
SPECIAL SECTION ON ADVANCED SIGNAL PROCESSING METHODS IN MEDICAL IMAGING

Received October 7, 2017, accepted January 12, 2018, date of publication January 17, 2018, date of current version February 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2794478

Improved Reconstruction of Low Intensity
Magnetic Resonance Spectroscopy With
Weighted Low Rank Hankel Matrix Completion
DI GUO1 AND XIAOBO QU 2
1School of Computer and Information Engineering, Fujian Provincial University Key Laboratory of Internet of Things Application Technology, Xiamen
University of Technology, Xiamen 361024, China
2Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China

Corresponding author: Xiaobo Qu (quxiaobo@xmu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672335, Grant 61601276,
Grant 61571380, Grant 61302174, and Grant 6171101498, in part by the Natural Science Foundation of Fujian Province of China under
Grant 2016J05205 and Grant 2016J01327, in part by the Important Joint Research Project on Major Diseases of Xiamen City under
Grant 3502Z20149032, in part by the Fundamental Research Funds for the Central Universities under Grant 20720150109, in part by
Education and Teaching Reform and Construction Project of Xiamen University of Technology under Grant JGZZ201501, and in part by
Foundation of Fujian Educational Committee under Grant JAT160358.

ABSTRACT Magnetic resonance spectroscopy (MRS) has many important applications in medical imaging,
biology, and chemistry. The 1-DMRS is too crowded for complex samples to retrieve chemical or biological
information. The 2-D MRS unfolds the spectrum by introducing another dimension at the cost of much
longer data acquisition time. To speed up the data acquisition, one typical way is to sparsely acquire
measurements and then reconstruct the spectrum from incomplete observations. Recently, a low rank Hankel
matrix (LRHM) approach has shown great potential to reconstruct the spectrum basing on the assumption
that the number of spectral peaks is much less than the number of acquired data points. However, low-
intensity spectral peaks are compromised in the reconstruction when the data are highly undersampled.
In this paper, a weighted LRHM approach is proposed to tackle this problem. A weighted nuclear norm
is introduced to better approximate the rank constraint, and a prior signal space is estimated from the
prereconstruction to reduce the unknowns in reconstruction. Experimental results on both synthetic and real
MRS data demonstrate that the proposed approach can reconstruct low-intensity spectral peaks better than
the state-of-the-art LRHM method.

INDEX TERMS Magnetic resonance spectroscopy, sparse sampling, Hankel matrix, low rank, nuclear norm.

I. INTRODUCTION
Magnetic resonance spectroscopy (MRS) provides fruitful
information on the physical and chemical properties of
atoms or molecules, and it plays important roles in chemistry,
biology and medical imaging. The basic form of MRS is in
one dimension (1D) which is obtained by performing Fourier
transform on the acquired time domain data, also called
free induction decay (FID), from the spectrometer [1], [2].
When measuring the structures or chemical environment of
molecules on large compounds, e.g. proteins, 1D MRS is
always crowded due to the complex coupling or other inter-
actions between atoms or molecules [1], [2]. Thus, multi-
dimensional MRS are used to unfold the coupling between
different nuclei, e.g. hydrogen, carbon, and oxygen [2].
But, multi-dimensional MRS has one limitation: its data

acquisition time is relatively long because it grows rapidly
with the increase of resolution and dimensions [3]. To reduce
the data acquisition time, one typical way is to sparsely
acquire measurements from a spectrometer [4]–[19]. But
one has to reconstruct the spectrum from these incomplete
observations [4]–[7], [11]–[15], [20]–[23] by exploring prior
knowledge on the MRS.

Many reconstruction methods have been proposed for the
sparsely sampled MRS. Two emerging state-of-the-art meth-
ods are the compressed sensing (CS) [5], [11]–[13] and low
rank Hankel matrix (LRHM) methods [15], [16], [20]–[22].
The CS reconstructs the spectrum in frequency domain while
the LRHM restores FID in time domain. The CS assumes
the spectrum is sparse that contains only a few non-zero
valued spectral points, thus narrow peaks are reconstructed
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by CS very well. However, broad peaks may be compromised
since these signals violate the assumption of sparsity [15].
Alternatively, LRHM supposes the number of spectral peaks
ismuch less than the number of acquired data points and it can
faithfully reconstruct both broad and narrow peaks [15]. The
LRHM was considered to improve the effective sensitivity in
the reconstructed spectra [24] and best theoretically adapted
to the exponential property of the FID [25]. LRHM achieves
the low rankness by minimizing the nuclear norm of a Hankel
matrix converted from the FID [15]. Although this norm is the
tightest convex lower bound of the rank, it still deviates from
primary goal to minimize the rank of Hankel matrix, i.e. the
number of spectral peaks (See Section II. B for more details).
Recent development on low rank matrix reconstruction found
that a better approximation of the matrix rank can improve
the signal reconstruction in practice [26]–[30]. But none of
these approaches, as far as we know, has been applied to fast
sampling MRS.

In this work, a weighted LRHM approach is introduced to
tackle this problem. A prior signal space is first estimated
from a pre-reconstruction and then a weighted nuclear norm
is introduced to approximate rank constraint on the Hankel
matrix. Results on the synthetic and real MRS data show that
the low intensity spectral peaks are reconstructed better than
the state-of-the-art LRHM does.

Although we mainly work on the spectrum reconstruction,
this approach, with proper modifications, may be extended
into the low rank Hankel or other structured matrix-based
image reconstruction [31]–[35] for sparsely sampled mag-
netic resonance imaging [36]–[43].

II. BACKGROUND
A. BASICS OF 2D MRS
In the conventional 1D MRS, the spectrometer acquires the
FID followed by performing the Fourier transform to obtain
the spectrum [2]. The typical data acquisition for a 1D MRS
usually takes only several seconds.

To get more information, the 2D MRS are generated as
a series of 1D MRS experiments based on two time vari-
ables t1 and t2 [2], [14], [44] as shown in Fig. 1. For each
1D scan, the sample is excited with pulses first which results
in the evolution of magnetization with time t1 in the indirect
dimension (horizontal axis in Fig. 1(b)). Then, the sample is
further excited in the mixing period. Finally, the FID signal
is recorded as a function of t2 [2], [14], [44] in the direct
dimension (vertical axis in Fig. 1(b)) for a given t1. The
overall 2D FID plane is formed by repeating these steps for
different time values t1.
The data acquisition time of 2D MRS is mainly dom-

inated by the total number of data points, N1, in indirect
dimension [45]. To reduce this time, one typical way is
to sparsely sample this dimension [15], [22], [45]–[49] by
acquiring partial data (Fig. 1(b)). That means, an undupli-
cated Mnumbers from nj ∈ {1, 2, . . . ,N1} was randomly
chosen and the sampling ratio M/N1 is smaller than 1.
To obtain the full spectrum, one has to restore these

FIGURE 1. The signal excitation scheme and sparse sampling in 2D MRS.
(a) The signal excitation scheme, (b) 1D sparse sampling in indirect
dimension. Note: The empty (or solid) circle denotes the data
point is unsampled (or sampled).

FIGURE 2. Flowchart of the low rank Hankel matrix reconstruction
for MRS.

unsampled data points by introducing prior knowledge
on FID or the spectrum.

B. MOTIVATION OF THE PROPOSED METHOD
In MRS, the FID signal is usually modeled as the sum of
exponential functions as follows [1], [20]–[22], [50], [51]

xn =
J∑
j=1

ajei2π f1,jn1t1 , (1)

where J is the number of spectral peaks, aj and f1,j are
the complex amplitude and the central frequency of the
jth spectral peak, respectively.
The LRHM [15] explores the fundamental property of the

FID, i.e., the number of spectral peaks is equal to the number
of exponential functions that composing the FID of MRS.
By minimizing the rank of the Hankel matrix, LRHM aims
at finding a complete FID that corresponds to the minimal
number of spectral peaks subject to the acquired data. This
method has been extended to reconstruct two-dimensional
(2D) or even higher dimensional MRS with considerably fast
algorithms [16], [20]–[22].

Figure 2 summarizes the framework of LRHM. A vector,
representing each FID in the indrect dimension (the column
marked in the red retangle in Fig. 1(b)) is firstly convereted
into a Hankel matrix. Then, by exploring the low rank prop-
erty on this matrix, a complete vector is restored. The whole
2D FIDwill be recovered by looping the reconstruction along
the direct dimension.

In the reconstruction model of the LRHM, the low rank
constraint is enforced by minimizing the nuclear norm of
the Hankel matrix. Mathematically, each 1D FID xis recon-
structed according to [15]

min
x
‖Rx‖∗ +

λ

2
‖y− Ux‖22 , (2)
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FIGURE 3. Limitations of nuclear norm minimization. (a) Comparisons
between rank and nuclear norm of a singular value; (b) Reconstructed
MRS using LRHM with nuclear norm minimization. Note: The Arabic
numerals denote the identifier on spectral peaks of the ground truth
spectrum. From the left to right, the peak widths are from broad to
narrow.

whereR denote a Hankel operator converting the FID x into a
Hankel matrix Rx, ‖·‖∗ represents the nuclear norm (sum of
singular values), ‖·‖2 represents the l2 norm, and λ is a regu-
larization parameter that balances the low rankness indicated
by the nuclear norm and the data consistency measured with
the square of l2 norm.
However, the LRHM has some limitations both in the

mathematical model and MRS applications. First, as a sur-
rogate function of rank, the nuclear norm [26], [27] deviates
from the strictly definition of rank (the number of non-zero
singular values) as shown in Fig. 3(a). This implies that
LRHM does not directly minimizes the number of spectral
peaks in MRS subject to the acquired FID. As a result,
more sampled data are required in a faithful reconstruction
or suboptimal results may be induced when the sampled
data are limited [26], [27], [52]. Second, we observed that,
when using LRHM, some low intensity spetral peaks may
be lost or weakened when data are highly undersampled
(Peaks 1 and 2 in Fig. 3(b)).

Fortunately, latest advances in low rank methods have
shown that better signal reconstruction may be achieved with
a closer approximation of rank [26]–[30] than nuclear norm.
Let X denote a matrix and its singular value decomposition
(SVD) be X = P6VH , the nuclear norm of X is defined as

‖X‖∗ =
L∑
l=1

σl (3)

where the σl is the l th non-zero singular values saved in 6.
By introducing a weight hl = σ

−1
l on the non-zero singular

values, one has

rank (X) = L =
L∑
l=1

hlσl . (4)

This implies that one way to approach the rank is to assign
a weight that is very close to the inverse proportion of the
singular values. Then, a weighted nuclear norm [29], [30],
[53] is defined as follows

‖X‖w,∗ =
S∑
s=1

wsσs, (5)

where w = [w1, · · · ,ws, · · · ,wS ]T includes the weight
ws (1 ≤ s ≤ S) for the sth singular values. The notations of
the ground truth rank L and singular values σl are replaced
with S and σs respectively, because neither of them are known
in practical undersampled signal reconstruction. By mini-
mizing the weighted nuclear norm, signal details have been
observed to be reconstructed better than using the nuclear
norm [26]–[30].

Motivated by these successful applications of weighted
nuclear norm minimization, the focus of this work is to
introduce this regularization into the 2D MRS recovery and
improve the low intensity signal reconstruction.

III. METHOD
In this section, the FID of MRS is reconstructed using the
weighted nuclear norm minimization on the Hankel matrix,
which is solved by a fast numerical algorithm.

A. RECONSTRUCTION MODEL
Mathematically, the FID x is reconstructed from sparsely
sampled data by enforcing the low rankness of the corre-
sponding Hankel matrix Rx as follows

min
x
‖Rx‖w,∗ +

λ

2
‖y− Ux‖22 , (6)

where the regularization parameter λ balances the two
terms. This model is named as Weighted Low Rank Hankel
Matrix (WLRHM) reconstruction. The core of weighted-
LRHM model is to assign proper weights. According to the
previous observations [26]–[30], bigger weights should be
assigned to those small singular values.

First, the LRHM is used to obtain a pre-reconstruction
result x̃ followed by the SVD according to

Rx̃ = P̃6̃
(
Ṽ
)H
, (7)

where the matrix P̃contains the spectral frequency informa-
tion of x̃ [21], [22], [54], [55] and 6̃ consists the singular
values.

Then, a discriminative weight w = [w1, · · ·ws · · · ,wS ]T

is computed as follows

ws =
1

6̃s + ε
, (8)

where ε is a small constant that avoids zeros in the denomi-
nator and 6̃s is the sth singular values of 6̃.

B. RECONSTRUCTION ALGORITHM
In the following, how to solve the model will be presented.
We adopt the alternating direction minimization method to
solve Eq. (6) since it runs fast in Hankel matrix-based
MRS reconstruction [15], [20], [22].

Equation (6) is equivalent to the following problem

min
x,Z
‖Z‖w,∗ +

λ

2
‖y− Ux‖22 s.t. Rx = Z (9)
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where Z is a matrix that has the same size of the Hankel
matrix Rx.

The augmented Lagrangian form of Eq. (9) becomes

G (x,Z,D) = ‖Z‖w,∗ +
λ

2
‖y− Ux‖22 + 〈D,Rx− Z〉

+
β

2
‖Rx− Z‖2F . (10)

where D is a dual variable. This minimization turns into
alternatingly solve the following sub-problems in an iterative
way until the algorithm converges:

xk+1 = argmin
x
G (x,Zk ,Dk)

Zk+1 = argmin
Z
G(xk+1,Z,Dk ),

Dk+1 = Dk + (Rxk+1 − Zk+1).

(11)

1) Fixing Dk and Zk , xk+1is obtained by solving

min
xk+1

λ

2
‖y− Uxk+1‖22 + 〈Dk ,Rx− Zk 〉 +

β

2
‖Rx− Zk‖2F .

(12)

whose solution is

xk+1 =
(
λUTU+ βRTR

)−1(
λUT y+ βRT

(
Zk −

Dk

β

))
.

(13)

2) Fixing Dk and xk+1, Zk+1is obtained by solving

min
Zk+1
‖Zk+1‖w,∗ + 〈Dk ,Rxk+1 − Zk+1〉

+
β

2
‖Rxk+1 − Zk+1‖2F , (14)

whose solution is received with a weighted singular thresh-
olding operator [28]–[30], [53] according to

Z = P
(

6 −
1
β
diag (w)

)
+

VH (15)

where P6VH is the SVD of Rx+ D/β.
3) Fixing Z and x, update D according to

D← D+ (Rx− Z) . (16)

One can see in Eq. (15) that the low rank reconstruc-
tion needs SVD iteratively. We observe that most spectral
frequency components of MRS are recovered properly with
LRHM. Thus, one may try to project the Hankel matrix onto
these pre-estimated frequencies included in P̃. In our imple-
mentation, P̃ is used to replace the P in Eq. (15). In another
word, P̃ keep the same in the iterative reconstruction pro-
cess. This modification potentially reduces the number of
unknowns in the low rank reconstruction (A basic low rank
reconstruction has to reconstruct three matrices P, 6 and
Vwhile our approach only leaves the 6 and V changed in the
iterative process of WLRHM).

To achieve better reconstructions, both the weight w and
matrix P̃ are suggested to update using WLRHM reconstruc-
tion for several times. The overall algorithm of WLRHM are
summarized in Table I.

TABLE 1. Reconstruction algorithm of proposed approach.

The benefits of incorporating weights are analyzed
in Fig. 4. Using the proposed approach, spectral correlations
are increased for all peaks and the improvement is more
obvious for low intensity peaks. More times of updating
weights lead to spectral shapes more consistent to the ground
truth, however, at the cost of more computation time. In the
implementation, the updating times is chosen to be 4 so that
reconstructed spectra are restored pretty well without paying
too much extra computation time.

IV. RESULTS
The proposed approach will be compared with the state-of-
the-art LRHMmethod [15]. The reconstruction performances
will be evaluated on synthetic data and realistic biological
MRS measured from proteins.

A. SYNTHETIC DATA
A synthetic FID signal with five spectral peaks (Fig. 5) is
generated according to Eq. (1). For all exponential functions,
the amplitudes equal to 1, the phases are 0, and the damping
factors are 0.01, 0.02, 0.03, 0.04 and 0.08, respectively. Then,
the noise with zero mean and standard deviation of 0.005 is
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FIGURE 4. Effect of the times of updating weights on (a) peak
correlations, (b) spectral shape of low intensity peaks and (c)
computation time. Note: Two lowest intensity peaks 1 and 2 in Fig. 3(b)
are reconstructed in Fig. 4(b). In the x-axes of (a) and (c), p = 0 represents
the LRHM reconstruction, p = 1, . . . , 8 means the weighted nuclear norm
reconstruction with weights estimated from the (p− 1)th reconstruction.
Spectra in (b) are equally shifted along vertical axis for better
visualization.

FIGURE 5. Reconstructed spectra when the sampled data is (a) 25% and
(b) 15% of the fully sampled data.

added to this spectrum. 15% and 25% of the FID data are
randomly sampled according to the Poisson-gap pattern [8].

Fig. 5 shows the reconstructed spectra of the two meth-
ods. All the spectral peaks (Fig. 5(a)) are reconstructed very
well when the data are sampled sufficiently (25%). But with
fewer sampled data (15%), the low intensity peaks (blue line
in Fig. 5(b)) are seriously distorted by LRHM, while these
peaks (red line in Fig. 5(b)) are recovered much better by
WLRHM. The quantitative analysis (Fig. 6) on the spectrum
intensities correlation confirms that WLRHM has improved
the consistency of all five spectral peaks and this improve-
ment is more obvious for low intensity peaks.

Fig. 7 plots the joint distribution of spectral peak corre-
lations under 100 sampling trials of the two methods. The
WLRHM is claimed to yield higher correlation than LRHM
if the star point is placed over the dashed line. Otherwise,
WLRHM produces lower correlation. The statistical analysis
indicates that the new approach outperforms LRHM in most
cases.

FIGURE 6. Peak intensity correlations for the reconstructed spectra when
the sampled data are (a) 25% and (b) 15% of the fully sampled data.
Note: The error bars are the standard deviations of correlations over
100 sampling trials.

FIGURE 7. The joint distribution of correlation values obtained with
LRHM and WLRHM for peaks 1, 2, 3, 4 and 5 in (a), (b), (c), (d) and (e),
respectively. Note: 100 sampling trials are conducted when 15% data are
sampled. WLRHM is claimed to improve the correlation than LRHM if the
star point is placed over the dashed line where the same correlations are
reached by both methods. The number marked in red (or blue) is the
percentage that the WLRHM reaches higher (or lower) correlation
than LRHM.

One may notice that, when the data are highly
undersampled, WLRHM may lead to sub-optimal recon-
struction of low intensity peaks, e.g. peak 1 in Fig. 7(a),
if LRHM reaches correlation that is smaller than 0.8.
One explanation is that the weight w and matrix P̃ esti-
mated from LRHM is inaccurate in these cases. Therefore,
how to improve the robustness of incorporating knowl-
edge from reference signals is a meaningful future work to
improve WLRHM.
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FIGURE 8. Reconstructed 2D HSQC spectrum from 25% data. (a) The fully
sampled spectrum; (b) and (c) are reconstructed spectra using the LRHM
and WLRHM, respectively.

FIGURE 9. 1D traces of reconstructed 2D HSQC spectrum. (a) and (b) are
taken at the purple and yellow lines in Fig. 8(a), respectively. Note: 1D
traces of reconstruction are shifted for better visualization.

B. MRS DATA
The 2D MRS (Fig. 8(a)) is a 1H-15N HSQC spectrum
of the intrinsically disordered cytosolic domain of human
CD79b protein from the B-cell receptor. This 2D spectrum
is measured at the following conditions: 300 µM 15N-13C
labeled sample of cytosolic CD79b in 20 mM sodium phos-
phate buffer, pH 6.7 was used to obtain the fully sampled
2D 1H-15N HSQC with 256 complex points in the 15N
dimension at 55 ◦C on 800 MHz Bruker AVANCE III HD
spectrometer equipped with 3 mm CPTCI cryoprobe [56].
The size of the 2D FID is 256 in indirect dimension and
110 in direct dimension. Only 25% of data are randomly
sampled in the indirect dimension according to the Poisson-
gap pattern [8].

FIGURE 10. Peak intensities correlation between fully sampled spectrum
and reconstructed spectrum on the 2D HSQC. (a) and (b) are estimated
with all peaks using LRHM and WLRHM, respectively; (c) and (d) are
estimated with partial peaks of low intensities at a range of [0, 0.2] using
LRHM and WLRHM, respectively. Note: The notation R2 denotes the
Pearsons linear correlation coefficient of fitted curve. The closer that the
value of R2 approaches to 1, the stronger the correlation between the
fully sampled spectra and reconstructed spectra is.

The reconstructed 2D MRS is shown in Fig. 8. The
WLRHM reconstructs the spectral peaks (Fig. 8(c)) better
than the LRHM (Fig. 8(b)), particularly for the marked
spectral peaks. Representative 1D traces (Fig. 9(d)) clearly
depict that low intensity peaks are compromised by LRHM
but faithfully recovered by the proposed approach. The
quantitative analysis on the spectrum intensities correlation
in Fig. 10 also confirms that WLRHM improve low intensity
spectrum (Fig. 10(c) and (d)) although the improvement for
all peaks (Fig. 10(a) and (b)) is not significant. These obser-
vations imply that the proposed method can reconstruct more
consistent spectrum to the fully sampled 2D MRS.

V. CONCLUSION
A weighted low rank Hankel matrix completion method is
introduced to reconstruct the sparsely sampled data in fast
magnetic resonance spectroscopy. The weights are learnt
from pre-reconstruction using LRHM. The low rank model
is then solved with a fast numerical algorithm. Besides, fre-
quency components are kept during the SVD in an iterative
process of the algorithm. Experimental results show the great
potential of the proposed approach in the reconstruction of
the low intensity spectral peaks. Thus, this method provides
a solution to improve the potential sensitivity in magnetic
resonance spectroscopy.
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