
SPECIAL SECTION ON PRIVACY PRESERVATION FOR LARGE-SCALE USER DATA
IN SOCIAL NETWORKS

Received November 20, 2017, accepted January 8, 2018, date of publication January 18, 2018, date of current version March 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2795383

Detecting Malicious Behaviors in
JavaScript Applications
JIAN MAO 1, (Member, IEEE), JINGDONG BIAN1, GUANGDONG BAI2, RUILONG WANG 1,
YUE CHEN1, YINHAO XIAO3, AND ZHENKAI LIANG4, (Member, IEEE)
1School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
2Cluster of Infocomm Technology, Singapore Institute of Technology , Singapore 138683
3Department of Computer Science, The George Washington University, Washington, DC 20052 USA
4School of Computing, National University of Singapore, Singapore 117417

Corresponding author: Jian Mao (maojian@buaa.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB0802400, in part
by the National Natural Science Foundation of China under Grant 61402029, Grant 61370190, and Grant 61379002, in part by the
Singapore Ministry of Education under the National University of Singapore under Grant R-252-000-666-114, and in part by the Funding
Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security under Grant AGK201708.

ABSTRACT JavaScript applications are widely used in a range of scenarios, including Web applications,
mobile applications, and server-side applications. On one hand, due to its excellent cross-platform support,
Javascript has become the core technology of social network platforms. On the other hand, the flexibility
of the JavaScript language makes such applications prone to attacks that inject malicious behaviors. In this
paper, we propose a detection technique to identify malicious behaviors in JavaScript applications. Our
method models an application’s normal behavior on function activation, which is used as a basis to detect
attacks. We prototyped our solution on the popular JavaScript engine V8 and used it to detect attacks on
the android system. Our evaluation shows the effectiveness of our approach in detecting injection attacks to
JavaScript applications.

INDEX TERMS JavaScript application, hybrid mobile app, behavior anomaly detection.

I. INTRODUCTION
For the excellent cross-platform support, JavaScript applica-
tions are widely used to power a wide range of solutions,
including web applications, mobile applications and desk-
top/server applications. As a result, JavaScript is a core tech-
nology that supports popular social networking application
architectures, covering both the cloud (servers) and the ends
(browser andmobile apps). For the convenience of users, such
social network applications often require users to provide
their geolocation, personal addresses, contacts, etc. On one
hand, these applications often offer user-friendly and cus-
tomized features for users. On the other side, users’ privacy is
exposed to these applications, and is even potentially revealed
to adversaries [1].

In fact, the flexibility of the JavaScript language makes
such applications even more prone to attacks that inject
malicious behaviors. The existing web vulnerabilities in
these application, such as cross-site scripting (XSS) [2],
are also carried into JavaScript applications on other plat-
forms, which can lead to security breaches and reveal users’
privacy.

In this paper, we focus on JavaScript-based mobile appli-
cations, which is also called hybrid mobile apps. Compared
to traditional web applications, such JavaScript applications
have access to more sensitive channels on mobile devices,
such as contacts and messages, allowing malicious code to
be hidden in such channels to be injected into hybrid mobile
apps [3]–[5]. Moreover, the injected code has much more
power in accessing system resources, such as camera and
GPS information, than its counterparts in the web.

Researchers have extensively studied code injection on the
web platform [6]–[15], the solutions are mainly for the archi-
tecture of web applications. They have proposed solutions to
prevent code injection attacks in hybrid mobile apps [3], [16],
which works mainly by filtering code out of the data
input from potential code injection channels of the devices.
However, these solutions need the knowledge of potential
injection channels, and thus may become ineffective when
new injection techniques are developed by attackers.

In JavaScript applications, the anomalous (or foreign)
behaviors by injected code break the execution integrity of
the victim app, resulting in different behaviors from benign

12284
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-0404-6466

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

ones in the way they are activated. Based on this observation,
the research community has developed solutions to detect
anomalous behaviors based on behavior models in several
platforms, such as x86 programs [17], [18] and web appli-
cations [19], [20]. The key of such solutions is to identify
the program states under which anomalous behaviors can be
distinguished from benign behaviors. In hybrid mobile apps,
dangerous behaviors are carried out as call to APIs provided
by the hybrid framework such as PhoneGap [21]. These
APIs are comparable to system calls to an operating system.
Therefore, in our approach, our goal is to identify and pre-
vent malicious call to these APIs. For hybrid Android apps,
we observed that the caller-callee relationship of JavaScript
functions can provide information to distinguish benign and
malicious calls to these APIs. Our approach is based on
function activation information of the apps and system events.

A. OUR APPROACH
In this paper, we propose a new approach to detect anomalous
behaviors in hybrid Android apps as anomaly in function
call behaviors. To intercept function calls of JavaScript in
hybrid apps, we dynamically instrument JavaScript code in
the JavaScript engine. The instrumented JavaScript reports
function-level activity when a hybrid app is executed. In addi-
tion, we also extract events from the WebView component to
enhance the behavior model. Based on these events, we detect
attacks as the deviation between a hybrid app’s behavior and
its expected behaviors.

We prototyped our solution in the Android system, and
evaluated it using real-world hybrid Android apps. Our evalu-
ation shows how it can distinguish behaviors by injected code.
Moreover, with the wide deployment of JavaScript-based
applications, our solutions can be adopted by JavaScript
applications in other domains, such as server-side applica-
tions and IoT solutions.

B. CONTRIBUTIONS
In summary, we make the following contributions:
• We propose a new approach for detecting malicious
behaviors in hybrid Android apps. The key of our tech-
nique is to identify function-level execution information
as the basis to distinguish benign and foreign behaviors.

• We develop a dynamic instrumentation technique to
extract the function-level run-time information from
hybrid application.

• We prototype our approach, and apply it to success-
fully detect foreign-behaviors in hybrid apps under code
injection attacks.

C. ORGANIZATION
The rest of this paper is organised as follows. Section II
discusses related work. Section III discusses the background
knowledge of hybrid applications and gives an overview of
our solution. In Section IV, we illustrate the overall archi-
tecture of our approach and present essential algorithms.

We describe the implementation details and evaluation results
in Section V and Section VI, respectively. Section VII con-
cludes the paper.

II. RELATED WORK
A. HYBRID ANDROID APP SECURITY
Georgiev et al. [22] discussed the security flaws of the
hybrid application framework and analyzed the vulnerabili-
ties (e.g., fracking), potential attacks introduced by the gap
between web application security mechanisms (e.g., SOP)
and Android system access control policies. They presented
a capability-based solution to prevent malicious code in
Android hybrid apps from accessing high privilege, which
is platform-independent and compatible with the existing
frameworks and embedded browsers without changing the
code of hybrid apps nor their business model.

Jin et al. [23] studied the code injection attacks intro-
duced in hybrid mobile apps. They discovered a few channels
(e.g., 2D barcode reading, WiFi access point scanning, Blue-
tooth device pairing, etc.) that can be used to conduct code
injection attacks through hybrid apps. In their follow up
work [16], they identified most potential ways/‘‘bridges’’
exposing the system resources to JavaScript without appro-
priate access control mechanisms, which are dangerous to the
emerging threats. They developed tools to detect hybrid apps
potentially vulnerable for code injection attacks and proposed
a fine-grained access control model to filter out malicious
code that can be injected to the vulnerable apps.

B. MALICIOUS BEHAVIOR DETECTION USING
BEHAVIOR MODELS
Several solutions pioneered using behavior models to
detect malicious system-call behaviors in applications. For-
rest et al. [24] first proposed the anomaly system call
sequence based intrusion detection approach. Sekar et al. [17]
proposed to model program behavior using a compact finite
state automaton (FSA), which models system call sites as
states. Feng et al. [18] adopted call stack information to the
state machine model for better accuracy. In web applica-
tions, Guha et al. [19] extracted the non-deterministic request
graph by statically analyzing client-side web applications,
which is used to detect anomalous behaviors in Ajax appli-
cations. Dong et al. [20] used client-side state transactions
and communications to servers to build a state machine
model for detecting malicious behaviors in web applications.
Mao et al. [25] extended the solution to detect malicious
behaviors in hybrid mobile apps. Such models may not be
effective in detecting behaviors injected into the same web
interfaces. In our early work [26], we showed that utilize
function-call relationships can be used for to detect attacks
after it happens. In our approach, we extend the scope of the
solution to general JavaScript applications in this paper, and
use it to perform online detection of malicious behaviors.

VOLUME 6, 2018 12285

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

C. CODE INJECTION DEFENSE IN WEB APPLICATIONS
Code injection attacks on web applications, especially cross-
site scripting attacks (XSS) [2], that circumvent the same-
origin policy [27] can obtain arbitrary access to contents of
the vulnerable website. Content Security Policy (CSP) [28]
is designed to prevent unauthorized scripts from execut-
ing within the applied website. Researchers have employed
static program analysis to detect XSS vulnerabilities [6]–[8].
Numerous approaches also prevent XSS attacks by using
dynamic tracking techniques to control the use of unsafe
data in web applications [9]–[11]. Wassermann and Su [29]
and Balzarotti et al. [30] proposed solutions to verify
the correctness of sanitization functions. Noxes [31] and
NoMoXSS [32] developed client-sideXSS defenses to ensure
confidentiality of sensitive data by analyzing data flow
in the browser instead of preventing executing illegitimate
scripts. Based on the unique features of reflected XSS attacks
by comparing HTTP request parameters and responses,
researchers deploy client-side and server-side mechanisms
to detect and mitigate these attacks [12]–[14]. DSI [33],
Noncespaces [15] and Blueprint [34] preserve the integrity
of document structure in the browser to prevent XSS attacks.
Meanwhile, a number of researchers focus on confining the
behaviors of untrusted scripts by transforming JavaScript
code [35]–[38]. Recently, DOM-based XSS attacks emerged,
and various techniques are proposed to detect these attacks by
taint analysis and mitigate them by auto-patching the vulner-
abilities [39]–[42]. Apart from the above defense solutions,
a line of approaches focused on utilizing privilege separation
on web applications to protect sensitive data from untrusted
scripts [43]–[48].

D. PRIVACY LEAKAGE IN ONLINE SOCIAL
NETWORKS (OSNs)
Prior research on privacy in online social networks
mainly focuses on inferring users’ identities and personal
information from public information shared in various
OSNs [49]–[52]. Zheleva and Getoor [50] devised a
classification-based approach to obtain users’ sensitive infor-
mation from their public social relationships and group
information. Balduzzi et al. [51] leveraged email addresses
to determine and linked users across different OSNs.
Chaabane et al. [52] proposed to infer users’ undisclosed
(private) attributes using the public attributes of other users
sharing similar interests. Leveraging the Latent Dirichlet
Allocation generative model, they can extract semantic links
between users’ unrelated interest names, further postulate and
verify the interest-based similarities between users. In par-
ticular, they showed that as long as users revealed their
music interests, their sensitive attributes, such as gender,
age and country-level locations can be revealed with high
accuracy.

III. APPROACH OVERVIEW
In this section, we introduce the runtime environment of
JavaScript Apps. Based on that, we use a motivating example

FIGURE 1. The architecture of JavaScript applications.

to demonstrate how the function-activation relationship is
effective in differentiating anomalous behaviors.

A. RUNTIME ENVIRONMENT OF JAVASCRIPT APPS
Illustrated in Figure 1, JavaScript applications rely on a
JavaScript engine to run its core logic, and on user inter-
face (UI) modules to render its interface. The JavaScript
engine interacts with the host operating system through a
bridge module. The bridge module provides JavaScript APIs
with system resources. It also offers a way to deal with the
requirement of particular systems that contain the JavaScript
engine in a sandbox. For example, in Android browser, to pre-
vent web pages from accessing system resources, a WebView
component is executed within a sandbox.When theWebView
is used to execute hybrid mobile apps, it uses a plugin-
based middleware framework as the bridge. With this bridge,
JavaScript code can invoke native Java code to access system
resources.

There are several middleware frameworks that can provide
such a bridge, e.g., PhoneGap [21], RhoMobile [53] and
Appcelerator [54]. Apps developed based on these cross-
platform frameworks are called hybrid apps. The static
layouts and dynamic behaviors of these hybrid apps are
implemented in Web languages, e.g., HTML, CSS and
JavaScript.

B. MOTIVATING EXAMPLE
We use a simplified hybrid app to illustrate how a JavaScript
code injection attack occurs, and to understand the intuition
that the function-level information is critical for anomalous
behavior detection. In this paper, without loss of general-
ity, we base our design on PhoneGap, which is the most
popular framework nowadays, and can be used on various
mobile platforms such as Android, iOS and Windows Phone.
PhoneGap provides 16 plugins as the bridges to enable hybrid
mobile apps to access system resources, including file, cam-
era, accelerometer, etc. If new access to local resources is
needed, developers can also write their own plugins to extend
the functionalities of these frameworks. JavaScript code can
access new Android native resources by calling these new
plugins. These plugins will directly invoke Java code and
serve as bridges between JavaScript code andAndroid system
resources.

The app, called GroupMessageSender, contains four main
operations, i.e., Search the contact list, Remove the user

12286 VOLUME 6, 2018

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

FIGURE 2. The source code of GroupMessageSender.

selected contact items, Add a contact item, and Send SMS
message. It reads the whole contact list and displays contact
items with check boxes. Users can either select contact items
to send SMS messages to them or delete them from the list.
The source code of reading, displaying and removing the
contact list is shown in Figure 2.

The functions shown in Figure 2 are invoked as fol-
lows in the original app. On user click of buttons to
search contacts, the browser invokes contactSearch(),
which calls browser APIs and the PhoneGap APIs,
including navigator.contacts.find(). On user click
of buttons of removing contacts, the browser invokes
contactRemove(), which calls browser APIs and Phone-
Gap APIs, including navigator.contacts.find() and
contact[i].remove. These call relationships define the
normal behavior of the app.

An attacker can inject malicious code into the name
field of a contact item, for example, <img src="x"

onerror="contactRemove()"/>. When the app reads
the mal-formatted contact item, the malicious code will be
executed and directly calls the app’s JavaScript function
contactRemove() to delete specific items.
In this attack, the malicious behavior (removing contacts)

is caused by the injected code, which is invokedwhile the user
is viewing the contact list. In contrast, the normal behavior to
remove contacts should be activated by user clicking on the
button, which is designed to remove contacts. Furthermore,
the function call stack of this contact remove behavior should
only contain the function contactRemove() in the normal
circumstance. However, in a code injection attack, the same
behavior is triggered with a function call contactSearch()
→ contactRemove(), which is not available in the original
program behavior. These two different behaviors are shown
in Figure 3.

FIGURE 3. Comparison of normal behaviors and malicious ones.
a) Normal behavior of GroupMessageSender. b) Behavior of
GroupMessageSender with code injected.

The above example shows that function-activation infor-
mation (e.g., call graph and triggering event) helps distin-
guishing anomalous behaviors from benign ones in hybrid
apps.

IV. DESIGN
In this section, we describe the design of our approach.
We first introduce the overall architecture of our solution, and
the technique to extract function-activation information and
system events. Finally, we present our key algorithms.

FIGURE 4. Architecture of our approach.

A. ARCHITECTURE
The architecture of our system is illustrated in Figure 4.
It consists of the following modules: Dynamic Rewriter,
Event Extractor,BehaviorModel Generator,BehaviorModel
Database, and Anomalous Behavior Detector.

VOLUME 6, 2018 12287

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

The dynamic rewriter is a run-time module inside the
JavaScript engine. To get the function-activation informa-
tion, such as function name, file path and function’s line
number, it intercepts the JavaScript code before the code is
received by the JS engine, instruments the code, and passes
the instrumented code to the JS engine. During the execu-
tion of the app, the instrumented code intercepts important
function-activation information, which will then be used to
build behavior model for the app. This is achieved through
interaction with the event extractor, which is a run-time mod-
ule of the JS engine. It extracts system interactions made by
a Hybrid app. For example, when the app makes a PhoneGap
API call or its button is clicked, these events will be inter-
cepted and reported for building the behavior model.

Using events and function-level information extracted by
the previous two components, the behavior model generator
builds the behavior model of the app. Security analysts can
run the app in a normal environment to obtain its original
behavior model. After traversing the app and triggering as
many behaviors as possible using a test suite, the output
from the model generator will be treated as the app’s original
behavior model and stored in the behavior model database.

The anomalous behavior detector module matches the
app behaviors against its original behavior model stored in
the database. If the app’s behaviors do not fit into the original
model, it will be treated as anomalous.

B. FUNCTION BEHAVIOR MODEL
We define a function behavior model for hybrid mobile apps.
Definition (Function Behavior Model): The model pro-

posed for hybrid apps is based on a state machine (S, 6, s0,
δ, F), where:
– S is a finite, non-empty set of states. For any state s =

(s.id, s.attr) ∈ S, s.id represents the state identifier;
s.attr represents the state attribute.

– 6 is a set of inputs. An input σ ∈ 6 describes an event
that triggers a state transition, where φ ∈ 6 means an
empty input.

– s0 ∈ S is the initial state.
– δ : S × 6 → S is the state transition function. For two
states sa, sb ∈ S and σ ∈ 6, sb = δ(sa, σ) represents
the state transition from sa to sb triggered by the input σ .

– F is the set of final states, and F ⊂ S.

FIGURE 5. The function behavior model for GroupMessageSender.

Figure 5 is an example model of the motivating example.
The state set of the app is represented as S = {initial
state, searchContact, removeContact, addContact,

sendSMS, exec@Contacts@search, exec@Contacts@

remove, exec@Contacts@save, exec@MessagePlugin@
send} (For brevity, only s.ids are listed, and s.attrs are
elaborated soon.).

There are two kinds of states in S: searchContact,
removeContact, addContact and sendSMS are cor-
responding to internal JavaScript functions and exec@

Contact@search, exec@Contact@remove, exec@

Contact@add and exec@MessagePlugin@send are cor-
responding to calls to APIs, which are the system-level
behaviors. As shown in Figure 5, s.id of the function
state addContact is the function name ‘‘addContact’’,
s.attr of addContact is (func.html, 34), which means
‘‘addContact’’ is defined in the file ‘‘func.html’’ at the line
number 34. Similarly, a line number (lineno X) hereafter
refers to the line X in the file ‘‘func.html’’.
The set of trigger events is represented as 6 = {‘‘click

on button at func.html lineno:116’’, ‘‘click on button
at func.html lineno:117’’, ‘‘click on button at func.html
lineno:118’’, ‘‘click on button at func.html lineno:121’’,
‘‘func return’’, φ}. ‘‘s0’’ is ‘‘initial state’’ that we set for every
app as the start point in state transition.

The arrowed line between two states represents a state
transition. The trigger event of this transition is marked beside
the arrowed line. As shown in Figure 5, for example, the tran-
sition from initial state to state searchContact is
triggered by the event of ‘‘click on button at func.html
lineno:116’’. According to the above definition, this tran-
sition can be recorded as: searchContact = δ(initial
state, ‘‘click on button at func.html lineno:116’’).
As another example, to achieve the normal behavior
‘‘remove contact’’ (labeled as exec@Contacts@remove),
this app has one state transition from initial state to
removeContact, which is triggered by an event ‘‘click on
button at func.html lineno:117’’.

In contrast, the injected malicious scripts directly call
the function to trigger the ‘‘remove contact’’ behavior. This
behavior can be detected by the behavior model. In themodel,
behavior ‘‘remove contact’’(exec@Contacts@remove) is
achieved by the state transition initial state →

searchContact → removeContact with two trigger
events ‘‘click on button at func.html lineno:116’’ and
‘‘HTMLImageElement.onerror at func.html lineno:2’’. The
state transition in this attack is invalid. This is how we can
use function activation information to effectively detect the
code injection attacks in JavaScript applications.

C. EXTRACTION OF FUNCTION-ACTIVATION
INFORMATION AND SYSTEM EVENTS
To completely model hybrid apps’ behaviors, we need
to intercept both function activation within the JavaScript
engine, and the interaction between the JavaScript engine and
its external environment.

To extract function-activation information, we instrument
the JavaScript code before it is processed by the JavaScript
engine. The instrumented JavaScript code needs to maintain

12288 VOLUME 6, 2018

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

a virtual stack and reports the caller-callee relationship for
building behavior models. Specifically, at the beginning
of each function, the instrumented code will report the
event of entering a function; at the end of each function,
the instrumented code will report the event of exiting of
the function. We will elaborate the implementation choice
in Section V.

To extract system events, we monitor the activation of
interface APIs in the bridge component. For example, calls
to PhoneGap APIs, network requests, or UI events, will be
reported by the event extractor. The reported function activa-
tion events and system information will be used in building
behavior models and detecting malicious behaviors.

D. BEHAVIOR MODEL GENERATION
The BehaviorModel Generation algorithm creates the behav-
ior model from events extracted from the JavaScript environ-
ment. It takes as input a list of events (Event-list). It first
creates an initial state s0, where the identifier of s0, s0.id =
InitialState, and the attribute of s0, s0.attr = (null, null).
Then the algorithm traverses the Event-list. If it finds a
newly invoking event e ∈ Event-list (in our implementa-
tion described in V, such events are marked as ‘‘func into’’),
it creates a new state si, where si.id = 〈functionname〉,
and si.attr = (〈hostfile〉, 〈linenumber〉). It also creates a
state transition function si = δ(si−1, σi), where σi =
〈trigger event〉. If the algorithm gets a return event e ∈
Event-list (marked as ‘‘func out’’ in our implementa-
tion), then it creates a state transition function si = δ(si−1, σi),
where σi = function return. If the algorithm finds a behavior
event e ∈ Event-list (marked as ‘‘behavior’’), it creates
a new state si, where si.id = 〈behavior information〉, and
si.attr = (null, null). It also creates a state transition function
si = δ(si, σi), where σi = null. If the event belongs to none of
above categories, the algorithm ignores this event and moves
the next event in the Event-list. After the algorithm is
done with the traverse of Even-list, a complete state-
machine based behavior model of the hybrid application will
be generated.

The behavior-model-creation algorithm we use in our
approach is summarized in Algorithm 1.

E. ANOMALOUS BEHAVIOR DETECTION
After generating the behavior model of an app, we use an
Anomalous Behavior Detection algorithm to detect whether
its run-time behavior complies with the behavior model.

The detection algorithm we use in our approach is summa-
rized in Algorithm 2. Our algorithm takes as inputs the behav-
ior model of an app and the sequence of events to be checked.
Given the original behavior model M = (S, 6, δ, s0,F)
and the behavior sequence to be checked 6′, the algorithm
traverses the state of M , driven by events in 6′ (line 4-12).
If an event σ ′i in 6

′ drives the current state to a state which
is valid according to the transition in M (line 5), the tran-
sition is regarded legitimate. On contrary, if an event σ ′i in
6′ does not lead M to a correct state, meaning that a state

Algorithm 1 Behavior Model Generation
Data: A list of events: Event-list
Result: Behavior model

1 create initial state s0, where s0.id = InitialState, and
s0.attr = (null, null).

2 while not at end of Event-list do
3 get new event e ∈Event-list;
4 if event is marked as ‘‘func into’’ then
5 create state si, where si.id = 〈functionname〉,

and si.attr = (〈hostfile〉, 〈linenumber〉);
6 create state transition function si = δ(si−1, σi),

where σi = 〈trigger event〉;
7 else
8 if event is marked as ‘‘func out’’ then
9 create state transition function

si = δ(si−1, σi), where σi = function return;
10 else
11 if event is marked as ‘‘behavior’’ then
12 create new state si, where

si.id = 〈behavior information〉, and
si.attr = (null, null);

13 create state transition function
si = δ(si, σi), where σi = null;

14 else
15 ignore event;

Algorithm 2 Anomalous Behavior Detection
Data: Original behavior model and test behavior
Result: Abnormal behavior detection result

1 given original behavior model M and testing behavior
6′, let the number of states in M , ||S|| = n and the
number of events ||6′|| = e′.

2 Stack.init()
3 let the current state s← s0
4 foreach σ ′i ∈ 6

′ in temporal sequence, 0 ≤ i ≤ e′ do
5 if (σ ′i is a function enter event or σ

′
i is a UI event)

and ∃ state st ∈ S s.t. st = δ(s, σ ′i) then
6 Stack.push(s)
7 s← st

8 else if σ ′i is a function exit event then
9 s← Stack.pop()

10 else
11 report abnormal state.

12 i← i+ 1

beyond the transition allowed by M is reached (which may
be because of injected functions), our algorithm outputs the
captured abnormal state (line 10-11). Note that at a particular
state, there may be multiple target states. We thus use a
Stack (line 2, 6 and 9) to maintain this state entering/exiting
information.

VOLUME 6, 2018 12289

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

V. IMPLEMENTATION
We have implemented our solution targeting hybrid Android
applications which use PhoneGap as the bridge.

A. INTERCEPTING FUNCTION ACTIVATION
We leverage the mechanism of the exception handling in
V8 to extract function-activation information. For every
exception, V8 records the function information, i.e., func-
tion name, file path and line number, where the exception
is thrown. We intercept and rewrite the JavaScript code of
the apps, such that it throws an exception in every function.
In this way, we get the function call stack during the execu-
tion of the rewritten code. The call stack will then be used
as the context of apps’ behaviors. We used two third-party
software to assist rewriting JavaScript code, JXcore [55] and
AST-query [56]. JXcore is a JavaScript runtime environment
which enables AST-query to run. AST-query reads JavaScript
code and rewrites it according to our instructions.

Specifically, for every JavaScript function of a given app,
the dynamic rewriter inserts code to get the JavaScript call
stack at the beginning of the function and log the entering
event of the function, and log the exit event at the end of
the function. The call stack contains function name (which is
used as the state identifier), file path and line number (which
is used as the state attribute). It also contains the function’s
caller (which is the trigger of state transition).

In the source code of Android, the function evaluate()
(which is in the source file WebCore/bindings/v8/V8Proxy.
cpp) is where WebView starts to execute JavaScript code.
We modify this function to intercept and rewrite JavaScript
code before passing the instrumented code to V8.

B. EXTRACTING SYSTEM EVENTS
The event extractor monitors and records the APIs invoked
by the app. In the WebKit component of the Android system,
we instrument hooks to extract the function information.
More specifically, for the app’s local behaviors triggered
by calling certain PhoneGap APIs, we modify the function
npObjectInvokeImpl() in the source file WebCore/
binding/v8/V8NPObject.cpp to extract the API calls made by
PhoneGap, as well as the corresponding system resources that
the app requests. For the app’s network behaviors, we mod-
ify the function createRequest() in the source file
WebCore/xml/XMLHttpRequest.cpp where the XML HTTP
requests are generated, to extract the information about Ajax
requests.

VI. EVALUATION
In this section, we evaluate the effectiveness and performance
of our solution.

A. EFFECTIVENESS
In order to evaluate the effectiveness of our solution,
we deploy our approach to model the behaviors of real-world
popular hybrid Android apps, and demonstrate its capabil-
ities in anomalous behavior detection with simulated code

injection attacks on those apps. We present two case studies
showing how injected behaviors are detected.

FIGURE 6. The RewardingYourself application and its original behavior
model.

1) CASE STUDY I: REWARDINGYOURSELF
RewardingYourself [57] is a hybrid app that tracks mil-
lage points of the loyalty program of users. The original
behavior model for RewardingYourself is shown in Figure 6,
where nodes are states represented by related information of
JavaScript functions in the app, and the arrow from a state to
another denotes the transition between these two states. Our
system also marks the arrow with trigger which causes the
state transition.

FIGURE 7. A snippet of malicious code which pops up location
information.

We use a malicious QR code, which embeds the mali-
cious code shown in Figure 7. The attack will cause an
alert box to be popped out with the location informa-
tion, shown in Figure 8. Under the context initial
state, the attack causes new states such as exec@
geolocation@getCurrentPosition and exec@
HTTPRequest@Get@http://192.168.0.106/info.
php?msg=Longitude, 116.372048.Latitude,
39.892778.@true that deviates from the behaviormodel.
Our approach detects it and raises an alarm to prevent the
behavior from being executed.

12290 VOLUME 6, 2018

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

TABLE 1. Performance evaluation (in seconds).

FIGURE 8. The result of code injection attack to RewardingYourself and
the resulting functional call behaviors.

2) CASE STUDY II: PHONEGAPMEGA
PhoneGapMega [58] demonstrates features of PhoneGap
APIs, which contains examples of using almost all APIs of
PhoneGap. A fragment of the behavior model of PhoneGap-
Mega is shown in Figure 9.

FIGURE 9. The PhoneGapMega application and a fragment of the original
behavior model of PhoneGapMega.

PhoneGapMega has the same type of vulnerabilities that
allowsmalicious code injection.Malicious JavaScript (shown
in Figure 10) injected into a contact’s name can be executed in
the app. When the app reads the malicious contact item, the
injected code will be executed. The result of the execution
will read the whole contact list of the victim user and send
them to a specific remote server. Shown in Figure 11, the
attack has new states that do not exist in the normal model,
which triggers the alert of our detection.

B. PERFORMANCE EVALUATION
We build a test app that has the functionality of manipulating
contacts and sending SMS. Instead of manually clicking on

FIGURE 10. A snippet of malicious code which steals contacts.

buttons to trigger these functionalities, this test app automat-
ically finishes the following two tasks:

1) loading app’s web page, while the dynamic rewriter
rewrites the JavaScript code

2) adding a new contact, removing this newly added con-
tact, searching the contact list, and sending SMS to
the first contact member in the list, while the event
extractor extracts the information about invoking cor-
responding PhoneGap APIs.

We run this app in two scenarios: one with pristine Android
system, another with our approach, and measure the time
it takes from when the app starts to when the above tasks
finishes. We repeat task 2) ten times to increase the time
difference between these two scenarios, and make the time
measurement more accurate.

Table 1 illustrates the evaluation result, in which the web
page loading time is increased. However, since web pages

VOLUME 6, 2018 12291

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

FIGURE 11. The result of code injection attack to PhoneGapMega and the corresponding function call behaviors.

are often loaded once in the beginning of running an app, this
amount of time increase is acceptable. In addition, the time
taken to invoke the PhoneGap APIs is increased slightly,
which might not be noticed by the users at all. Above all,
the performance overhead introduced by our approach is
reasonable.

C. DISCUSSION OF LIMITATION
The detection in our approach is based on function call
relationship and triggering events. Despite the effectiveness
shown by the case studies, it is possible for attackers to
inject the code and active it under the same condition as
in the original app. In such cases, our approach may miss
the injection within a target function. We take as future
work to design finer-grained behavior model to capture those
low-level injection behaviors.

VII. CONCLUSION
Using JavaScript-based technologies to build mobile apps is
a popular technique in the web and social network infras-
tructure. However, the flexibility of the JavaScript lan-
guage introduces new security challenges in these platforms.
In this paper, we propose to detect malicious JavaScript
behaviors in JavaScript applications. The behavior model
captures an application’s behaviors as well as their function
level execution information. Our prototype detection system
can automatically build the behavior models for hybrid apps
to detect anomalous behaviors. We demonstrate its effective-
ness of anomalous behaviors detection with case studies on
real-world hybrid apps. As a future work, we will investigate
how our solutions can be adopted by JavaScript applications
in other domains, such as server-side applications and IoT
solutions.

REFERENCES
[1] Z. Cai, Z. He, X. Guan, and Y. Li, ‘‘Collective data-sanitization for pre-

venting sensitive information inference attacks in social networks,’’ IEEE
Trans. Depend. Sec. Comput., to be published.

[2] (Dec. 2015). Cross-Site Scripting (XSS). Accessed: Jan. 2018. [Online].
Available: https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

[3] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, ‘‘Code injection
attacks on HTML5-based mobile apps: Characterization, detection and
mitigation,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur. (CCS),
New York, NY, USA, 2014, pp. 66–77.

[4] A. Castiglione, R. De Prisco, andA.De Santis, ‘‘Do you trust your phone?’’
in E-Commerce and Web Technologies. Berlin, Germany: Springer, 2009.

[5] A. Armando, A. Merlo, and L. Verderame, ‘‘An empirical evaluation of
the Android security framework,’’ in Security and Privacy Protection in
Information Processing Systems. Berlin, Germany: Springer, 2013,
pp. 176–189.

[6] B. V. Livshits and M. S. Lam, ‘‘Finding security errors in java program
with static analysis,’’ in Proc. 14th Usenix Secur. Symp., Baltimore, MD,
USA, 2005, pp. 1–16.

[7] Y. Xie and A. Aiken, ‘‘Static detection of security vulnerabilities in script-
ing languages,’’ in Proc. USENIX Secur., vol. 6. 2006, pp. 179–192.

[8] N. Jovanovic, C. Kruegel, and E. Kirda, ‘‘Pixy: A static analysis tool for
detecting Web application vulnerabilities,’’ in Proc. IEEE Symp. Secur.
Privacy, 2006, p. 6.

[9] P. Bisht and V. N. Venkatakrishnan, ‘‘XSS-GUARD: Precise dynamic
prevention of cross-site scripting attacks,’’ in Detection of Intrusions and
Malware, and Vulnerability Assessment. Berlin, Germany: Springer, 2008,
pp. 23–43.

[10] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
‘‘Automatically hardening Web applications using precise tainting,’’ in
Security and Privacy in the Age of Ubiquitous Computing. Berlin,
Germany: Springer, 2005.

[11] T. Pietraszek and C. V. Berghe, ‘‘Defending against injection attacks
through context-sensitive string evaluation,’’ in Recent Advances in Intru-
sion Detection. Berlin, Germany: Springer, 2006, pp. 124–145.

[12] R. Sekar, ‘‘An efficient black-box technique for defeating Web application
attacks,’’ in Proc. NDSS, 2009, pp. 1–17.

[13] M. Johns, B. Engelmann, and J. Posegga, ‘‘XSSDS: Server-side detec-
tion of cross-site scripting attacks,’’ in Proc. Annu. Comput. Secur. Appl.
Conf. (ACSAC), Dec. 2008, pp. 335–344.

[14] (Dec. 2015).Noscript Features: Anti-XSS Protection. Accessed: Jan. 2018.
[Online]. Available: http://noscript.net/features#xss

[15] M. Van Gundy and H. Chen, ‘‘Noncespaces: Using randomization to
enforce information flow tracking and thwart cross-site scripting attacks,’’
in Proc. NDSS, 2009, pp. 1–4.

[16] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, ‘‘Code injection
attacks on HTML5-based mobile Apps: Characterization, detection and
mitigation,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2014,
pp. 66–77.

[17] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, ‘‘A fast automaton-
based method for detecting anomalous program behaviors,’’ in Proc. IEEE
Symp. Secur. Privacy (S&P), May 2001, pp. 144–155.

[18] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong, ‘‘Anomaly
detection using call stack information,’’ in Proc. IEEE Symp. Secur.
Privacy (SP),Washington, DC,USA, 2003, pp. 62–75. [Online]. Available:
http://dl.acm.org/citation.cfm?id=829515.830554

[19] A. Guha, S. Krishnamurthi, and T. Jim, ‘‘Using static analysis for
Ajax intrusion detection,’’ in Proc. 18th Int. Conf. World Wide
Web (WWW), New York, NY, USA, 2009, pp. 561–570. [Online]. Avail-
able: http://doi.acm.org/10.1145/1526709.1526785

[20] X. Dong, K. Patil, J. Mao, and Z. Liang, ‘‘A comprehensive client-side
behavior model for diagnosing attacks in Ajax applications,’’ in Proc. 18th
Int. Conf. Eng. Complex Comput. Syst. (ICECCS), Jul. 2013, pp. 177–187.

12292 VOLUME 6, 2018

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

[21] (Jan. 2015). PhoneGap Official Site. Accessed: Jan. 2018. [Online]. Avail-
able: http://phonegap.com/

[22] M. Georgiev, S. Jana, andV. Shmatikov, ‘‘Breaking and fixing origin-based
access control in hybrid Web/mobile application frameworks,’’ in Proc.
NDSS Symp., 2014, p. 1.

[23] X. Jin, L. Wang, T. Luo, and W. Du, ‘‘Fine-grained access control for
HTML5-based mobile applications in android,’’ in Proc. 16th Inf. Secur.
Conf. (ISC), 2013, pp. 309–318.

[24] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, ‘‘A sense of
self for Unix processes,’’ in Proc. IEEE Symp. Secur. Privacy, May 1996,
pp. 120–128.

[25] J. Mao, R. Wang, Y. Chen, and Y. Jia, ‘‘Detecting injected behaviors in
HTML5-based Android applications,’’ J. High Speed Netw., vol. 22, no. 1,
pp. 15–34, 2016.

[26] J. Mao, R. Wang, Y. Chen, Y. Xiao, Y. Jia, and Z. Liang, ‘‘A function-
level behavior model for anomalous behavior detection in hybrid mobile
applications,’’ in Proc. Int. Conf. Identificat., Inf. Knowl. Internet Things,
2016, pp. 1–9.

[27] (Jan. 2015). Wiki on the Same-Origin Policy. Accessed: Jan. 2018.
[Online]. Available: https://en.wikipedia.org/wiki/Same-origin_policy

[28] (Dec. 2015). Introducing Content Security Policy. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/Security/CSP/
Introducing_Content_Security_Policy

[29] G.Wassermann and Z. Su, ‘‘Static detection of cross-site scripting vulnera-
bilities,’’ inProc. ACM/IEEE 30th Int. Conf. Softw. Eng. (ICSE),May 2008,
pp. 171–180.

[30] D. Balzarotti et al., ‘‘Saner: Composing static and dynamic analysis to
validate sanitization in Web applications,’’ in Proc. IEEE Symp. Security
Privacy (SP), May 2008, pp. 387–401.

[31] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, ‘‘Noxes: A client-side
solution for mitigating cross-site scripting attacks,’’ in Proc. ACM Symp.
Appl. Comput., 2006, pp. 330–337.

[32] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
‘‘Cross site scripting prevention with dynamic data tainting and static
analysis,’’ in Proc. NDSS, 2007, p. 12.

[33] Y. Nadji, P. Saxena, and D. Song, ‘‘Document structure integrity: A robust
basis for cross-site scripting defense,’’ in Proc. NDSS, 2009, p. 20.

[34] M. T. Louw and V. N. Venkatakrishnan, ‘‘Blueprint: Robust prevention
of cross-site scripting attacks for existing browsers,’’ in Proc. 30th IEEE
Symp. Secur. Privacy, May 2009, pp. 331–346.

[35] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir, ‘‘Browser-
Shield: Vulnerability-driven filtering of dynamic HTML,’’ ACM Trans.
Web, vol. 1, no. 3, p. 11, 2007.

[36] D. Yu, A. Chander, N. Islam, and I. Serikov, ‘‘JavaScript instrumentation
for browser security,’’ ACM SIGPLAN Notices, vol. 42, no. 1, pp. 237–249,
2007.

[37] (Dec. 2015). Microsoft Web Sandbox. [Online]. Available: http://
websandbox.livelabs.com/

[38] (Dec. 2015). Google Caja. Accessed: Jan. 2018. [Online]. Available:
https://code.google.com/p/google-caja/

[39] S. Lekies, B. Stock, and M. Johns, ‘‘25 million flows later: Large-scale
detection of DOM-based XSS,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2013, pp. 1193–1204.

[40] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, ‘‘Precise client-
side protection against DOM-based cross-site scripting,’’ in Proc. 23rd
USENIX Secur. Symp., 2014, pp. 655–670.

[41] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and
P. Saxena, ‘‘Auto-patching DOM-based XSS at scale,’’ in Proc. Found.
Softw. Eng. (FSE), 2015, pp. 272–283.

[42] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and
P. Saxena, ‘‘DexterJS: Robust testing platform for DOM-based XSS
vulnerabilities,’’ in Proc. 10th Joint Meeting Found. Softw. Eng., 2015,
pp. 946–949.

[43] E. Budianto, Y. Jia, X. Dong, P. Saxena, and Z. Liang, ‘‘You can’t be
me: Enabling trusted paths and user sub-origins in Web browsers,’’ in
Research in Attacks, Intrusions and Defenses. Berlin, Germany: Springer,
2014, pp. 150–171.

[44] X. Dong, Z. Chen, H. Siadati, S. Tople, P. Saxena, and Z. Liang, ‘‘Pro-
tecting sensitive Web content from client-side vulnerabilities with CRYP-
TONS,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013,
pp. 1311–1324.

[45] D. Akhawe, F. Li, W. He, P. Saxena, and D. Song, ‘‘Data-confined
HTML5 applications,’’ in Computer Security—ESORICS. Berlin,
Germany: Springer, 2013, pp. 736–754.

[46] X. Dong, M. Tran, Z. Liang, and X. Jiang, ‘‘AdSentry: Comprehensive and
flexible confinement of JavaScript-based advertisements,’’ in Proc. 27th
Annu. Comput. Secur. Appl. Conf., 2011, pp. 297–306.

[47] Y. Cao, V. Yegneswaran, P. A. Porras, and Y. Chen, ‘‘PathCutter: Sev-
ering the self-propagation path of XSS javascript worms in social Web
networks,’’ in Proc. NDSS, 2012, pp. 1–14.

[48] D. Akhawe, P. Saxena, and D. Song, ‘‘Privilege separation in HTML5
applications,’’ in Proc. 21st USENIX Conf. Secur. Symp., 2012, p. 23.

[49] L. Backstrom, C. Dwork, and J. Kleinberg, ‘‘Wherefore art thou r3579x?:
Anonymized social networks, hidden patterns, and structural steganogra-
phy,’’ in Proc. 16th Int. Conf. World Wide Web, 2007, pp. 181–190.

[50] E. Zheleva and L. Getoor, ‘‘To join or not to join: The illusion of privacy
in social networks with mixed public and private user profiles,’’ in Proc.
18th Int. Conf. World Wide Web, 2009, pp. 531–540.

[51] M. Balduzzi, C. Platzer, T. Holz, E. Kirda, D. Balzarotti, and
C. Kruegel, ‘‘Abusing social networks for automated user profiling,’’ in
Recent Advances in Intrusion Detection. Berlin, Germany: Springer, 2010,
pp. 422–441.

[52] A. Chaabane et al., ‘‘You are what you like! Information leakage through
users’ interests,’’ in Proc. 19th Annu. Netw. Distrib. Syst. Secur. Symp.
(NDSS), 2012, pp. 1–14.

[53] (Apr. 2015).RhoMobile Official Site. Accessed: Jan. 2018. [Online]. Avail-
able: http://rhomobile.com/

[54] (Feb. 2015). Appcelerator Official Site. Accessed: Jan. 2018. [Online].
Available: http://www.appcelerator.com/

[55] (Dec. 2015). JXcore. Accessed: Jan. 2018. [Online]. Available:
https://github.com/jxcore/jxcore

[56] (Dec. 2015). Ast-Query. Accessed: Jan. 2018. [Online]. Available:
https://github.com/SBoudrias/ast-query

[57] (May 2014). Rewarding Yourself. [Online]. Available: https://apkpure.
com/rewardingyourself/com.loyaltymatch.rewardingyourself

[58] (Jun. 2014). Phonegap Mega. Accessed: Jan. 2018. [Online].
Available: https://play.google.com/store/apps/details?id=com.camden.
phonegapmega

JIAN MAO received the B.S. and Ph.D. degrees
from Xidian University, China. She is currently an
Assistant Professor with the School of Electronic
and Information Engineering, Beihang Univer-
sity, Beijing, China. Her research interests include
cloud security, Web security, and mobile security.

JINGDONG BIAN received the B.S. degree in
electronic and information engineering from Jilin
University, Jilin, China, in 2016. He is currently
pursuing the master’s degree in electronic and
information engineering with Beihang University,
Beijing, China. His research interests include Web
security, mobile security, and privacy analysis.

GUANGDONG BAI received the bachelor’s and
master’s degrees in computing science from
Peking University, China, in 2008 and 2011,
respectively, and the Ph.D. degree in computing
science from the National University of Singapore
(NUS) in 2015. He was a Post-Doctoral Research
Fellow with NUS. He has been a Faculty Member
with the Singapore Institute of Technology since
2016. His research interests include mobile secu-
rity, protocol verification, and formal methods on
security.

VOLUME 6, 2018 12293

J. Mao et al.: Detecting Malicious Behaviors in JavaScript Applications

RUILONG WANG received the B.S. and M.S.
degrees in electronic and information engineer-
ing from Beihang University, Beijing, China,
in 2013 and 2016, respectively. His research
interests include software security, Web security,
mobile security, and program analysis.

YUE CHEN received the B.S. and M.S. degrees
in electronic and information engineering from
Beihang University, Beijing, China, in 2012 and
2016, respectively. His research interests include
Web security and mobile security.

YINHAO XIAO received the bachelor’s degree
in information and computing science from the
Guangdong University of Technology in 2012, and
the master’s degrees in applied mathematics and
in computer science from The George Washington
University in 2014 and 2015, respectively, where
he is currently pursuing the Ph.D. degree with the
Department of Computer Science. His research
interests include system security and social net-
work privacy.

ZHENKAI LIANG received the B.S. degree from
Peking University in 1999 and the Ph.D. degree
from Stony Brook University in 2006. He is cur-
rently an Associate Professor with the Depart-
ment of Computer Science, National University of
Singapore. His research interests include software
security, Web security, and mobile security.

12294 VOLUME 6, 2018

	INTRODUCTION
	OUR APPROACH
	CONTRIBUTIONS
	ORGANIZATION

	RELATED WORK
	HYBRID ANDROID APP SECURITY
	MALICIOUS BEHAVIOR DETECTION USING BEHAVIOR MODELS
	CODE INJECTION DEFENSE IN WEB APPLICATIONS
	PRIVACY LEAKAGE IN ONLINE SOCIAL NETWORKS (OSNs)

	APPROACH OVERVIEW
	RUNTIME ENVIRONMENT OF JAVASCRIPT APPS
	MOTIVATING EXAMPLE

	DESIGN
	ARCHITECTURE
	FUNCTION BEHAVIOR MODEL
	EXTRACTION OF FUNCTION-ACTIVATION INFORMATION AND SYSTEM EVENTS
	BEHAVIOR MODEL GENERATION
	ANOMALOUS BEHAVIOR DETECTION

	IMPLEMENTATION
	INTERCEPTING FUNCTION ACTIVATION
	EXTRACTING SYSTEM EVENTS

	EVALUATION
	EFFECTIVENESS
	CASE STUDY I: REWARDINGYOURSELF
	CASE STUDY II: PHONEGAPMEGA

	PERFORMANCE EVALUATION
	DISCUSSION OF LIMITATION

	CONCLUSION
	REFERENCES
	Biographies
	JIAN MAO
	JINGDONG BIAN
	GUANGDONG BAI
	RUILONG WANG
	YUE CHEN
	YINHAO XIAO
	ZHENKAI LIANG

