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ABSTRACT Continuous phase modulation (CPM) is a power and bandwidth efficient modulation scheme
used in cellular, personal, and satellite communications among other applications. If the modulation
index of the CPM waveform used by the transmitter is unavailable at the receiver, serious performance
degradation may occur. This paper investigates the problem of modulation index estimation for partial
response continuous phase modulation schemes. Specifically, we propose two novel estimators for the CPM
signal observed in an additive white Gaussian noise channel. A non-data aided method of moments (MoM)
estimator based upon the fourth-order cumulants and a data-aided best linear unbiased estimator (BLUE)
based upon an approximate linear phase model of the received CPM signal have been proposed. Modified
Cramer–Rao lower bound is derived for the partial response CPM schemes to assess the performance of the
estimators. We also perform numerical simulations to compare the mean-squared error (MSE) performance
of the proposedMoM and BLUE estimators with previously proposed estimators in the literature. It is shown
that the MoM estimator exhibits good MSE performance at low signal-to-noise ratio (SNR) while the BLUE
estimator performs very well at high SNRs. Moreover, the proposed estimators have lower complexity than
existing methods and are based upon non-iterative algorithms.

INDEX TERMS Estimation, Cramer-Rao bounds, continuous phase modulation, partial response signaling.

I. INTRODUCTION
Continuous phase modulation (CPM) combines attributes of
continuous phase and constant envelope [1], [2]; properties
desirable for efficient wireless systems. Phase continuity
makes the system spectrally efficient whereas constant enve-
lope provides a power efficient transmission. These charac-
teristics make the CPM scheme popular for various cellular
as well as personal communication systems, such as global
system for mobile (GSM) [3], digital enhanced cordless
telecommunication (DECT) [4], Bluetooth [5], AIS [6], etc.
CPM waveforms are either full response or partial response
depending upon whether the phase changes corresponding
to a transmitted signal are introduced by the transmitter in
one symbol interval or they span multiple symbol intervals,
respectively. The phase change is gradual for the partial
response CPM waveforms and may last up to eight symbol
intervals (for example, the shaped-offset quadrature phase
shift keying (SOQPSK-TG) waveform used in the aeronauti-
cal telemetry IRIG-106 standard). The gradual phase change
results in a compact spectrum for the partial responsemodula-
tion schemes. This bandwidth efficiency is, however, attained

at a cost, i.e., the increased receiver complexity due to the
additional memory introduced in the transmitted waveform.
One of the key parameters that define aCPM signal is itsmod-
ulation index that controls the phase sensitivity with respect to
the input symbols. A CPM waveform with larger modulation
index has generally better minimum distance properties and
consequently exhibits better performance.

The accurate value of modulation index must be known
at the receiver for reliable detection of the signal. However,
the knowledge of modulation index may be missing at the
receiver because of the variations in the transmitted signal.
The modulation index may be unavailable at the receiver
either due to an unreliable component or due to the lack of
cooperation between the transmitter and the receiver. Modu-
lation index depends on the gain of voltage-controlled oscil-
lator (VCO), which may not be well calibrated or may exhibit
uncontrolled variations. In many communication standards
such as Bluetooth BR [5], DECT-ULE [4], AIS [6], etc.,
the modulation index can take values in a certain interval to
allow for the tolerance around the nominal modulation index
value. For example, for AIS standard, the modulation index
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used at the transmitter may belong to the interval [0.35, 0.70].
The tolerance is allowed to enable low cost implementations
of the transceivers, which is crucial to the wide adoption
and acceptability of a communications standard. On the other
hand, for the ideal maximum-likelihood sequence detec-
tor (MLSD) and other sub-optimal detectors [7], significant
performance degradation is observed [8]. Basic transceiver
implementations use the nominal value of modulation index
to build the receiver. Although this strategy results in a simple
transceiver, but the mismatch present between the modulation
index values used at the transmitter and receiver seriously
affects the overall system performance. This mismatch could
be large in case of non-cooperative transmission or for a
system using adaptive modulation schemes.

There are three ways to address the problem of modula-
tion index mismatch at the receiver. The first strategy is to
employ a receiver that is robust to the minor mismatch in
the modulation index. One such scheme has been recently
proposed that is based upon the principal pulse of the Laurent
decomposition of the signal [9]. The receiver is very robust to
small mismatches in the value of the modulation index but
bit-error-rate (BER) performance eventually deteriorates
if the modulation index mismatch is of modest magni-
tude (greater than 0.05). Moreover, the robustness may
also reduce for partial response and non-binary schemes,
which have more than one principal pulse [10]. The sec-
ond approach to solve the mismatch issue is to develop
CPM waveforms whose performance is relatively insen-
sitive to the modulation index mismatch. A binary CPM
scheme that uses ternary pre-coders has been proposed,
which achieves robustness at the expense of either increased
receiver complexity or undesirable spectral properties [8].
Finally, the performance at the receiver can be improved
by estimating the modulation index at the receiver prior
to detection. These existing estimators are discussed in the
sequel.

Many works have been devoted earlier for the problem
of the estimation of modulation index for various CPM
schemes [11]–[15]. For example, [11] considers the design
of a non-data aided estimator for binary full response CPM
schemes which uses higher order statistics (HOS) of the
received signal. The estimator achieves good performance
at low signal-to-noise ratio (SNR) but it is applicable only
to the binary full response CPM signals with rectangu-
lar phase shaping functions. Another non-data aided esti-
mator (NDA-CYC) is proposed in [12], which uses the
cyclo-stationary properties of the CPM signals [16]. The
NDA-CYC is a an iterative estimator that has also been
extended to the scenario of joint estimation of miscella-
neous parameters of the CPM waveform [13]. The per-
formance of estimator is limited at low SNR owing to
phase unwrapping errors. In [14], a data-aided algorithm
(DA-LNDIF) is proposed based on Laurents decomposition
to perform the modulation index estimation for binary CPM
signals [17]. The DA-LNDIF algorithm uses the outputs of
the matched filter formed by the principal Laurent pulse.

The outputs of the matched filter are equalized to limit the
overall memory of CPM to two symbol intervals. The result-
ing estimator achieves very good performance at low SNR
but the performance does not improve considerably at high
SNR. Also, the performance degrades when partial response
memory is increased. The estimator proposed in [15] con-
siders a finite number of possible hypotheses for the mod-
ulation index values and selects the one that maximizes the
likelihood function. The performance and complexity of this
estimator are dependent upon the cardinality of the set of
hypotheses.

The existing algorithms are not readily applicable to the
partial response modulation schemes that are mostly used
in the standards, e.g., Bluetooth [5], DECT-ULE [4] and
SOQPSK-TG [18] waveform used in aeronautical telemetry.
The objective of this work is to consider the problem of
modulation index estimation for partial response CPM sig-
nals. In this paper, we derive two novel estimators for partial
response CPM signals observed in additive white Gaussian
noise (AWGN). The first proposed approach is a method
of moments (MoM) estimator that is based on higher order
statistics of the signal, specifically, a ratio of fourth-order
cumulants. The MoM estimator shows superior performance
at low SNR as compared to the NDA-CYC estimator [12].
Moreover, it is non-iterative and has lower computational
complexity than NDA-CYC. The second proposed estima-
tor is a data-aided best linear unbiased estimator (BLUE)
based on an approximate linear phase model [19], [20]. The
linear phase model was originally developed for estimat-
ing the frequency of a sinusoid observed in white Gaussian
noise. Here, this frequency estimation algorithm has been
employed to estimate the modulation index of both binary
and non-binary partial response CPM waveforms with arbi-
trary phase shaping functions. A comparison of the mean-
squared error (MSE) of our proposed linear estimator with
that of DA-LNDIF [14] shows that our estimator outper-
forms at high SNR and approaches the linear performance
bound. Moreover, the performance of the BLUE estimator
is incredibly robust to increasing partial response memory.
Another significant contribution of this work is the deriva-
tion of the modified Cramer-Rao lower bound (MCRLB) for
this estimation problem. The MCRLB serves as a perfor-
mance benchmark for the proposed estimators. The expres-
sion of MCRLB is applicable to both binary/non-binary and
full/partial response CPM schemes of arbitrary phase shaping
functions.

In the sequel, we describe the CPM signal model followed
by the derivation of the proposed estimators in Sect. III. The
MCRLB of modulation index is derived in Sect. IV. Simula-
tion results are presented in Sect. V followed by conclusions
in Sect. VI.

II. CPM SIGNAL MODEL
The complex envelope of a CPM signal can be represented as

s(t) = Aejφ(t,α), (1)
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whereA is the signal amplitude and φ(t, α) is the excess phase
given by

φ(t, α) = 2πh
m∑

i=−∞

αiq(t − iT ), for t ≤ mT . (2)

Here αi ∈ {±1,±3, . . . ,±(M − 1)} form a sequence α of
M -ary information symbols. For binary modulation schemes,
i.e., for M = 2, αi ∈ {+1,−1}. Moreover, the symbols αi
are assumed to be equally likely and memoryless. In (2),
the modulation index is denoted by h, whereas, T is the sym-
bol period. The function q(t) is the phase shaping function
which is defined as the integral of the underlying frequency
shaping pulse g(t). The frequency shaping function g(t) is
non-zero over the interval t ∈ [0,LT ] and 0 outside the
interval, where L is the partial response length. If the sup-
port of g(t) is equal to one symbol interval, i.e., L = 1,
the signal is called full-response CPM and if the support
of g(t) is greater than one symbol interval, the signal is called
partial-response CPM.

The CPM signal s(t, α) (1) can be uniformly sampled to
get

s[n] := s(t)|t=nTs = Aejφ[n,α], (3)

where Ts is the sampling interval expressed as Ts = T/Ns
and Ns denotes the number of samples per symbol. Similarly,
the excess phase can be discretized as

φ [n, α] := φ (n, α) |t=nTs = 2πh
m∑

i=−∞

αiqn−iNs , (4)

where n is the sample index, i = b nNs c is the symbol index,
N be the number of available symbols, and qn := q(t)|t=nNs .
The operator b(.)c is the floor operator.
The transmitted signal is passed through an AWGN chan-

nel such that the received signal (after appropriate pre-
filtering and sampling at the receiver) can be approximately
expressed as

r [n] = s [n]+ w [n] , (5)

where w[n] is the white Gaussian noise with variance σ 2.
Note that without proper pre-filtering, the noise will have
infinite variance.

III. PROPOSED ESTIMATORS
In this work, we propose two novel estimators for the mod-
ulation index estimation of partial response CPM signals.
The first estimator is a non-data aided estimator based on
the method of moments (MoM) technique [21] applicable
to binary CPM signals with rectangular phase shaping func-
tions. It uses the 4-th order cumulant of the received CPM sig-
nal. The second estimator is a data-aided best linear unbiased
estimator (BLUE), which considers the differential phase
of the received signal and is more generally applicable to
non-binary CPM and all phase shaping functions. In the
sequel, we derive the closed-form expressions of the proposed
estimators.

A. METHOD OF MOMENTS ESTIMATOR
The estimator proposed in this section is inspired from the
work of [11], which proposes a method for the estimation of
modulation index of full response CPM using higher-order
statistics, specifically, the auto-correlation and fourth-order
cumulants. However, the algorithm had not been developed
for the partial response CPM signals, which are more com-
mon in modern aeronautical telemetry and wireless personal
area networks. It has also been shown [12] that the direct
application of the full-response estimation algorithm in [11]
to partial response signals results in very poor performance.
Hence, a new solution for the problem is required.

The proposed MoM estimator is derived based on the
moments of the CPM signal sampled at the symbol rate,
i.e., for this section, we assume Ns = 1. The autocorrelation
function for a full-response CPM signal can be expressed as

Rf [m] = E{s∗[n]s[n+ m]} = A2cos(πh)|m|, (6)

where E denotes the expectation operator. Similarly,
the fourth-order cumulant [22] is defined as

c(m1,m2,m3)

= E{s∗[n]s[n+ m1]s[n+ m2]s∗[n+ m3]}

−E{s∗[n]s[n+ m1]}E{s[n+ m2]s∗[n+ m3]}

−E{s∗[n]s[n+ m2]}E{s[n+ m1]s∗[n+ m3]}

−E{s∗[n]s∗[n+ m3]}E{s[n+ m1]s[n+ m2]}, (7)

which can be expressed as

cf (0, 0,m) = −A4cos(πh)|m|, (8)

for the full response binary CPM signal using the auto-
correlation function in (6) [11]. Similarly, the auto-correlation
and fourth-order cumulant function for the partial response
binary CPM can be derived by using a series of steps as given
below.

Using (3) and (4), the sampled signal for Ns = 1 can be
expressed as

s[n] = Aej2πh
∑n

i=−∞ αiqn−i . (9)

For a CPM signal with partial response length L, an alternate
way to express s[n] is to factorize the cumulative phase and
correlative phase components of the signal, i.e.,

s[n] = Aejπh
∑n−L

i=−∞ αiej2πh
∑L−1

i=0 αn−iqi , (10)

where we have used the fact that qi = 1
2 for i ≥ L. Now

evaluating the CPM signal at unit lag, we obtain

s[n+ 1] = Aejπh
∑n−L+1

i=−∞ αi .ej2πh
∑L−1

i=0 αn−i+1qi , (11)

which after a change of variable becomes

s[n+ 1] = Aejπh
∑n−L

i=−∞ αiej2πh
∑L−1

i=0 αn−iqi+1 , (12)

since q0 = 0 and qL = 1
2 . Now, the autocorrelation function

for partial response CPM is defined as

R[m] = E{s∗ [n] s [n+ m]}, (13)
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where m is the time lag. It is clear that R [0] = A2. Evaluat-
ing (13) at m = 1, we get

R[1] = E{Ae−jπh
∑n−L

i=−∞ αi .e−j2πh
∑L−1

i=0 αn−iqi

×Aejπh
∑n+1−L

i=−∞ αi .ej2πh
∑L−1

i=0 αn+1−iqi}, (14)

which can be reduced to

R[1] = A2E{ej2πh
∑L−1

i=0 αn−i(qi+1−qi)}. (15)

Using the independence of symbols αi, we can write the
autocorrelation as

R[1] = A2
L−1∏
i=0

E{ej2πhαn−i(qi+1−qi)}. (16)

Since αi is uniformly distributed over {±1}, using Euler’s
identity, we obtain

R[1] = A2
L−1∏
i=0

cos [2πh (qi+1 − qi)] . (17)

For rectangular phase shaping functions,

qi = q(t)|t=iT =
i
2L
, for 0 ≤ i ≤ L, (18)

which can be used to express (17) in a compact form as

R[1] = A2cosL
(
πh
L

)
. (19)

Using the expression for the auto-correlation, we can com-
pute some values of the fourth-order cumulant (see (7)) for
partial response modulation scheme, i.e.,

c(0, 0, 0) = −A4 (20)

and

c(0, 0, 1) = −A4cosL
(
πh
L

)
, (21)

where the last term in (7) is zero owing to the expec-
tation being zero over the cumulative phase values,
i.e., E{ej2πh

∑n−L
i=−∞ αi} = 0. For detailed derivation

of (20) and (21), see Appendix. A ratio of these cumulants
in (20) and (21) can be expressed as a function of h as

c3 =
c(0, 0, 1)
c(0, 0, 0)

= cosL
(
πh
L

)
. (22)

A method of moments estimator for modulation index of par-
tial response CPM with rectangular phase shaping function
could now be designed using this ratio of cumulants function
as in [11], i.e.,

ĥMoM =
L
π
cos−1

 L

√
ĉ(0, 0, 1)
ĉ(0, 0, 0)

, (23)

where ĉ(0, 0, 0) and ĉ(0, 0, 1) are the consistent estimators for
c(0, 0, 0) and c(0, 0, 1), respectively. It should be noted that
the estimator is more generally applicable to all binary CPM
signals with separable phase shaping functions [23].

B. LINEAR ESTIMATOR
In order to derive a linear estimator, we use the approximate
model proposed in [19] and [20] for the estimation of fre-
quency of a sinusoid in noise. This model uses the differential
phase of the received signal and is based on the assumption
that at high SNR, the received signal can be approximated as

r [n] ≈ Aej(φ[n,α]+u[n]), for n = 0, 1, . . . ,NNs − 1. (24)

where u[n] is modeled as zero mean white Gaussian noise
with variance σ 2/2A2. This model assumes that the additive
white Gaussian noise in (5), causes negligible change in the
amplitude of the signal. The effect of noise is only manifested
in phase of received signal in the form of additive phase
noise u[n]. This additive Gaussian phase model is a good
approximation at high signal-to-noise ratio [24]. The phase
of the received signal using the approximation of (24) is
given as

6 r[n] = φ [n, α]+ u [n] for n = 0, 1, . . . ,NNs − 1,

Substituting the excess phase of CPM signal from (4),
the phase of the received signal becomes

6 r[n] = 2πh
m∑

i=−∞

αiqn−iNs + u [n] . (25)

Now, the phase difference can be defined as

1n = 6 r[n+ 1]− 6 r[n] for n = 0, 1, . . . ,NNs−2, (26)

which can be represented as

1n = ωnh+�n, (27)

where

�n = u [n+ 1]− u [n] (28)

is the differential phase noise and

ωn = 2π
L−1∑
z=0

1Qjzαz+m, (29)

with m = b nNsc and j = (n)Ns . Here we have used the matrix
1Q containing difference of samples of the phase shaping
function, with elements defined as

1Qjz = q[L−z−1]Ns+j+1 − q[L−z−1]Ns+j. (30)

The vector form of (27) becomes

1 = ωh+�, (31)

where 1, ω and � are (NNs − 1) × 1 column vectors with
n-th elements defined as 1n, ωn and �n, respectively. The
noise vector � is complex Gaussian with zero mean and the
covariance matrix C� is given as

C� =
σ 2

2A2


2 −1 0 . . . 0
−1 2 −1 . . . 0
...

...
...

. . .
...

0
... 0 −1 2

. (32)
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Since it is apparent that the approximate vector model
of (31) is generalized linear in the unknown parameter h
with colored Gaussian noise, we can use the Gauss-Markov
Theorem to determine the best linear unbiased estima-
tor (BLUE) given by

ĥBLUE =
ωTC−1� 1

ωTC−1� ω
, (33)

with variance of ĥBLUE given as

Var(ĥBLUE ) =
1

ωTC−1� ω
. (34)

It should be noted that the variance of the BLUE estimator
will approach (34) only at high SNR when the approximation
in (24) becomes accurate.

IV. MCRLB
In this section, we derive the modified Cramer-Rao lower
bound (MCRLB) [25] for modulation index of the partial
response CPM signal in AWGN. The sampled complex enve-
lope of the CPM signal can be expressed as

s[n] = µn + jvn, (35)

where

µn = cos

(
2πh

m∑
i=−∞

αiqn−iNs

)
, (36)

and

vn = sin

(
2πh

m∑
i=−∞

αiqn−iNs

)
(37)

are the real and imaginary parts of the CPM signal, respec-
tively. Similarly the received signal is given as

r[n] = x̃n + jỹn, (38)

where x̃n and ỹn are the real and imaginary parts of the
received signal, respectively.

From [26], the expression for log-likelihood function
of joint probability density function of received signal is
given as

logf (r, h)=−N log(πσ 2)−
1
σ 2

NNs−1∑
n=0

[
(x̃n−µn)

2
+(ỹn−vn)

2
]
,

where r is the vector of samples of the received signal r[n].
For this likelihood function [21], [26] the Fisher information
function

Ih=−E
{
∂2

∂h2
log f (r, h)

}
(39)

can be computed as

Ih=
2
σ 2

NNs−1∑
n=0

[(∂µn
∂h

)2
+

(∂vn
∂h

)2]
. (40)

Partial derivatives are computed with respect to the parame-
ter h and are given as

(∂µn/∂h ) = −

[
2π

m∑
i=−∞

αiqn−iNs

]
sin(β) (41)

and

(∂vn/∂h) =

[
2π

m∑
i=−∞

αiqn−iNs

]
cos(β), (42)

where β = 2πh
∑m

i=−∞ αiqn−iNs .
Substituting the above values in (39), Fisher information

becomes

Ih =
2
σ 2

NNs−1∑
n=0

[
2π

m∑
i=−∞

αiqn−iNs

]2
. (43)

Separating the cumulative and correlative components,
we get

Ih =
8π2

σ 2

NNs−1∑
n=0

1
2

m−L∑
i=−∞

αi +

m∑
i=m−L+1

αiqn−iNs

2

. (44)

Expanding the square, we obtain

Ih =
8π2

σ 2

NNs−1∑
n=0

[( m−L∑
i=−∞

αi

2

)2

+

 m∑
i=m−L+1

αiqn−iNs

2

+

(
m−L∑
i=0

αi

) m∑
i=m−L+1

αiqn−iNs

]. (45)

To evaluate the first term, i.e.,

I =
NNs−1∑
n=0

(
m−L∑
i=−∞

αi

2

)2

, (46)

we split the term in parenthesis to get

I =
1
4

NNs−1∑
n=0

 −L∑
i=−∞

αi +

m−L∑
i=−L+1

αi

2

. (47)

For simplicity of notation, let γ =
∑
−L
i=−∞ αi. Using this

definition in (47), we get

I =
1
4

[
Nsγ 2

+ Ns(γ + α−L+1)2

+ . . .+ Ns(γ + . . .+ αN−L−1 )
2
]

=
Ns
4
γ 2
+
Ns
4

N−1∑
m=1

γ + m−L∑
i=−L+1

αi

2

. (48)

Averaging the first term over the M -ary memoryless data
symbols, we get

Ī =
Ns
4

N−1∑
m=1

m
(M2
− 1)
3

=
NsN (N − 1)(M2

− 1)
24

. (49)
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Now evaluating the second term, i.e.,
∑NNs−1

n=0 [
∑m

i=m−L+1
αiqn−iNs ]

2, we obtain

II =
N−1∑
m=0

[
(αmq0 + αm−1qNs + ..+ αm−Lq(L−1)Ns )

2
+ . . .

+ (αmqj + αm−1qNs+j + . . .+ αm−Lq(L−1)Ns+j)
2
+ . . .

+ (αmqNs−1 + αm−1q2Ns−1 + . . .+ αm−LqLNs−1)
2
]
(50)

Now, the expectation is applied over data symbols due to
which cross terms disappear, as symbols are uncorrelated
with zero mean. Eq (50) thus becomes

ĪI =
M2
− 1
3

[
(q20 + q

2
Ns + ..+ q

2
(L−1)Ns )

+ (q21 + q
2
Ns+1 + . . .+ q

2
(L−1)Ns+1)5

+ ..+ (q2Ns−1 + q
2
2Ns−1 + . . .+ q

2
LNs−1)

]
=

M2
− 1
3

LNs−1∑
k=0

q2k . (51)

Considering the third term, i.e.,

III =

(
m−L∑
i=0

αi

) m∑
i=m−L+1

αiqn−iNs

, (52)

it is easy to observe that when averaged over the data
sequence, it becomes

¯III = 0, (53)

since symbols are mutually uncorrelated. Now,
using (49), (51) and (53), the modified Fisher Information
becomes

Īh =
8π2N (M2

− 1)
3σ 2

[
Ns(N − 1)

8
+

LNs−1∑
k=0

q2k

]
, (54)

which is a general expression for the modified Fisher infor-
mation of partial response single-h CPM signals. Thus,
the expression for the modified CRLB (MCRLB) can be
obtained by inverting the modified Fisher information, i.e.,

MCRLBh = Ī−1h

MCRLBh =
3σ 2

8π2N (M2 − 1)

[
Ns(N − 1)

8
+

LNs−1∑
k=0

q2k

]−1
.

(55)

For example, for a binary CPM scheme with rectangular
phase shaping function, qk = k

2LNs
, and the expression of

MCRLB becomes

MCRLBh =
σ 2

π2N

[
3LNs

3LN 2
s (N − 1)+(LNs − 1)(2LNs − 1)

]
.

(56)

It can be observed from the final expression of MCRLB that
it does not depend upon the parameter of interest, i.e., the
modulation index h. The MCRLB depends on the number of
samples per symbol Ns, number of symbols N , variance σ 2

and the phase shaping function qk . It is also interesting to
note that the dependence on N is stronger than on Ns and
for large N , the dependence on the partial response length L
becomes negligible.

V. NUMERICAL RESULTS
In this section, we report the results of numerical simulations
to study and assess the performance of the proposed estima-
tors in Section III-A and Section III-B with reference to the
MCRLB in Section IV. We also compare the MSE perfor-
mance of the proposed estimators with existing estimators
for the partial response modulation schemes. Specifically,
we compare the proposed data-aided BLUE estimator with
DA-LNDIF [14] and the proposed non-data aided MoM esti-
mator with NDA-CYC [12]. The numerical simulations have
been performed in MATLAB. Unless mentioned otherwise,
we consider binary partial response CPM schemes with rect-
angular phase shaping functions. The channel model assumed
is AWGNwith varying noise power. TheMSE reported in the
results is obtained by averaging over 1000Monte Carlo trials.

FIGURE 1. MCRLB of CPM vs. SNR for five different values of partial
response length with Ns = 4, N = 5.

In Fig. 1, the MCRLB of CPM is plotted against the
SNR for increasing values of partial response length L with
Ns = 4, N = 5 and h = 0.5. It is clear from the figure that
MCRLB decreases with the increase in SNR as noise power
reduces. It can also be observed that MCRLB is also slightly
reduced by increasing the values of L. However, for larger
values of N , the decrease in MCRLB becomes negligible.
Hence, theoretically, the performance of efficient estimators
for increasing partial response length L may not deteriorate
at all. However, we will see later that for both the data-aided
and non-data aided estimators of [12] and [14], respectively,
the performance severely degrades with increase in the partial
response length L.
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FIGURE 2. MCRLB of CPM vs. N for three different values of Ns with
SNR = 10dB, L = 3 and h = 0.5.

Fig. 2 illustrates the dependence of MCRLB of partial
response CPM on N for different values of Ns with fixed
values L = 3 and SNR= 10dB.We can observe thatMCRLB
decays when eitherN orNs is increased. As indicated by (56),
and also verified by simulations, the MCRLB decays faster
with increasing number of symbols N as compared to the
decrease with increasing samples per symbol Ns. Similar
effect is obtained for other values of partial response length L
and and SNRs.

FIGURE 3. MSE of DA-LNDIF and BLUE estimators, compared with MCRLB
vs.SNR with N = 100, Ns = 4 and h = 0.5.

Fig. 3 provides the performance comparison of data-aided
BLUE estimator (see (33)) with DA-LNDIF estimator [14]
with reference to theMCRLB. The simulations are performed
at N = 100, Ns = 4 and h = 0.5. The MCRLB and
variance bound for linear estimators of Eq. (34) are plotted
only for L = 1 for the sake of simplicity in the figure. The
MCRLB and variance bound for L > 1 is almost equal
to that of L = 1 since the dependence of MCRLB on the

value of L is very weak for values of N > 50 (see (56)).
We can observe that the DA-LNDIF estimator has better
performance at low SNR. Our proposed BLUE estimator
has better performance than DA-LNDIF at high SNR and
gets close to the MCRLB and achieves the variance bound
for linear estimators. At low SNR, the additive phase noise
approximation of (24) is not very accurate thus leading to the
inferior performance in this region. The approximate linear
model (24) used for BLUE is accurate for high SNR scenar-
ios. It can be observed that the performance of BLUE estima-
tor is preserved for different partial response lengths. On the
contrary, the performance of DA-LNDIF worsens when L
increases. DA-LNDIF considers only the principle compo-
nent of CPM signal but when L increases, the energy is con-
tained not only in the principal component but also spread in
other components of Laurent’s pulses. Thus the performance
of DA-LNDIF degrades when partial response length L
increases. The MSE of the BLUE estimator, the MCRLB and
the variance bound show very similar trend for the raised
cosine phase shaping function.

FIGURE 4. MSE of method of moments estimator vs. SNR for different
partial response lengths with N = 100 and h = 0.5.

Fig. 4 presents the performance of the non-data aided
MoM estimator of (23). Figure shows the dependence of
MSE of MoM estimator on the value of L and SNR at
fixed values of N = 100 and h = 0.5. It can be
observed that the performance of estimator improves with
the SNR. However, the MSE deteriorates with increase
in the memory of the modulation scheme, i.e., for larger
values of L.

Fig. 5 shows the MSE of MoM estimator plotted against
number of data symbols N for three different values of SNR.
The parameters fixed for the simulation are L = 3 and
h = 0.5. It is clear from the figure that the performance
of estimator improves when SNR is increased but the gains
with SNR are diminishing, as is true for most non-data aided
estimators. Also, MSE improves for increasing number of
data symbols N .
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FIGURE 5. MSE of method of moments estimator vs. N for three different
values of SNR with L = 3 and h = 0.5.

FIGURE 6. MSE of method of moments estimator vs. N for different
partial response lengths with SNR = 10dB and h = 0.5.

In Fig. 6, we show the MSE of MoM estimator plotted
against number of data symbols N . The simulations are per-
formed for h = 0.5 and SNR = 10 dB. The performance of
the estimator strongly depends upon the number of available
symbols N , as it can be observed that MSE decreases with
the increase in N . As observed earlier, the MSE of MoM
estimator deteriorates for larger values of L.
In Fig. 7, we report the results of MSE of the proposed

MoM estimator vs. parameter h for different values of L. The
parameters fixed for the simulation are SNR = 10dB and
N = 100. Again, the performance of MoM estimator is better
at lower values of L. The MSE shows some dependence upon
the value of the modulation index h. It decreases initially with
the increase in h with lowest values around h = 0.5, but is
particularly high for values of h close to either 0 or 1. The
behavior of the MSE is similar to the minimum distance of
the CPM schemes [1].

Fig. 8 depicts the comparison of MSE vs. SNR of
non-data aided MoM estimator with NDA-CYC estimator

FIGURE 7. MSE of method of moments estimator vs. h for SNR = 10dB
and N = 100.

FIGURE 8. MSE of NDA-CYC and MoM estimators vs. SNR with N = 1000,
Ns = 1 and h = 0.7.

proposed in [12]. The simulations are performed over fixed
parameters of N = 1000 symbols, h = 0.7 and Ns = 1.
The simulation parameters have been chosen to get compa-
rable results to those of [12]. It can be observed that MoM
estimator performs well at low SNR for all values of L. The
poor performance of NDA-CYC at low SNR is due to phase
unwrapping errors as already identified in [14]. However,
NDA-CYC estimator has better performance at high SNR
for L = 1, but as partial response length L increases, its
performance deteriorates even at high SNR.

In Fig. 9, performance of BLUE estimator is analyzed for
M = 4 and compared with the binary case, i.e., M = 2. The
simulations are performed for L = 2 by taking fixed values
of N = 100 symbols, Ns = 4 and h = 0.5. It is clear from the
figure that the performance is improved for M = 4 as MSE
gets better, while the MCRLB and variance bound are also
reduced.

For the data-aided case, the proposed BLUE estimator
shows very good performance that approaches the linear
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FIGURE 9. MSE of BLUE estimator vs. SNR for M = 2 and M = 4 with
L = 2, N = 100, Ns = 4 and h = 0.5.

variance bound of (34) and becomes close to the MCRLB
at high SNR. Moreover, its performance is not degrading
with increasing partial response length when compared with
DA-LNDIF [14], MoM and NDA-CYC. The proposed MoM
estimator though shows better preservation of performance
with respect to partial response length when compared with
NDA-CYC [12], but still the performance loss is consider-
able. Another advantage of the proposedMoM estimator over
the previously proposed NDA-CYC is its non-iterative nature
and low computational complexity. In the future, we intend
to further explore the concept of non-data aided modulation
index estimation for general phase shaping functions and
work towards improving the MSE performance for CPM
schemes with large partial response memory. Another future
direction could be the asymptotic performance analysis of
the proposed MoM estimator using statistical linearization
approach.

VI. CONCLUSIONS
In this paper, we have proposed two novel estimators and
derived the modified Cramer Rao lower bound (MCRLB)
for the modulation index estimation of partial response
CPM signals. The MCRLB expression is independent of
the modulation index itself but shows a weak dependence
on the partial response length. The data aided BLUE
estimator performs very well at high SNR, approaches
close to the MCRLB and shows robust performance
against increasing modulation memory. The MoM esti-
mator is non-iterative and shows superior performance at
low SNR as compared to the existing non-data aided
approaches.

APPENDIX
In this appendix, we discuss the derivation of fourth-
order cumulants in equations (20) and (21) using the auto-
correlation function for the partial response CPM schemes
in (19). Using the definition of cumulants function in (7) at

m1 = 0, m2 = 0 and m3 = 0, we get

c(0, 0, 0) = E{s∗[n]s[n]s[n]s∗[n]}
−E{s∗[n]s[n]}E{s[n]s∗[n]}
−E{s∗[n]s[n]}E{s[n]s∗[n]}
−E{s∗[n]s∗[n]}E{s[n]s[n]}, (57)

which can be expressed as

c(0, 0, 0) = E{|s[n]|2 |s[n]|2} − R2 [0]− R2 [0]
−E{s∗[n]s∗[n]}E{s[n]s[n]}, (58)

where

R[0] = A2 (59)

is the mean-squared value of the CPM signal and

|s[n]|2 = Aejφ[n,α]Ae−jφ[n,α] = A2. (60)

While the last term in (58) can be shown to be equal to zero
as follows:

E{s∗[n]s∗[n]}E{s[n]s[n]}
= E{A2 e−j2φ[n,α]}E{A2 ej2φ[n,α]}
= A4E{e−j2πh

∑n−L
i=−∞ αi .e−j4πh

∑L−1
i=0 αn−iqi}.

E{ej2πh
∑n−L

i=−∞ αi .ej4πh
∑L−1

i=0 αn−iqi}

= E{Ae−j2πh
∑n−L

i=−∞ αi}.E{e−j4πh
∑L−1

i=0 αn−iqi}.

E{Aej2πh
∑n−L

i=−∞ αi}.E{ej4πh
∑L−1

i=0 αn−iqi}

= 0 (61)

The last term is zero as the expectation of E{ej2θn−L } = 0 is
zero over the cumulative phase θn−L := πh

∑n−L
i=−∞ αi taking

values θn−L ∈ {0, 2πp ,
4π
p , . . . ,

2(p−1)π
p }, where p is an integer

such that h = 2l
p for an integer l. Thus, combining (59), (60)

and (61), we get

c(0, 0, 0) = −A4 (62)

Similarly, using the definition of cumulants function in (7)
at m1 = 0, m2 = 0 and m3 = 1, we get

c(0, 0, 1) = E{s∗[n]s[n]s[n]s∗[n+ 1]}

−E{s∗[n]s[n]}E{s[n]s∗[n+ 1]}

−E{s∗[n]s[n]}E{s[n]s∗[n+ 1]}

−E{s∗[n]s∗[n+ 1]}E{s[n]s[n]}, (63)

where

s[n+ 1] = Aejπh
∑n−L+1

i=−∞ ai .ej2πh
∑L−1

i=0 an−i+1qi , (64)

Simplifying each term of (63) separately, we get

I1 = E{s∗[n]s[n]s[n]s∗[n+ 1]} (65)

= E{|s[n]|2s[n]s∗[n+ 1]}

= A2E{s[n]s∗[n+ 1]}

= A2.R[−1] (66)
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As autocorrelation is an even function, thus R[−1] = R[1]
and using (19) we obtain

I1 = A4 cosL
(
πh
L

)
. (67)

Similarly, the second term of (63) can be simplified as

II1 = E{s∗[n]s[n]}E{s[n]s∗[n+ 1]

= A2R[−1]

= A2R[1]

= A4 cosL
(
πh
L

)
(68)

Third term is identical to second term, i.e.,

III1 = A4 cosL
(
πh
L

)
. (69)

Now, the fourth term of (63) can be shown as zero as follows:

IV1 = E{s∗[n]s∗[n+ 1]}E{s[n]s[n]}
= 0, (70)

Since the second factor E{s[n]s[n]} = 0 using the same
justification as in (61). Thus,

c(0, 0, 1) = −A4 cosL
(
πh
L

)
. (71)

This establishes equations (20) and (21) in Section III-A.
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