference.
Both the methodology and the simulation results show that
our research results have great value for the process industry
modeling and monitoring.

There are some issues worth further discussion. The com-
puting efficiency of the proposed multivariate post-nonlinear
acyclic causal modeling method should be considered when
solving the large-scale real world causal analysis problems.
Developing efficient algorithm for causal discovery of multi-
ple variables based on the general functional causal models
is still an important topic. To make the causal discovery
computationally efficient, onemay have to limit the complex-
ity of the causal structure, such as decrease the number of
direct causes of each variable. So far, a smart optimization
procedure instead of exhaustive search is still missing in the
literatures.
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