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ABSTRACT The cyclic prefix (CP) is appended in orthogonal frequency division multiplexing (OFDM)
signals to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) induced by the commu-
nication channel, which limits its spectral efficiency. Therefore, inserting an insufficient CP and equalizing
the resulting ICI and ISI is a method that has been circulating the literature for a while, aiming at increasing
the efficiency of OFDM systems. In this paper, we propose a reduced-complexity sparse linear equalizer and
a decision-feedback equalizer for OFDM signals with insufficient CP. A performance-complexity trade-off
is highlighted, where we show that it is possible to equalize the received signal with a reduced complexity
equalizer while having a limited performance loss. Our proposed equalizer designs are not only less complex
to realize, but are shown to provide a higher data rate. The proposed equalizers are further evaluated in terms
of the worst-case coherence, a metric determining the effectiveness of our used approach. Numerical results
show that we can significantly and reliably reduce the order of the design complexity while performing very
close to the conventional complex optimal equalizers.

INDEX TERMS OFDM, sparse approximation, linear equalizers, decision feedback equalizers, insufficient
cyclic prefix, worst-case coherence.

I. INTRODUCTION
The orthogonal frequency division multiplexing (OFDM)
signaling scheme was adopted in various communication
standards due to its robustness against frequency selec-
tive channels and the ease of its modulation/demodulation
using the inverse fast Fourier transform/fast Fourier trans-
form (IFFT/FFT) algorithm, making it a strong candidate for
the upcoming fifth-generation (5G) wireless communication
standards [1]–[3]. The cyclic prefix (CP) overhead in OFDM
can be significant, especially for long range transmission. For
instance, in LTE/LTE Advanced [4], the extended CP length
represents 25% of the useful data transmission time. Thus,
by reducing the CP length, significant improvement in band-
width efficiency can be obtained. The reduced complexity
modulation/demodulation of OFDM is based on nulling the
inter-symbol interference (ISI) and inter-carrier interference
(ICI) by the insertion of a CP at the beginning of the OFDM
symbol with a duration that is greater than the delay spread
imposed by the channel. However, the reduction in the com-
plexity is gained at the expense of the inefficient usage of the

time available to communicate data and power consumption.
The loss of time and power resources can be quantified by
the fraction v

v+N , where v is the length of the inserted CP and
N is the number of OFDM subcarriers [5]. One can increase
the efficiency of OFDM systems by increasing N or reduc-
ing v, but this is generally not practical since N is usually
constrained in many communication standards by a fixed and
relatively small number, and v is chosen such that it is greater
than or equal to L, which is the length of the delay spread in
samples that is imposed by the channel condition.

Plenty of research articles proposed the insertion of a CP
with a length of v, where v < L, and design various equal-
ization techniques to rectify the loss of performance caused
by the insertion of a short CP. In [6] and [7], the modeling
of the ISI and ICI resulting from inserting an insufficient CP
has been analyzed, along with an implementation of a zero-
forcing (ZF) decision feedback equalizer (DFE) equalizer
to compensate for the effects of ISI and ICI. The equalizer
assumes a negligible noise at the receiver, which causes a
performance degradation if the receiver noise is high, and
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hence in [8], a minimum mean squared error (MMSE) DFE
which inherently considers the receiver noise has been pro-
posed along with forward error correction (FEC) to improve
the performance of the equalizer. Furthermore, time-domain
equalizers (TEQ) have been proposed with the aim of impulse
response shortening (IRS), i.e. shortening the overall impulse
response (OIR), which is the convolution of the impulse
response of the equalizer and the channel, conditioned on
maximizing different received signal evaluation metrics such
as the bit-error rate (BER) or the signal-to-interference-plus-
noise ratio (SINR) [9], [10], and in [11]–[13], TEQ is applied
to shorten, implicitly or explicitly, the effective length of
the channel impulse response (CIR). However, even if the
introduction of an equalizer compensates for the loss of
performance, this compromises the simplicity of the OFDM
transceiver design, and hence its utility. Recently, a chan-
nel independent interference nulling scheme using precoding
for multiple-input multiple-output (MIMO)-OFDM systems
with insufficient CP was introduced in [14], and furthermore,
iteratively estimating the CIR and using a trellis-based equal-
ization scheme has been proposed forMIMO-OFDMsystems
in [15] and [16].

Moreover, sparse approximations of finite impulse
response (FIR) channel equalizers have been investigated
due to their significant complexity reductions while still per-
forming close to non-sparse optimal equalizers. For example,
in [17], a framework for designing sparse FIR equalizers is
proposed using greedy algorithms, and an interesting applica-
tion of self far-end crosstalk cancellation was shown for sys-
tems adopting discrete multitone modulation, while in [18],
a reduced complexity sparsest FIR equalizer was derived for
single-carrier linear channel equalizers. Al-Abbasi et al. [18]
extended their work for the design of sparse FIRMIMO linear
and decision-feedback equalizers [19]. However, to the best
of the authors’ knowledge, no work has previously addressed
a sparse equalizer design for OFDM signals suffering from
ICI and ISI due to the insertion of an insufficient CP.

In this paper, we propose a reduced-complexity
time-domain sparse DFE equalizer for OFDM signals with
insufficient CP.We design the equalizer to offer a complexity-
performance trade-off by either setting a desired number of
active entries or by targeting a specific amount of loss in terms
of SINR. We further investigate the worst-case coherence
(WCC) metric of our sparsifying dictionary and show by
simulations that it is suitable for designing our sparse equal-
izers with more likelihood of successfully retrieving the non-
zero entries. Simulations show that our proposed equalizer
preforms closely to the optimal equalizer while significantly
reducing the design complexity. We note that the novelty of
our proposed equalizer lies in the fact that our design provides
flexibility in tuning the OFDM system in terms of: (i) Rate
gains over conventional CP designs depending on the delay
spread imposed by the wireless channel and (ii) Complexity
reductions when compared to the conventional equalization
techniques previously presented in the literature. Therefore,
by allowing such flexibilities, OFDM will be well adapted to

different 5G requirements by allowing the CP length and the
design complexity to be adjustable, rather than designed for
essentially the worst-case multi-path delay spread or adapting
a complex design approach. Interestingly, a similar system
was envisioned in [20].
Organization: The rest of the paper is organized as follows.

Section II presents the system model. Section III presents
the derivations of the reduced-complexity LE and DFE under
different constraints while also discussing the complexity and
feasability of the proposed schemes. Section IV presents the
numerical results, and finally section V concludes the paper.
Notations: Bold upper case letters denote matrices, and

bold lower case letters denote vectors. IN denotes an N × N
identity matrix, 0N and 0N×1 denote an all zeros N × N
matrix and all-zeros N × 1 vector, respectively. For vectors
and matrices, (.)T and (.)H denote the transpose and Her-
mitian transpose operations, respectively. The symbols E(.),
Tr(.), vec(.), ⊥ and ||.||p denote the expectation, trace, vec-
torization, statistical independence and pth norm operations,
respectively.

II. SYSTEM MODEL
We consider a single-input single-output OFDM system with
N symbols. The transmitted data symbols are assumed to be
independent and the channel is assumed to be known and
static at least over one OFDM symbol. Due to the insertion
of a short-lengthed (insufficient) CP, the received signal yt ∈
CN×1 at time t is impaired by ICI and ISI, and can be
expressed by writing

yt = Hxt − Axt + Bxt−1 + nt , (1)

where xt ∈ CN×1 is the data vector with E{xtxHt } = σ 2
x IN ,

and xt ⊥ xt−1. Further, H ∈ CN×N is the time-domain
circulant channel matrix where its first column is the zero-
padded CIR, and L denotes the number of CIR taps. The
matrices A ∈ CN×N and B ∈ CN×N , respectively, represent
the ICI and ISI effects [8]. We denote the length of the CP by
v, where the matrices A and B are non-zero matrices if and
only if v < L, in which case they can be written as

A =



0 · · · hL−1 · · · · · · hv+1 0 · · · 0
0 · · · 0 hL−1 · · · hv+2 0 · · · 0
...
. . .

... 0
. . .

...
...
. . .

...

0 · · · 0 · · · 0 hL−1 0 · · · 0
0 · · · 0 · · · 0 0 0 · · · 0
...
. . .

...
. . .

...
...

...
. . .

...

0 · · · 0 · · · 0 0 0 · · · 0


, (2)

and

B =



0 · · · 0 hL−1 · · · · · · hv+1
0 · · · 0 0 hL−1 · · · hv+2
...

. . .
...

. . . 0
. . .

...

0 · · · 0 · · · 0 0 hL−1
0 · · · 0 · · · · · · 0 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · · · · 0 0


. (3)

VOLUME 6, 2018 11077



L. Samara et al.: Sparse Equalizers for OFDM Signals With Insufficient CP

We note that the first term of the right hand side in (1) rep-
resents the desired signals, while the second and third terms
capture the effect of both ICI and ISI, respectively. If v ≥ L,
A andB are zero matrices, and hence neither ICI nor ISI exist.
However, if the CP length is insufficient, the residual ISI of
length equal to (L− v) induces ICI within the current symbol
and ISI from the previous symbol and hence, the orthogo-
nality between the different OFDM subcarriers will be lost.
Since ISI and ICI may severely downgrade the OFDM per-
formance, an equalization process is needed to counteract
these interference effects when the CP is insufficient. Last
but not least, nt represents the receiver’s zero-mean additive-
white-Gaussian noise (AWGN) with E[ntnHt ] = σ 2

n IN and
nt ⊥ xt ⊥ xt−1.

III. ANALYSIS AND PROBLEM FORMULATION
In this section, we present various techniques of reduced-
complexity equalizer designs to mitigate the effects of ISI
and ICI at the OFDM receiver. We begin by formulating opti-
mization problems to be used in the design of the proposed
reduced-complexity sparse linear MMSE and DFE equaliz-
ers. Further, we compare the complexity of our introduced
approach with well-known conventional equalizer designs
and show that our proposed equalizer can be designed with
a lower complexity when compared to them. We finally
introduce a method to verify the reliability of our proposed
equalizers.

A. LINEAR EQUALIZER DESIGN
To combat the effects of ICI and ISI, the received signal is
passed through an N × N linear MMSE equalizer matrix
denoted by ELE . Thus, the compensated received signal can
be written as follows

x̂LEt = ELE yLEt ,

= ELE (H− A)︸ ︷︷ ︸
def
=G

xt + ELEBxt−1 + ELEnt . (4)

Defining the error vector as vLE = x̂LEt − xt , the mean
square error (MSE) is computed by evaluating E{vLEvHLE }.
By exploiting the linearity of the trace and the expectation
operators, the MSE can be expressed as

MSELE
def
= σ 2

e,LE

= σ 2
x Tr

(
ELEGGHEHLE −GHEHLE

−ELEG+ ELEBBHEHLE + γ
−1ELEEHLE + IN

)
,

(5)

where γ
def
=

σ 2x
σ 2n
. Using the property Tr(XY) =

vec(XH )Hvec(Y), we can further write (5) as follows

σ 2
e,LE = σ

2
x Tr

(
ELE (GGH

+ BBH + γ−1IN )︸ ︷︷ ︸
def
=RLE

EHLE

−ELEG−GHEHLE + IN
)
,

= σ 2
x

(
eHLERLEeLE − gHeLE − eHLEg+ iHN 2 iN 2

)
, (6)

where g = vec(G), i = vec(IN ), eLE = vec(EHLE ),
RLE = RLE ⊗ IN , and ⊗ denotes the Kroenecker product.
Using the well know Cholesky’s matrix factorization, we can
set RLE = LLHLE , where LLE is a lower triangular matrix.
Hence,

σ 2
e,LE = σ

2
x

(
eHLELL

H
LEeLE − gHL−HLE LHLEeLE

− eHLELLEL
−1
LEg+ iHN 2 iN 2

)
. (7)

By completing the square, we get

σ 2
e,LE = σ

2
x

(
N+ gHL−HLE L−1LEg

)
︸ ︷︷ ︸

def
= σ 2e,LE,min

+ σ 2
x

(
||LHLEeLE−L

−1
LEg||

2
2

)
︸ ︷︷ ︸

def
= σ 2e,LE,exc

.

(8)

Here, σ 2
e,LE,exc is the only term in (8) that depends on eLE and

thus can be used to compute the sparse equalizer coefficients.
In particular, we use σ 2

e,LE,exc to control the sparsity level
of the designed equalizer. For example, if σ 2

e,LE,exc = 0,
the excess error (the second term in the right-hand side
of (8)) will be zero and thus the equalizer is optimal yet
not sparse (dense) and its design complexity is computa-
tionally demanding. On the other hand, allowing for some
tolerable excess error will help reduce the implementation
complexity at the cost of a performance loss. To achieve
a desirable performance-complexity tradeoff, we formu-
late the following problem for the design of sparse linear
equalizers

êLE = argmin
eLE∈CN2×1

‖eLE‖0 s.t. σ 2
e,LE,exc ≤ εLE , (9)

where ‖eLE‖0 is the number of nonzero elements in its argu-
ment and εLE can be chosen as a function of the noise vari-
ance. To solve (9), we propose a general approach presented
in the sequel to sparsely design the linear equalizer such that
the performance loss does not exceed a pre-specified tolerable
limit.

B. DECISION-FEEDBACK EQUALIZER
To better combat the ISI and ICI effects, a weighted sum of
past decisions are fed back to help cancel out the interferences
they cause in the present signaling interval. Fig. 1 depicts a

FIGURE 1. A schematic diagram illustrating our proposed system. The
dashed line represents the feedback present in the case of using a DFE
and absent in the case of using an LE approach.
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block diagram of the proposed sparse DFE equalizer. In the
DFE model, the received signal for one OFDM symbol at
time t can be modeled as [8]

x̂DFEt = EDFE
(
yDFEt − Bxt−1

)
,

= EDFEGxt + EDFEnt . (10)

Note that in the above equation, the error which may be
incurred from the previous symbol is subtracted first from
the current symbol before the equalization process. The error
vector is defined as vDFE = x̂DFEt −xt , and hence the MSE is
computed by applying E{vDFEvHDFE }. To avoid cumbersome
notations, we drop the time index and further do simplify the
MSE to get

MSEDFE
def
= σ 2

e,DFE

= E
[
Tr
(
EDFEGxxHGHEDFEH

−EDFEGxxH + EDFEnnHEDFEH

− xxHGHEDFEH + xxH
)]
. (11)

Exploiting the linearity of the expectation operator, we have

σ 2
e,DFE = σ

2
x Tr

(
EDFEGGHEDFEH −GHEDFEH

−EDFEG+ γ−1EDFEEDFEH + IN
)
. (12)

Following the same steps for the case of the LE, and setting

RDFE
def
= GGH

+ γ−1IN = LDFELHDFE , the MSE for the
case of the DFE can be written as

σ 2
e,DFE = σ

2
x

(
N + gHL−HDFEL

−1
DFEg

)
︸ ︷︷ ︸

def
= σ 2e,DFE,min

+ σ 2
x

(
||LHDFEeDFE − L−1DFEg||

2
2

)
︸ ︷︷ ︸

def
= σ 2e,DFE,exc

. (13)

where RDFE = RDFE ⊗ IN and LDFE = LDFE ⊗ IN .
σ 2
e,DFE,exc is the only term in (13) that depends on eDFE and

thus can be used to compute the sparse equalizer coefficients.
Specifically, we suggest to use σ 2

e,DFE,exc to control how
sparse is the designed DFE equalizer. Thus, for example,
if σ 2

e,DFE,exc = 0, the excess error will be zero and thus
the equalizer is optimal. However, the DFE is not sparse and
its design complexity is computationally expensive. On the
other hand, when allowing for some negligible excess error,
the implementation complexity can be reduced at the cost
of a tolerable loss in the system performance. To handle
such performance-complexity tradeoff, we formulate an opti-
mization problem for the design of sparse DFE equalizers as
follows

êDFE = argmin
eDFE∈CN2×1

‖eDFE‖0 s.t. σ 2
e,DFE,exc ≤ εDFE , (14)

where ‖eDFE‖0 is the number of nonzero elements in its
argument and εLE can be chosen as a function of the noise
variance. Next, a generalized approach to design a sparse
DFE equalizer is presented.

C. PROPOSED DESIGN APPROACH
We now present our proposed sparse equalizer design
approach for both LEs andDFEs. Our proposed design allows
the flexibility of controlling the sparsity level of these equal-
izers, which can be controlled based on different criteria,
namely the number of active entries of the equalizer and
tolerable losses in the SINR or the data rate. The choice of
the number of active entries in the equalizer matrix represents
a performance-complexity tradeoff and further, under our
formulation, the designer has a direct control on the desired
number of the nonzero entries. The second choice is to design
the equalizer such that the loss in the performance is upper
bounded by a certain value. The bound on the performance
loss can be on either the data rate or the SINR. Thus, we for-
mulate the following optimization problem

êα = argmin
eα∈CN2×1

‖eα‖0 s.t. σ 2
e,α,exc ≤ ε, (15)

where α ∈ {LE,DFE} and ε is a design parameter used
to control the sparsity level of the equalizer. Clearly, this
problem is not convex, and a relaxation can be performed to
make it convex by substituting the `0-norm in (15) with the
`1-norm. Under this relaxation, the above problem can be
solved using any convex optimization solvers. However,
besides its complexity, the resulting solution does not exactly
yield zero entries in êα . Another approach is to use some
of the available greedy algorithms, as for example the
orthogonal-matching pursuit (OMP) algorithm [21], which
we denote by the function OMP(dictionary matrix, data vec-
tor, c), where c is a stopping criterion that can be set as
the number of active entries in the equalizer matrix or a
bound on the performance loss. This allows us to have a
flexible stopping criterion depending on the constraints faced
by the designer. Next, we define the decision-point average
SINR for both linear and decision-feedback equalizers. The
decision-point SINR ζα can be written as

ζα(eα)
def
=

E[Tr(HxxHHH ])
E[vHα vα]

,

=
E[Tr(xxH ])E[Tr(HHH)]

E[vHα vα]
,

=
||h||22σ

2
x

σ 2
e,α,min + σ

2
e,αexc

,

(a)
≥

||h||22σ
2
x

σ 2
e,α,min + εSINR,α

,

=
ζmax
α (eα)

1+ εSINR,α

σ 2e,α,min

, (16)

where εSINR,α is a design parameter, and σ 2
e,α,exc ≤ εSINR,α ,

which is the reason behind the inequality in (a). In other
words, εSINR,α is a performance penalty a designer is willing
to afford for designing a reduced-complexity equalizer. The
parameter εSINR,α will be used as an input to the OMP algo-
rithm to determine the desired sparsity level of the equalizer.

VOLUME 6, 2018 11079



L. Samara et al.: Sparse Equalizers for OFDM Signals With Insufficient CP

Further, ψSINR,α
def
=

ζmax
max,α(eα)
ζα

, where ζmax,α(eα)
def
=
||h||22σ

2
x

σ 2e,min,α
.

Then, the performance loss is quantified by ψSINR,α (in dB),
i.e.,

ψSINR,α = 10 log10

(
ζmax
α (eopt )
ζα(eα)

)
,

≤ 10 log10

(
1+

εSINR,α

σ 2
e,α,min

)
def
= ψmax

SINR,α. (17)

Then, we compute εSINR,α based on an acceptable value for
ψmax
SINR,α and compute the sparse solution eα accordingly from

equation (15).
Now, we quantify the losses in the data rate resulting from

the sparse approximation of the optimal equalizer solution.
As previously discussed, the insertion of a CP results in a loss
of the bandwidth efficiency. To overcome this problem, one
can use a CP of insufficient length and rectify the effects of
the ISI and ICI by employing an equalizer at the receiver side,
which could be an LE or a DFE. Therefore, we next analyze
the rate gains resulting from reducing the CP length after the
sparse approximation of the optimal equalizer.

We define the average data rate of one OFDM symbol Rα ,
after equalization, as follows

Rα = δE
{
log2

(
1+

Tr(HxxHHH ])
vHα vα

)}
,

(b)
≤ δlog2 (1+ ζα),

(c)
≈ δlog2

(
||h||22σ

2
x

σ 2
e,α,min

)
︸ ︷︷ ︸

Rmax,α

−δlog2

(
1+

σ 2
e,α,exc

σ 2
e,α,min

)
, (18)

where the inequality in (b) follows from Jensen’s inequality
and the approximation in (c) is valid under the assumption
that we operate in the high SNR regime, δ = 1f N

N+v , where
1f denotes the subcarrier spacing. In (17), we have defined a
design control parameter which is a function of ψSINR,α that
controls the amount of SINR loss. We now define another
design parameter denoted by εRate,α . This control parameter
is a function of the rate loss, i.e., ψRate,α . Next, after some
straight-forward manipulations, εRate,α can be written as

εRate,α ≥

(
2
ψRate,α

δ − 1
)
σ 2
e,α,min, (19)

where ψRate,α
def
= Rmax,α − Rα .

To this end, we have shown that the problem of designing
the sparse LE and DFE’s matrix entries can be cast into
a sparse approximation of a vector by a fixed matrix. The
general form of this problem is given by (15). In order to solve
this problem, we can use any greedy algorithms to determine
the locations and weights of the equalizer matrix entries.
Here, for simplicity, we use the well-known OMP greedy
algorithm [21] that estimates eα by iteratively selecting a
set, e.g., S, of the dictionary matrix columns that are most
correlated with the data vector and then solving a restricted
least-squares problem using the selected columns. Then, after

properly selecting the equalizer design constraint, we can
realize eα by applying any one of the following functions

êα = OMP
(
LHα ,L

−1
α g,

⌈
p× N 2⌉), (20)

êα = OMP
(
LHα ,L

−1
α g, εSINR,α

)
, (21)

or

êα = OMP
(
LHα ,L

−1
α g, εRate,α

)
, (22)

where p is a parameter that defines the desired percentage
of active entries in eα . Recall that LHα is the dictionary
matrix, L−1α g is the data vector we use to estimate eα , and
the final argument c can be a condition on the number of
active entries in the equalizer matrix (

⌈
p× N 2

⌉
), an upper-

bound of the SINR losses (εSINR,α), or a predefined limit on
the data rate (εRate,α). Algorithm 1 presents the steps of the
OMP algorithm required to provide the sparse equalizer eα
when the design is restricted by the number of active entries.
This algorithm was described in details in [21]. In line num-
ber 3, 1 represents the disjunctive union symbol. Extending
Algorithm 1 to encompass the performance loss restrictions
presented above is straight-forward.

Algorithm 1 OMP Algorithm

Input: Matrix LHα , vector L−1α g, scalar β =
⌈
p× N 2

⌉
Output: Vector eα

1 Initialize: S = [ ]; j = 1; I ∈ {1, . . . ,N 2
};

êHα = 0N 2×1; t = [ ];
2 while (j ≤ β)
3 S̄ = S4I ;
4 k = argmax(|LHα (:, S̄)L−1α g|);
5 S = S ∪ k;
6 t = L−Hα (:, S)L−1α g;
7 j = j+ 1;
8 end
9 eα(S) = t;

We would finally like to note that the analysis of the MSE
described above that will be used in the realization of our
proposed sparse equalizer can be done in a different way.
It has been shown in [8] that, while satisfying the orthogo-
nality principle that results in the realization of the optimal
equalizer, we can write

G− RαEHα = 0N×N , (23)

or

g− Rα ⊗ eHα = 0N 2×1. (24)

Therefore, the sparsifying dictionary matrix is no more
a decomposed lower-triangular matrix constructed by the
Cholesky factorization technique. Furthermore, it has been
shown in [18] that the Cholesky factorization written in
e.g. (7) outperforms the approach in (24). Therefore, we focus
our study on the Cholesky factorization based technique.

11080 VOLUME 6, 2018



L. Samara et al.: Sparse Equalizers for OFDM Signals With Insufficient CP

We conclude this section by noting that several equaliza-
tion structures follow as special cases of our general design
approach presented here including:
• The one-tap frequency-domain equalizer where a suf-
ficient CP is considered. The equalizer is realized by
taking the FFT of the time domain channel response
while setting the sparsity level to zero, i.e., p = 0, then
scaling each OFDM subcarrier by a single tap.

• For any v, the optimal equalizer in the MMSE sense can
be considered as a special case of our design by fully
equalizing the effects of the ISI and ICI.

• In the DFE setup, the ZF equalizer can also be generated
as a special case of our approach when the SNR tends to
infinity.

D. COMPUTATIONAL COMPLEXITY
Here, we compare the orders of the complexities of some
conventional equalizers versus our proposed equalizer design
approach. For both cases of linear and decision-feedback
equalizers, it has been shown in [8] that a ZF equalizer can
be constructed by applying

EZF = G−1 = (H− A)−1. (25)

To invert the matrix in (25), the computational complexity
is of the order of O(N 3) [22]. The channel matrix H can be
inverted by applyingH−1 = FH H̄−1F, where F is the unitary
FFT matrix and H̄ is a diagonal matrix where its diagonal
entries represent the frequency response of the wireless chan-
nel. However, A is singular and inverting it is not possible.
Moreover, inverting G without inverting A is possible using
a modified version of theWoodbury formula reported in [23],
where it shows that it is possible to write

(H− A)−1 = H−1 + (IN −H−1A)−1︸ ︷︷ ︸
3

H−1AH−1, (26)

and to compute 3, we use Newman series approximation
which states that [24]

3 =

∞∑
n=0

(H−1A)n, iff ρ(H−1A) < 1, (27)

where ρ(.) denotes the spectral norm function, i.e. the max-
imum eigenvalue of the matrix H−1A. Hence, we can now
invert G while just having to invert H, which involves the
eigen-decomposition of H requiring the computation com-
plexity of O(Nlog(N )). However, we cannot guarantee the
condition in (27) since we are dealing with random matrices
that result in random values of the spectral norm. Further,
even if the condition ρ(H−1A) < 1 is satisfied, using Wood-
bury’s formula will actually increase the complexity of real-
izing EZF since n in (27) might be large to give satisfactory
results.

With respect to the optimal MMSE equalizer design,
it requires the inversion of Rα , which also costs an order of
O(N 3) operations. However, our proposed sparse equalizer
can be realized through the OMP algorithmwith a complexity

ofO
(
N 2W

)
, where 1 ≤ W ≤ N , depending on how sparse is

our proposed equalizer. For the sake of comparison, we com-
pare our proposed sparse equalizer with another sparse equal-
izer which we refer to as the ‘‘significant entries’’ equalizer.
The significant entries equalizer is constructed by threshold-
ing the optimal equalizer (in theMMSE sense) in terms of the
maximum absolute values of the equalizer entries. The num-
ber of entries depends on how many of the active entries are
needed (which determines the sparsity level of the equalizer
accordingly). However, the optimal MMSE equalizer needs
to be computed first to estimate the significant entries of
the equalizer. Hence, to design an equalizer based on the
significant entries approach,O(N 3) computations are needed.
The complexity comparisons for our proposed method and
some other approaches are summarized in Table I.

TABLE 1. Comparison between the order of the complexities of our
proposed equalizer designs to some other selected equalizers.

E. WORST-CASE COHERENCE
A useful metric to evaluate the performance of our proposed
equalizer is the WCC metric. The WCC operator, which we
denote by µ(.), can be written as [18], [19]

µ(Rα) = max
i 6=j

|〈Rα(i),Rα(j)〉|
||Rα(i)||2||Rα(j)||2

, (28)

where 〈., .〉 denotes the inner product operator. We note that
the normalization in (28) sets µ(Rα) to be in the range [0,1].
A lower µ(Rα) implies that the OMP algorithm will likely
recover the equalizer entries.More discussion about theWCC
metric can be found in e.g. [18], [19]. Further, it is worth
noting that other metrics, which are similar to the WCC
metric, have been studied in the literature as in e.g. [25].
The metric that has been studied there was the maximum
expected coherence (MEC)metric since it is easier to analyze.
However, the WCC presents the worst-case-scenario perfor-
mance of the dictionary matrix’s coherence, and thus was
selected to be included in our simulation studies instead of
the MEC. In the sequel, the results of the WCC simulations
are discussed for the cases of LE and DFE equalizers, and
will show that a Cholesky factorization approach to design
the dictionary matrix will yield better results when compared
with selecting Rα as the dictionary matrix. Next, we will
present the results of our numerical experiments to evaluate
the performance of our proposed designs considering both LE
and DFE equalizers.

IV. NUMERICAL RESULTS
In our simulations, we use the OFDM-based IEEE
802.16 Mobile WiMax standard described in [26] where the
key IEEE 802.16 standard parameters are shown in Table 2.
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TABLE 2. Values of the parameters used in our simulations.

Furthermore, we use an equal tap channel (ETC)
model [27] where the channel is composed of 4 taps with nor-
malized delays of (0, 4, 8, 12) samples and an average gain
of 0.25 for each tap, where each tap is generated as a com-
plex independent Gaussian random variable. Further, we use
coded OFDM using a convolutional encoder [133, 171] with
a rate of 1/2 and a constraint length of 7. At the receiver,
we use a Viterbi decoder with hard decision decoding. In our
simulation settings, the vector L−1α g is segmented into N
vectors, and then the OMP algorithm is applied in a parallel
fashion. This was performed to further reduce the computa-
tional time since N in our simulations is set to 128, which
will make the data vector’s size to be 16384. This increase
in dimension (from N to N 2) consumes larger memory and
increases the simulation time. Thus, parallelization helps
reduce the simulation time.

Throughout the simulations, our proposed OMP-based
equalizer designs are compared with the significant-entries
(Sig. entries) equalizer, Sufficient CP based design and ZF
equalizer. We further compare our equalizer design approach
with the optimal MMSE equalizer defined as EMMSE =
GHR−H [8]. Note that the optimal equalizer follows as a spe-
cial case of our approach by setting the excess losses to zero,
i.e., full equalization with 100% active taps. The Sufficient
CP equalizer (when L ≤ v) and the optimal MMSE equalizer
can be considered as benchmarks for our comparative study.
The OMP algorithm is applied to the MMSE-DFE case since,
as it will be shown in the results, the MMSE-DFE equalizer
performs the closest to the Sufficient CP based design, and
our aim is to perform as close as possible to the Sufficient CP
based design while reducing the complexity of realizing the
equalizer.

First, we study the effect of the sparse equalizer designs
on the performance where we plot the percentage of the
active entries (i.e, entries with nonzero weights) of the total
equalizer lengthN 2 versus themaximumSINR loss. In Fig. 2,
we can see that our proposed approach requires far less
active entries when compared with the Sig. entries based
design for different received SNR values, and far less active
entries are required when more performance loss is tolerated.
As expected, the higher the received SNR, a higher number
of active entries is needed in order to cancel the effects of the
ISI and ICI.

In Fig. 3, we plot the coded BER for a varying received
SNR and a CP of length 2, i.e., v = 2. We see that the best

FIGURE 2. Percentage of the active entries of the equalizer matrix (p) vs.
the loss in SNR in dB for different received SNR. In this case, v = 8.

FIGURE 3. Coded BER vs. the received SNR for v = 2 when different types
of equalizers are implemented.

performance of all tested methods in terms of coded BER
is the OFDM system deploying sufficient CP, followed by
the optimal MMSE equalizer (full equalization with 100%).
Thresholding based techniques such as the Sig. entries
approach does not perform well as it fails to choose the best
entries that cancel-out the effects of ISI and ICI. This means
that relying only on the largest magnitudes to select the equal-
izer entries and ignoring its phase components deteriorates
the performance of the equalizer when the receiver AWGN
is negligible. Also, both ZF and MMSE LEs perform much
worse than the ZF and MMSE DFEs. In Fig. 4, the coded
BER is plotted against the percentage of the active number of
entries of the Sig. entries and our proposed equalizers. As it
can be seen from the figure, our proposed equalizer converges
fast to the optimal equalizer’s BER as p increases, where it
almost performs as well as the optimal equalizer with only
40% of its taps being active.
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FIGURE 4. Coded BER vs. p with v = 2 and a received SNR of 25 dB for
different types of equalizers.

FIGURE 5. WCC vs. the received SNR with v = 8.

In Fig. 5, the average WCC is plotted for different values
of the received SNR when v = 8. The WCC of LLE , LDFE ,
RLE and RDFE are investigated. We note that µ(LDFE ) =
µ(IN ⊗ LDFE ). Furthermore, we can see that µ(Rα) and
µ(Lα) are below 1 which reflects the high likelihood of our
approach to estimate the non-zero entries perfectly.We notice
that the WCC of all selected dictionary matrices saturate at
high SNR as the coherence becomes independent of the SNR.
On the other hand, at low SNR, the noise dominates over the
channel taps and therefore the dictionary matrices become
close to identity matrices which, hence, have almost zero
WCC. Furthermore, interestingly, the WCC for the LE and
the DFE are almost identical.

Moreover, to shed some light on the behavior of the WCC
when v is varied, Fig. 6 depicts the effect of decreasing v
on µ(RDFE ), µ(LDFE ), µ(RLE ) and µ(LLE ). We notice that
µ(RDFE ) significantly depends on v, although inserting a CP
with length 1 is similar to inserting a CP with length 4, and

FIGURE 6. WCC vs. v wwhen the received SNR is set to 15 dB.

FIGURE 7. Data rate vs. p for different equalizer designs when the
received SNR is equal to 20 dB and v = 2.

inserting a CP with length 5 will have a similar effect as
inserting a CP with length 8, etc. This is due to the structure
of the sparse ETC channel model that we have used in our
simulations. However, for the cases of µ(LDFE ) and µ(LLE ),
we see that the WCC does not change with decreasing the
CP length. That makes our design approach more attracting
and adds a value for considering it in practical applications
to improve the bandwidth efficiency. Since the coherence
of µ(LDFE ) and µ(LLE ) is still low for even small values
of v, we can still obtain a good performance with a high
likelihood of well estimating the locations and weights of the
non-zero entries. Due to this independence of v, our approach
is considered as a robust method.

Figs. 7 and 8 depict the data rate of an OFDM symbol
when the percentage of the active entries and the CP length in
samples are varied, respectively. Clearly, reducing the length
of the CP length will increase the data rate as more useful data

VOLUME 6, 2018 11083



L. Samara et al.: Sparse Equalizers for OFDM Signals With Insufficient CP

FIGURE 8. Data rate vs. v for different equalizer designs when the
received SNR is equal to 20 dB and p = 50%.

is transmitted. For both figures, we set the CP length for the
Sufficient CP case to be equal to 16, totally eliminating the
ISI effect. In Fig. 7, our proposed equalizer performs better
than the significant entries equalizer for all p’s and performs
very close to the optimal equalizer when p = 40%. Most
importantly, our proposed equalizer results in a higher rate
than the Sufficient CP case after using only 20% of the equal-
izer’s entries, and the Sig. entries equalizer starts yielding
better rate results after 40% of its entries are activated. Again,
we emphasize on the point that our proposed equalizer not
only outperforms the significant entries equalizer in terms of
performance, but is less complex to design as the Sig. entries
equalizer requires first to get the dense and complex optimal
equalizer result before thresholding it. In Fig. 8, since the CP
length for the Sufficient CP case is set to 16 samples, our
proposed equalizer always results in a higher data rate even
when only 50% of its entries are being active.

V. CONCLUSION
In this paper, we studied the equalization of OFDM signals
suffering from ICI and ISI due to the insertion of an insuf-
ficient CP. We formulated the equalizer design problem as
a convex optimization problem, and then, using the OMP
algorithm, we controlled the level of sparsity of our equalizer
by either a predefined number of the non-zero entries or by
bounding the amount of losses that can be tolerated. Using
only 40% of the equalizer entries, our proposed reduced-
complexity sparse equalizer performs as good as that of the
optimal MMSE equalizer (full dense equalization) in terms
of coded BER and data rate. We have further tested the
compatibility of our proposed equalizer through investigating
the WCC metric and have shown that our dictionary matrices
have low coherences which makes our approach a robust
method.
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