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ABSTRACT This paper presents aV -bandDoherty power amplifier (PA) which is implemented in a standard
65-nmCMOS technology. The voltage combination technique is used to realize themillimeter-wave Doherty
PAwithout the λ/4 transmission lines. AMarchand balun with balance compensation is designed to combine
the output power with reduced power loss. Moreover, a nonlinear driver is used to drive the peaking amplifier
to enhance the output power and the turn-on speed of it. The power-added efficiency (PAE) of this PA at
the 6-dB power back-off point is 8.7% and the peak PAE reaches 16.8%. The small signal power gain is
18 dB, and the maximum output power is 14.9 dBm. The core circuit only costs 0.195 mm2 chip area as no
λ/4 transmission lines.

INDEX TERMS CMOS,Doherty power amplifiers, millimeter-wave,Marchand balun, voltage combination.

I. INTRODUCTION
The requirement of the high-speed communication greatly
increases with the multimedia information explosion.
Millimeter-wave (mm-wave) frequency band is attractive for
realizing gigabit-per-second (Gbps) communication because
of the broad absolute bandwidth [1]–[3]. Standards in this
band, such as IEEE 802.11.ad, provide the option of OFDM
mode to enhance the communication speed. However, this
gives the signal a high peak-to-average ratio (PAPR), which
requires PAs to have a high PAE at the power back-off region.
The Doherty PA [4] is one of the competitive techniques.
Since no extra control circuit is needed, the Doherty PA is
not limited by the bandwidth of the control circuit com-
pared with the other techniques, such as dynamic biasing,
envelope tracking, and transistor reconfiguration. However,
impedance-transforming network, which is usually imple-
mented by λ/4 transmission lines, is indispensable in the
conventional Doherty PAs. The λ/4 transmission lines usually
consume large area and work only in a narrow bandwidth [5].
Moreover, the Class-C mode peaking amplifiers in mm-wave
frequency region suffer from low power gain and have a low
efficiency when it starts to turn on [6].

The voltage combination technique is able to realize
active load modulation without impedance transformer net-
work [7]–[11]. However, the λ/4 transmission lines are also
needed to realize a zero impedance for the peaking ampli-
fier [7], [8]. A 60GHzDoherty PA free of the λ/4 transmission
lines is presented in this paper. A Marchand balun with
balance and phase compensation is used to realize the output
voltage combination. In order to improve the performance of
the peaking amplifier, a nonlinear driver is used to make the
peaking amplifier obtain a higher output power and power
gain. At the same time, the nonlinear driver enables the
peaking amplifier to have a steeper turn-on performance. The
V-band Doherty PA is realized in a standard 65nm CMOS
technology. The peak PAE reaches 16.8%, while it is 8.7%
at the 6-dB power back-off point. Since no λ/4 transmission
lines are needed, the core area only costs 0.195 mm2.
Section II gives a detailed analysis of the active load

modulation method in the mm-wave frequency region and
the implementation based on a Marchand balun. Section III
presents a V-band Doherty PA based on the proposed method.
The measurement result is given in Section IV. Finally,
the paper is concluded in Section V.
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FIGURE 1. The operation principles of active load modulation. (a) The
current combination technique. (b) The voltage combination technique.

II. ACTIVE LOAD MODULATION IN
MM-WAVE FREQUENCY
A. CURRENT COMBINATION ACTIVE LOAD MODULATION
IN THE MM-WAVE FREQUENCY REGION
The conventional Doherty PA consists of two amplifiers
(carrier amplifier and peaking amplifier) and the impedance
transforming network. Fig. 1(a) shows the simplified cur-
rent source models of the current combination active load
modulation. When the input power is lower than the turn-
on threshold power, the peaking amplifier is turned off, and
its output impedance is infinity. The load impedance of the
carrier amplifier (Zc) is constant according to (1)

Zc =
Z2
0

Zc_T
=

Z2
0

ZLoad
(1)

After the peaking amplifier is turned on, the current of the
peaking amplifier is delivered to the load, and then the load
impedance of carrier branch (Zc_T ) increases. As a result,
Zc decreases as given in (2). A smaller load impedance Zc
enables the carrier amplifier to push out more output current
with the maximum efficiency. The impedance variation of the
load impedance in current combination Doherty PA is shown

FIGURE 2. Load impedance variation of (a) the current combination
technique and (b) the voltage combination technique.

in the Fig. 2 (a).

Zc =
Z2
0

Zc_T

Zc_T = ZLoad (1+
IPeaking
ICarrier

)


⇒ Zc ↓=

Z2
0

ZLoad
(1−

ICarrier
↑ IPeaking + ICarrier

) (2)

FIGURE 3. The (a) real part and (b) imaginary part of a transistor’s output
impedance.

The current combination method faces an enormous
challenge in the mm-wave frequency region. The output
impedance of the peaking amplifier cannot be treated as an
open circuit in the back-off region. On the contrary, it is
more like a short circuit as the impedance is very small
when the frequency reaches the mm-wave frequency region.
Fig. 3 shows the output impedance versus frequency of a
transistor with 144 um width at the different bias voltages.
The magnitude of the impedances’ real parts and imaginary
parts are very high when the frequency is lower than 3 GHz,
which can be treated as an open terminal. However, their
values’ magnitudes fall rapidly versus frequency and are
close to a short terminal in the mm-wave frequency region.
This phenomenon is even worse when the bias condition is
close to Class-C mode. The low output impedance of the
peaking amplifier makes the current of carrier amplifier flow
into the peaking amplifier when the peaking amplifier is off,
which decreases the efficiency or even makes the active load
modulation work wrongly. The impedance variation versus
frequency can be explained by a simplified model [12] as
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FIGURE 4. The equivalent model of a transistor in the cut-off region.

shown in Fig. 4. Since the transistor is biased at Class-Cmode
and working in the cut-off region, the output impedance is
mainly determined by the parasitic components. The output
impedance can be expressed as

Zout = 1/(1/(
Zs + rg

1+ jωCgs(Zs + rg)
+

1
jωCgd

)+ jωCds +
1
ro
)

≈
1/ro

1/r2o + ω2C2 − j
ωC

1/r2o + ω2C2 (3)

where C represents

C =
CgdCgs

Cgd + Cgs
+ Cds (4)

It can be seen that both of the real and imaginary parts are
close to zero when the ω increases, which agrees with the
simulation result in the Fig. 3.

B. VOLTAGE COMBINATION ACTIVE LOAD MODULATION
IN THE MM-WAVE FREQUENCY REGION
Voltage combination technique is another technique to realize
the active loadmodulation [7], [8], [13]. The simplifiedmodel
is shown in Fig. 1(b). In the lower power condition, the peak-
ing amplifier is turned off. The voltage and output impedance
of it is close to zero with no energy consumed. At the same
time, the carrier amplifier delivers voltage to the load through
the transformer. The load impedance of the carrier amplifier
is constant and equal to load impedance (Zload ) as given
in (5).

Zc =
Vcarrier
I
= ZLoad (5)

When the carrier amplifier reaches the maximum PAE
point, the peaking amplifier is turned on. The two amplifiers
add the output voltage to the load through the voltage series
combination transformer.With the output voltage of the peak-
ing amplifier increasing, the load impedance of the carrier
amplifier decreases according to (6).

ZC =
VCarrier
I ′

I ′ =
VCarrier + VPeaking

ZLoad

⇒ Zc ↓=
VCarrierZLoad

VCarrier + VPeaking ↑

(6)

The carrier amplifier can deliver more current with the max-
imum efficiency. The variation of the load impedance in
voltage combination Doherty PA is shown in Fig. 2 (b).
No λ/4 transmission line is employed to realize the active
load modulation. However, λ/4 transmission lines are still
essential in the real voltage combination Doherty PA in the

FIGURE 5. The voltage combination Doherty PA in (a) the low-frequency
region and (b) the high-frequency region.

low-frequency region. As stated before, the peaking amplifier
should show a zero output impedance. The λ/4 transmis-
sion lines transfer the high output impedance of the peak-
ing amplifier to zero [7], [8] as shown in Fig. 5(a). In the
mm-wave frequency region, the λ/4 transmission lines can
be avoided, as the output impedance is approximately zero
as shown in Fig. 3. The voltage combination Doherty PA can
be simplified to the schematic in the Fig. 5(b) in the mm-
wave frequency region. The output terminals of the carrier
amplifier and the peaking amplifier can be combined directly.

C. VOLTAGE COMBINATION MARCHAND BALUN
WITH BALANCE COMPENSATION
The voltage combination is usually implemented by the trans-
formers [14] in the PA design. The transformers can be
employed as baluns at the same time [15], [16]. The operation
principle of the transformers is the magnetic field coupling as
shown in Fig. 6(a). For the transformer balun, the main prob-
lem is the imbalance of the differential terminals [17], [18].
The impedance difference of the terminals increases the
loss of the balun and even makes the load impedance
far from the optimized impedance (Ropt ) for best output
power or PAE performance. The main reason for the imbal-
ance is the addition capacitive parasitic components [18].
The parasitic current (Ic) flows from the input coil to the
output coil through the parasitic capacitor is contrary to the
original output current (Iout ) as shown in the Fig. 6(a), which
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FIGURE 6. (a) The transformer balun and (b) the Marchand balun with
the balance compensation.

increases the power loss.

Pout = (Iout − I+c − I
−
c )RLoad (7)

The load impedance from each terminal can be expressed as
Z+Load =

V+in
I+in + I

+
c

Z−Load =
V−in

I−in + I
−
c

(8)

The Ic from the positive terminal (I+c ) is higher than that
from the negative terminal (I−c ), and the currents have differ-
ent phases, which generates the imbalance.

I+c 6= I−c ⇒ Z+Load 6= Z−Load (9)

The reason for this phenomenon is that the output coil
is connected to the ground directly and the I+c flow to the
ground through a low impedance path. On the contrary, the
I−c is much smaller and has a different phase, since the output
terminal is connected to a fixed load.

An offset transformer balun is used in [18] to decrease
the parasitic capacitors. However, the offset also reduces the
power coupling. A balance compensation Marchand balun is

proposed as shown in Fig. 6(b). The main idea is to reduce
I+c to the same value as I−c , which makes impedance equal.
The Marchand balun enables the usage of the open-ended
transmission line instead of the grounded inductors. The open
terminal of theMarchand balun cuts off the direct current path
to the ground. Then the I+c can be reduced. An additional
open-ended transmission line is added to the open terminal
to tune the magnitude and phase of the I+c to make it equal
to the I−c . Then the Z+Load and Z

−

Load are balanced. Because of
the decrease of Ic, the power loss is also reduced.

III. V-BAND DOHERTY PA CIRCUIT DESIGN
A. CIRCUIT OVERVIEW
A V-band Doherty PA is designed in the 65 nm bulk CMOS
technology. Fig. 7 shows the schematic of the proposed PA.
Voltage combination method is used to realize the Doherty
operation, and a voltage series combination Marchand balun
with balance compensation is adopted. Each amplifier core
uses the stacked transistors to enhance the voltage supply and
then increase the output power [19]. To increase the stability
and power gain, neutralization technique is used [20]. The
carrier PA is working in the Class-AB mode. The peaking
amplifier is driven by a Class-C mode nonlinear driver to
obtain a faster current growing and a better power gain.
The driver before the carrier amplifier is used to balance
the gain and phase of the two paths. To obtain a wide-band
matching, the transformers are inserted between the stages as
the matching networks. The input power divider is also based
on the Marchand balun.

B. BALANCE COMPENSATED MARCHAND BALUN
The output voltage series combination Marchand balun is
shown in Fig. 8 (a). The 3-D view is shown in Fig. 8(b).
The output network consists two series Marchand balun. The
balun for peaking amplifier is ended with a balanced com-
pensation open transmission line as described in Section II.
A phase compensation line is inserted between the baluns for
carrier and peaking amplifier to make the voltages combined
in an accurate phase. The layout of the two baluns is set in
the orthogonal direction to minimize the coupling between
the coils [21], [22], which avoids the imbalance and power
loss generated by the unwanted coupling. The output terminal
is connected to a G-S-G pad. The Marchand balun transfers
the load impedance to the optimized load impedances without
any other matching networks.

C. POWER AMPLIFIER AND NONLINEAR
PEAKING AMPLIFIER DRIVER
The peaking amplifier is usually implemented by a fixed
Class-C mode PA. However, the fixed Class-C mode
amplifiers deliver lower output power as the red line
in Fig. 9(a) [23]. This is more serious in the mm-wave region.
Both of the output power and power gain drop rapidly when
the bias voltage decreases as shown in Fig.9 (b). The power
gain is usually less than 5 dB, which is unusable in reality.
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FIGURE 7. Schematic of the proposed V-band Doherty PA using the voltage combination Marchand balun.

FIGURE 8. The (a) output voltage series combination Marchand balun
and the (b) 3-D view.

The efficiency is also very low when the peaking amplifier
starts to turn on. On the other hand, the cut-off performance
deteriorates if the bias voltage increases. Therefore, a nonlin-
ear power gain of the peaking amplifier is needed as the green
line in the Fig. 9(a). Adaptive bias technology [24]–[27] is a
common solution for the problem. However, this requires the
adaptive bias circuit’s bandwidth larger than that of the enve-
lope signal, which is difficult to achieve for the high-speed
systems with the multi-Gbps transmission rate. An uneven

FIGURE 9. The (a) normalized output voltage of amplifiers and the
(b) power gain of PA with different bias voltage.

FIGURE 10. The nonlinear driven peaking amplier.

power splitting method is proposed in [7] taking advantage
of the nonlinearity of the transistors’ parasites capacitors
in 180 nm CMOS technology. However, it cannot be imple-
mented in the 65nmCMOS technology, since the nonlinearity
is reduced with the reduced transistor size.

A nonlinear driver with gain expansion can be placed
before the peaking amplifier to make it have a steeper turn-
on performance [6]. In this design, a Class-C mode driver is
used with a light Class-C peaking PA. The nonlinearity of the
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TABLE 1. Comparison of state-of-art mm-wave PA.

FIGURE 11. The die photo of the proposed V-band Doherty PA.

FIGURE 12. The simulated and measured S-parameters.

driver enables the peaking PA having a higher bias point with
a better performance as shown in Fig. 10. With a higher bias
point, the peaking PA can deliver more power and get a higher
power gain.

The carrier PA is biased at the Class-AB mode. The driver
of the carrier PA is designed to balance the power gain and
phase of two paths [5].

FIGURE 13. The large signal performance versus output power.

FIGURE 14. The large signal performance versus frequency.

IV. MEASUREMENT RESULT
The Doherty PA is fabricated using a standard 65nm bulk
CMOS process. The die photo is shown in Fig. 11. With no
λ/4 transmission lines, the core region of the power amplifier
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is only 0.195 mm2 including the input and output RF pads.
Fig. 12 shows the measured small signal S-parameter. The
maximum S21 is 18 dB and the 3 dB bandwidth is 5.2 GHz.
Fig. 13 shows the large signal performance versus output
power. The maximum output power is 14.9 dBm and the
peak PAE is 16.8% at 59 GHz. The PAE reaches 8.7% at the
6 dB power back-off point. The red line shows the simulated
PAE of carrier PA only. It can be seen that the proposed
PA shows a better PAE performance in the power back off
region. Fig. 14 shows the large signal performance versus the
frequency. Table 1 summarizes the comparison with the state-
of-art silicon-based mm-wave power amplifiers.

V. CONCLUSION
AV-band Doherty PA is implemented using the voltage com-
bination method. A voltage series combination Marchand
balun with balance compensation is used to improve the
performance. To improve the performance of the peaking
amplifier, a nonlinear Class-C mode driver is adopted to
enhance the current growing. The PAE reaches 8.7% at the
6 dB power back-off point [28]–[31].
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