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ABSTRACT Multi-input multi-output (MIMO) detection based on turbo principle has been shown to provide
a great enhancement in the throughput and reliability of underwater acoustic (UWA) communication systems.
Benefits of the iterative detection in MIMO systems, however, can be obtained only when a high quality
channel estimation is ensured. In this paper, we develop a new soft-decision-driven sparse channel estimation
and turbo equalization scheme in the triply selectiveMIMOUWA. First, the Homotopy recursive least square
dichotomous coordinate descent (Homotopy RLS-DCD) adaptive algorithm, recently proposed for sparse
single-input single-output system identification, is extended to adaptively estimate rapid time-varyingMIMO
sparse channels. Next, the more reliable a posteriori soft-decision symbols, instead of the hard decision
symbols or the a priori soft-decision symbols, at the equalizer output, are not only feedback to the Homotopy
RLS-DCD-based channel estimator but also to the minimum mean-square-error (MMSE) equalizer. As the
turbo iterations progress, the accuracy of channel estimation and the quality of the MMSE equalizer are
improved gradually, leading to the enhancement in the turbo equalization performance. This also allows
the reduction in pilot overhead. The proposed receiver has been tested by using the data collected from the
SHLake2013 experiment. The performance of the receiver is evaluated for various modulation schemes,
channel estimators, and MIMO sizes. Experimental results demonstrate that the proposed a posteriori
soft-decision-driven sparse channel estimation based on the Homotopy RLS-DCD algorithm and turbo
equalization offer considerable improvement in system performance over other turbo equalization schemes.

INDEX TERMS A posteriori soft-decision, a priori soft-decision, channel estimation, DCD iterations,
Homotopy iterations, multiple-input multiple-output (MIMO), recursive least-squares (RLS), sparse
channel, turbo equalization, underwater acoustic communication.

I. INTRODUCTION
In recent years, the terrestrial wireless communication has
made great achievements, However, wireless communica-
tion underwater, more specifically, the underwater acous-
tic communication, is still facing significant challenges
incurred by the harsh underwater acoustic propagation
environment [1]–[8]. Unlike the terrestrial radio channel,
the UWA channel is featured by frequency-dependent
limited bandwidth, long delay spread and rapid time variation
due to severe Doppler effects (caused by the low speed

of sound in water), leading to relatively low data rates
in a range between a few bits/s (bps) to several tens of
kbits/s (kbps) and often unsatisfied performance. The
UWA channel has been regarded as one of the most difficult
channels for communications [8], [10].

Generally, two families of modulation techniques, single-
carrier modulation and multicarrier modulation, are widely
investigated in UWA communications [10], [12]–[14].
These two types of modulation have their own advantages
and disadvantages in combating the distortions incurred by
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the UWA channel. Single-carrier modulation schemes with
time-domain equalization techniques enjoy high spectral
efficiency and robust performance at the cost of a high
receiver complexity due to the fast time-varying long mul-
tipath spread and Doppler spread [1], [9]–[11], [19]–[21].
Multicarrier modulation schemes, such as the orthogonal
frequency-division multiplexing (OFDM), have a substantial
advantage in combating long multipath spread with a rel-
atively low-complexity equalization by utilizing the cyclic
prefix (CP). Unfortunately, the block-wise processing used
in OFDM systems usually requires the assumption of time-
invariant or quasi-static channel. In rapidly varying UWA
channels, the severe intercarrier interference (ICI) due to
the Doppler spread significantly degrades the performance
of OFDM systems [12], [13], [15], [17], [18]. On the other
hand, the high peak-to-average power ratio (PAPR) is another
problem in OFDM systems, especially for battery-powered
underwater platforms [16].

To boost the throughput and robustness of commu-
nications over time-varying triply (space-time-frequency)
selective underwater acoustic channels, the MIMO trans-
mission coupled with turbo equalization (TEQ), i.e.
iterative equalization and decoding, has been recently rec-
ognized as a powerful and promising solution for UWA
communications [19]–[23], [25]–[27], [31]–[38]. Usually,
the TEQ can be performed in either time or frequency
domain according to the requirements to the receiver
structure and computational complexity. In this work, we
focus on the single-carrier UWA communication with time-
domain TEQ [19]–[22], [25]–[27], [35]–[37]; for details
on the frequency-domain TEQ for single-carrier or OFDM
systems, we refer the reader to [27], [31]–[34]. There have
emerged many time-domain TEQ schemes in the field of
UWA communications. The TEQ schemes with the linear
structure have a suboptimal performance, but relatively low
complexity. They generally fall into two classes: 1) the
direct-adaptive based TEQ (DA-TEQ), with direct applica-
tion of adaptive filters to the received signal to estimate the
transmitted symbols [20]–[23], [25], [35]–[37], and 2) the
channel-estimate based TEQ (CE-TEQ), with explicit chan-
nel estimation performed firstly, and then the TEQ coeffi-
cients determined from the channel estimate [20], [38].

As shown in many research works in the field of
UWA TEQs, the channel estimation errors in CE-TEQs
and the adaptive filter adjustment errors in DA-TEQs have
a significant impact on the performance of receivers [20],
[36]–[38]. In [20], the behavior of both CE-TEQ and
DA-TEQ based on the Least Mean Square (LMS) adaptive
algorithm in the presence of channel estimation errors and
adaptive filter adjustment errors were compared by theo-
retical analysis, simulation and processing the experimental
data. The data reuse and fixed taps sparsification techniques
were used to improve the convergence of the LMS algo-
rithm. For both single-input multi-output (SIMO) and
MIMO configurations, extensive at-sea experiments have
shown that, in some setups, the DA-TEQ scheme outperforms

the CE-TEQ scheme, which is a counterintuitive and con-
tradicts to the theoretical analysis and simulation. In [21],
an LMS-based DA-TEQ scheme for high order modulations
(up to 32QAM) coupled with the symbol-based timing recov-
ery and Doppler compensation was proposed for highly-
mobile SIMO UWA communications. At-sea experiments
show that data rates up to 20 kbps can be achieved with
a satisfied performance for relative velocities up to 2 m/s.
Further results with higher data rates up to 24 kbps over
ranges greater than 1 km are presented in [22]. In [23], an
DA-TEQ scheme with sparsity-aware Improved Proportional
Normalized LMS (IPNLMS) adaptive filter [7], [24] for the
SIMO setup shows an improved performance compared to the
LMS based DA-TEQ. Yellepeddi and Preisig [25] developed
a soft adaptive turbo equalizer that incorporates the soft infor-
mation from the decoder into the adaptation loop. In the con-
text of DA-TEQ, the recursive expected least squares (RELS)
adaptive algorithm, which could take advantage of the soft
information as opposed to the hard information, is used in
the turbo equalizer. Unlike the works conducted in [20]–[23],
a priori soft-decisions (SDs) from the decoder are also feed-
back to update the adaptive filter coefficients, leading to a
performance robust to the error propagation (EP) incurred
by the hard decision feedback. In [38], an CE-TEQ scheme
with iterative channel estimation and turbo equalization for
MIMO UWA communication was proposed. By utilizing
the IPNLMS algorithm that takes the channel sparsity into
account instead of the LMS or block-wise least squares (LS)
algorithms in the iterative channel estimation, the conclusion
that the CE-TEQ scheme definitely outperforms the DA-TEQ
is verified by experimental results. These at-sea experimental
results are consistent with the theoretical analysis and simu-
lation results presented in [20]. In [37], an efficient DA-TEQ
scheme for MIMO UWA communications was proposed.
Different from existing DA-TEQ schemes, the a posteriori
soft-decision of the TEQ output is feedback to the adaptive
filter and SIC. To cope with the slow convergence that is
inherent in NLMS and IPNLMS algorithms, the same data
reuse technique as in [20] was embedded in the turbo iteration
loop. Experimental results demonstrate superiority of the a
posteriori SDs in TEQ schemes against utilizing the hard
decision or the a priori SDs. Built on the above insight,
the LMS-type or enhanced LMS-type adaptive algorithms
were widely used in these DA-TEQ and CE-TEQ schemes
due to their low complexity. The slower convergence speed
of LMS-based algorithms, however, limits their application
in the rapid time-varying MIMO UWA channels. It is well
known that recursive least squares (RLS) adaptive algorithms
provide significantly faster convergence at the expense of a
higher complexity when compared to LMS adaptive algo-
rithms [20].

In this paper, motivated by the works in [27], [37],
and [38], we propose a soft-decision-driven iterative channel
estimation and turbo equalization CE-TEQ scheme for single
carrier MIMO UWA communications. As compared to exist-
ing works, our main contributions are summarized below:
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1) A low complexity RLS-type algorithm for SISO
sparse system identification with Homotopy, dichoto-
mous coordinate descent (DCD) and reweighting iter-
ations, exponential-weighted Homotopy RLS-DCD
(EW-HRLS-DCD) algorithm [28], [29], is extended to
estimate time-varying sparse MIMO UWA channels.
The proposed adaptive channel estimator based on the
EW-HRLS-DCD algorithm, can capture the inherent
sparsity of the MIMO UWA channel, leading to signif-
icant improvement in the performance compared with
the classical RLS algorithm and other sparse RLS algo-
rithms [30]. Its complexity is only linear in the length
of the estimated channel. The proposed estimator is
based on DCD iterations well suited to implementation
on real-time platforms with finite precision such as the
DSP and FPGA platforms.

2) More reliable a posteriori soft decisions, instead of
the hard decisions or the a priori soft decisions, from
the equalizer output are incorporated into the pro-
posed EW-HRLS-DCD-based channel estimator and
MMSE equalizer. The proposed TEQ significantly
outperforms existing TEQs based on the LMS-type
algorithms including those with data reuse and soft-
decisions. Note that the data reuse techniques will incur
a high processing latency if the total number of repeti-
tion for data reuse is large.

3) The performance of the proposed receiver was tested
in the SHLake2013 lake trial, at a communication dis-
tance of 2 km. We show that the proposed scheme
can achieve a substantial performance gain over the
IPNLMS- and RLS-based TEQ schemes for all MIMO
setups. For an 2 × 4 MIMO configuration with QPSK
modulation, the proposed scheme can successfully
retrieve 136 data packets out of 144 with a 20%
training overhead. For an 2 × 8 MIMO configura-
tion with 8PSK modulation, the best detection perfor-
mance can be achieved by the proposed scheme, while
the IPNLMS-based scheme experiences the con-
vergence problem and can not obtain a satisfying
performance.

The remainder of the paper is organized as fol-
lows. In Section II, the time-varying frequency-selective
MIMO system model is presented. In Section III, the channel
estimation based on the conventional RLS algorithm for
MIMO systems is reviewed. A new low-complexity sparse
MIMO channel estimator, based on the exponential-weighted
Homotopy RLS-DCD adaptive filtering, is proposed by
solving a sequence of auxiliary normal equations instead
of solving the standard normal system utilized in the con-
ventional RLS algorithm. Section IV presents an iterative
MIMO receiver with channel estimation and equalization
driven by the a posteriori soft decisions. The complexity
of proposed channel estimator is presented in Section V.
Section VI demonstrates the performance of the proposed
scheme by experimental results. Conclusions are drawn
in Section VII.

FIGURE 1. The block diagram of the transmitter architecture. {5n}Nn=1
denote N interleavers.

Notation: Matrices and vectors are represented by bold
letters in capital cases and small cases, respectively.
X ∈ CN×M denotes a complex-valued (N ×M) matrix,
where C represents the complex field; the operators X∗, XT,
X†,X−1, |X|, ‖X‖F denote the complex conjugate, transpose,
Hermitian transpose, inverse, determinant, and Frobenius
norm of X, respectively. The vectorisation operator vec[X]
creates a column vector by stacking all columns of X in a
left-to-right fashion. R and R+ denote the set of real num-
bers and Nonnegative sets of real numbers, respectively. The
empty set is represented by ∅. An m-dimensional identity
matrix is denoted by Im. The `p vector norm is defined as
‖x‖p =

(∑
i |xi|

p
)1/p, where xi are elements (entries) of x.

CN (µ,6) represents a multivariate complex-valued Gaus-
sian distribution with mean µ and covariance 6. I and I c

denote the support of non-zero elements and its complement.
<{·} denotes the real part of a complex number. E{·} denotes
the mathematical expectation.

II. MIMO SYSTEM MODEL
We consider an N × M MIMO with bit-interleaved coded
modulation (BICM) single-carrier UWA communication sys-
tem in which N transducers are used at the transmitter and
M hydrophones are used at the receiver. The structure of the
transmitter considered here is shown in Fig. 1. The binary
information sequence stream {an}Nn=1 represents the input bits
to the N parallel transmit branches. On the n-th transmit
branch, the information bits an are encoded by a rate Rc chan-
nel encoder, producing the encoded bit sequence bn. The n-th
random interleaver5n is used to permute the encoded bits bn,
producing the interleaved and encoded bits cn. For a digital
modulation scheme with a constellation size of 2J , every
J interleaved bits from cn, cn,k , [c1n(k) c2n(k) · · · c

J
n(k)],

cjn(k) ∈ {0, 1}, are mapped to 2J -ary constellation set A =
{α1, α2, · · · , α2J }, producing one modulation symbol xn(k).
In the following, we denote xn(k) as a symbol transmitted by
the n-th transducer at time k .

The frequency-selective channel is modeled by a sample-
space tapped delay line. We assume that the maximum mul-
tipath delay in symbol intervals is at most P. At time k ,
the equivalent discrete-time baseband signal received on the
m-th hydrophone is given as

ym(k) =
P−1∑
p=0

N∑
n=1

hpm,n(k)xn(k − p)+ ηm (k), (1)

where hpm,n (k) ∈ C represents the p-th tap of the
length-P equivalent channel impulse response between the

VOLUME 6, 2018 4957



Y. Zhang et al.: Soft-Decision-Driven Sparse Channel Estimation and Turbo Equalization for MIMO UWA Communications

n-th transducer and them-th hydrophone at time instant k , and
ηm(k) is the additive noise modeled by zero-mean complex
Gaussian circulary symmetrical randomvariable and received
at the m-th hydrophone at time k . The signal vector received
byM hydrophones, y(k)1=[y1(k), y2(k), . . . , yM (k)]T , can be
represented as

y(k) =
P−1∑
p=0

Hp(k)x(k − p)+ η(k), (2)

where

x(k) 1= [x1(k), x2(k), . . . , xN (k)]T ∈ CN×1 (3)

η(k) 1= [η1(k), η2(k), . . . , ηM (k)]T ∈ CM×1 (4)

Hp(k)
1
=


hp1,1(k) hp1,2(k) · · · hp1,N (k)
hp2,1(k) hp2,2(k) · · · hp2,N (k)
...

...
. . .

...

hpM ,1(k) hpM ,2(k) · · · hpM ,N (k)


∈ CM×N , (5)

η(k) is the noise vector with covariance E{η(k)η†(k)} =
σ 2
η IM . One can further rewrite the received signals as

y(k) = H(k)χ (k)+ η(k) (6)

where

H(k) 1= [H0(k),H1(k), . . . ,HP−1(k)] ∈ CM×L (7)

χ (k) 1= [xT (k), xT (k − 1), . . . , xT (k − P+ 1)]T (8)

∈ CL×1 (9)

with L = NP. At time k , the transmitted signal vector,
χ (k), is formed by stacking the past P − 1 symbols together
with the current signal vector x(k).

III. MIMO CHANNEL ESTIMATION
A. STRUCTURE OF ADAPTIVE MIMO CHANNEL
ESTIMATION
The (N × M ) MIMO channel is modeled as (NM )
finite impulse response (FIR) filters [35], [38]. Fig. 2
depicts the general structure of MIMO channel estima-
tion based on adaptive algorithms. At the n-th trans-
mit branch, the n-th training signal vector is defined
as xn(k)

1
= [xn,k , xn,k−1, . . . , xn,k−P+1]T , where k is

the time index during the adaptive channel estimation.
x(k) 1= [xT1 (k), x

T
2 (k), . . . , x

T
N (k)]

T is the concatenated train-
ing signal vector of all the N branches.

An adaptiveN×M MIMO channel estimation problem can
be transformed intoM equivalent adaptive N × 1 multi-input
single-output (MISO) channel estimation problems. At the
m-th hydrophone, a priori error of adaptive channel estimator,

FIGURE 2. Structure of adaptive N ×M MIMO channel estimation.

em(k), is represented as em(k) = ym(k) − x†(k)ĥm(k) given
the received signal ym(k) and training signal vector x(k).
Depending on various design criteria such as the complex-
ity and tracking performance, many adaptive algorithms
can be adopted to find the estimate ĥm(k). The adaptive
MIMO channel estimators presented in following subsections
are all based on the structure shown in Fig. 2.

B. CONVENTIONAL RLS ALGORITHM
At time instance k , the task of the channel estimator is to esti-
mate the time-varying channel matrix H(k) by using known
training symbols and the received signal [39], [41], [42]. The
RLS algorithm is one of the well-known adaptive algorithms.
Generally, the RLS-type algorithms fall into two classes
according to the adopted window function: the exponential-
weighted RLS (EW-RLS) algorithms and sliding-window
RLS (SW-RLS) algorithms [39]. Here, we consider the
EW-RLS algorithms since they have lower complex-
ity. In the EW-RLS algorithm, an exponentially-weighted
mean-squared error (MSE) ε(k) is minimized as
follows [39], [41], [42]

min
Ĥ(k)

{
ε(k) 1=

k∑
l=1

λk−l
∥∥∥y (l)− Ĥ(k)χ (l)

∥∥∥2
2

}
(10)

or is given by (11), shown at the bottom of this page.
We define

Y(k) 1= [y(1), y(2), . . . , y(k)] ∈ CM×k (12)

3(k) 1= diag
[
λk−1, λk−2, . . . , λ0

]
∈ Rk×k (13)

X(k) 1= [χ (1),χ (2), . . . ,χ (k)] ∈ CL×k (14)

The matrix 3(k) provides the exponential window-
ing. To accommodate the time-varying channel, the
RLS forgetting factor λ, which controls the trade-off between
the good tracking ability and the noise sensitivity, must

min
Ĥ(k)

{
ε(k) 1= tr

[(
Y(k)− Ĥ(k)X(k)

)
3(k)

(
Y(k)− Ĥ(k)X(k)

)†]}
(11)
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be taken in (0 1]. In practice, the forgetting factor should
be adjusted under different channel conditions such as the
channel coherence time and Signal-to-Noise ratio (SNR)
[1], [39].

With the direct block-wise LS solution, at time k , the chan-
nel estimate is given by [42], [43]

Ĥ(k) = Y(k)3(k)X†(k)
(
X(k)3(k)X†(k)

)−1
(15)

Since the direct matrix inverse operation is adopted in the
direct LS solution, the complexity of the block-wise LS chan-
nel estimation algorithm isO(L3), i.e., it is prohibitively high,
especially for UWA channels with long delay spreads.

However, the EW-RLS algorithm can calculate the solution
using recursions as follows [39], [41], [42]:

ζ (k) =
1
λ
8(k − 1)χ (k) ∈ CL×1 (16)

e(k) = y(k)− Ĥ(k − 1)χ (k) ∈ CM×1 (17)

8(k) =
1
λ
8(k − 1)−

ζ (k)ζ †(k)

1+ ζ †(k)χ (k)
∈ CL×L (18)

Ĥ(k) = Ĥ(k − 1)+
e(k)ζ †(k)

1+ ζ †(k)χ (k)
∈ CM×L (19)

with Ĥ(0) = 0M×L and 8(0) = δIL , where δ > 0 is a
regularization parameter.

Since 8(k) in (18) is computed recursively thus avoid-
ing the direct matrix inversion, the EW-RLS complexity
is reduced from O(L3) to O(L2) arithmetic operations per
sample [39].

C. RECURSIVE SOLUTION OF RLS NORMAL EQUATIONS
FOR MIMO CHANNEL MODEL
Most conventional RLS or fast RLS algorithms are based on
the matrix inverse, which results in the problem of numeri-
cal instability when implemented with finite precision [39].
In [44], to overcome the high complexity and numerical
instability problems, a new formulation of the RLS problem
in terms of a sequence of auxiliary normal equations with
respect to increments of the filter weights was developed to
find a solution to the normal equation given by

H(k)R(k) = B(k) (20)

where R(k) = χ (k)3(k)χ†(k) and B(k) = y(k)3(k)χ†(k)
are the L × L autocorrelation matrix of the input signal and
M × L matrix of cross-correlation between the input signal
and desired signal, respectively. The matrices R(k) and B(k)
are known, whereas the matrix H(k) should be estimated.
Let at time k − 1 a system of equations H(k − 1)

R(k − 1) = B(k − 1) be approximately solved, and the
approximate solution is Ĥ(k − 1). Denote

C(k − 1|k − 1) = B(k − 1)− Ĥ(k − 1)R(k − 1) ∈ CM×L

(21)

and

C(k|k − 1) = B(k)− Ĥ(k − 1)R(k) ∈ CM×L (22)

as residual matrices for the solution Ĥ(k − 1). The notation
C(j|k − 1) indicates that the residual matrix corresponds to
R(j) and B(j) at time instant j ≥ k − 1, whereas the solution
Ĥ(k − 1) corresponds to the system H(k − 1)R(k − 1) =
B(k − 1) at time instant k − 1 [44].
For the convenience of following derivation, we denote

1R(k) = R(k) − R(k − 1), 1B(k) = B(k) − B(k − 1),
and

1H(k) = H(k)− Ĥ(k − 1). (23)

With the previously obtained solution Ĥ(k − 1) and the
residual matrix C(k|k − 1), our purpose is to find a solution
Ĥ(k) of (20). The equation (20) can be rewritten as[

Ĥ(k − 1)+1H(k)
]
R(k) = B(k) (24)

Hence, the system of equations with respect to the unknown
matrix 1H(k) is represented as

1H(k)R(k) = C(k|k − 1). (25)

Instead of solving the original problem (20), we can find a
solution 1Ĥ(k) of the auxiliary system of equations (25),
where

C(k|k − 1) = C(k − 1|k − 1)+1B(k)− Ĥ(k − 1)1R(k)

(26)

and an approximate solution of the original system (20) is
obtained as

Ĥ(k) = Ĥ(k − 1)+1Ĥ(k). (27)

For the EW-RLS problem, the L×L matrixR(k) andM×L
matrix B(k) can be recursively updated as [39]

R(k) = λR(k − 1)+ χ (k)χ†(k) ∈ CL×L , (28)

B(k) = λB(k − 1)+ y(k)χ†(k) ∈ CM×L , (29)

where k > 0, R(0) = %IL , and % is a small positive number
for regularization of the adaptation at the initial stage.

The residual matrix C(k|k − 1) in equation (26) can be
efficiently updated using the following relationship [44]

C(k|k − 1) = λC(k − 1|k − 1)+ e∗(k)χT (k), (30)

where e(k) = y(k) − Ĥ(k − 1)χ(k) is the M × 1 a priori
estimation error vector.

D. HOMOTOPY RLS-DCD ALGORITHM FOR TIME-VARYING
MIMO SPARSE CHANNEL ESTIMATION
Time-varyingmultipath UWA communication channels often
exhibit sparsity, i.e., the most entries in H(k) are close to
zero [45]. With a priori information on the sparsity, some
channel estimators can obtain improved performance in terms
of channel tracking and computational complexity [20], [23],
[37], [38], [45], [46].

Compressive sensing based sparse channel estimation
techniques [47] are widely used in UWA communica-
tions [48], but the prohibitive computational complexity lim-
its their application in MIMO UWA systems [49]. Recently,
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many adaptive algorithms have been developed to deal with
sparse recovery problems. Unfortunately, most of these adap-
tive algorithms for UWA channel estimation have either
a good performance but with a high complexity of at
least O(L2), e.g. RLS-type algorithms, or a low complex-
ity of O(L) but with a low performance, e.g. LMS-type
algorithms.

Here, we introduce a recently proposed algorithm, named
as the exponentially-weighted Homotopy RLS-DCD algo-
rithm [28], and extend it for estimation of time-varying
MIMO sparse channels. Assume that the channel is sparse,
i.e. the number S of non-zero taps in hpm,n (k) , p =
0, · · · ,P − 1, satisfies S � P. A sparse approximation to
the UWA channel response H(k) can be obtained by solving
the following optimization problem:

min
Ĥ(k)

∥∥∥vec [Ĥ(k)
]∥∥∥

0
, s.t. ε(k) ≤ ε (31)

where ε is a small positive constant, which controls the
estimation error. The non-convexity of above optimiza-
tion problem results in intractable computations. A convex
relaxation provides a viable alternative to the non-convex
problem, whereby the `0-norm,

∥∥∥vec [Ĥ(k)
]∥∥∥

0
is replaced

with the `1-norm
∥∥∥vec [Ĥ(k)

]∥∥∥
1
. Various adaptive fil-

ters can solve this problem in a computationally efficient
way [50]–[52].

The adaptive filter finds a complex-valued tap-weight
matrix Ĥ(k), which, at every time instant k, minimizes the
cost function ε′(k):

min
Ĥ(k)

{
ε′(k) 1=

1
σ 2 ε(k)+fp

[
Ĥ(k)

]}
, (32)

where the first term of ε′(k) is the LS error of the
solution and the second term fp

[
Ĥ(k)

]
is a penalty

function that incorporates a priori information on the
solution [52]:

fp
[
Ĥ(k)

]
= τ

∥∥∥wT (k)vec
[
Ĥ(k)

]∥∥∥
1

(33)

where the vectorw containsML positive weightswj(k) which
are updated during the adaptation as [53]

wj(k) =
1

|hj(k − 1)|2 + ς
, (34)

ς > 0 is an adjusted parameter, hj(k − 1) is the j-th element
in the estimated channel vector vec(Ĥ(k − 1)). The positive
scalar τ in (33) is a regularization parameter that controls
the balance between the LS fitting term and the penalty term
in (32).

The Homotopy algorithm minimizes the cost function
ε′(k) in (32). A set of homotopy iterations is performed
for exponentially decreasing values of the regularization
parameter vector τ : τ ← γ τ , where γ is the decreasing
factor and must be taken in (0, 1). If γ is close to one,
a large number of homotopy iterations are needed, which

result in a high complexity. In order to reduce the com-
plexity of adaptive filtering based on the Homotopy algo-
rithm, it is enough to perform only one homotopy iteration.
For further reduction in the complexity, DCD iterations are
used [44], [54].

In a DCD iteration, the previously obtained solution
Ĥ(k − 1) is used as a warm-start for minimizing the
cost ε′(k) at time k . This minimization is equivalent to
minimization [52]
1
2
1H(k)R(k)1H†(k)−<{C(k|k − 1)1H†(k)}

+ τ |Ĥ(k)|WT (k) (35)

with respect to the matrix 1H(k), where W ∈ RM×L
+ is a

weight matrix formed by reshaping theML×1 vector w, and
C(k|k − 1) is given by (30).

The cost function in (32) is minimized using the leading
`1-DCD algorithm from [28]. In the leading `1-DCD
algorithm, a criterion for terminating computations in
every Homotopy iteration is a maximum number of DCD
updates Nu. Typically, Nu is set to a small value for limiting
the complexity of the algorithm [44].

Table 1 shows the EW-HRLS-DCD adaptive algorithm for
time-varying MIMO channel estimation, where cm(k|k − 1)
is the m-th row of the matrix C(k|k − 1), cm,j is the j-th entry
of the vector cm(k|k − 1), hm,j is the entry of channel matrix
Ĥ(k − 1) in the m-th row and j-th column, wm,j is the entry of
weight matrix W(k) in the m-th row and j-th column, and τm
is the m-th element of vector τ .

IV. PROPOSED CE-BASED SOFT DECISION TURBO
EQUALIZATION FOR MIMO SYSTEMS
In this section, we propose an iterative sparse channel estima-
tion and equalization driven by the a posteriori soft-decision
symbols for time-varying MIMO UWA communication
system.

The proposed iterative receiver is shown in Fig. 3. It con-
sists of the MIMO MMSE linear equalizer (LE), iterative
MIMO adaptive channel estimator, soft-input soft-
output (SISO) demappers, deinterleavers, SISO mappers,
interleavers andMAPdecoders. The iterativeMIMOadaptive
channel estimator provides an estimate of channel matrix, Ĥ,
noise covariance vector σ̂ and phase vector θ̂ driven by
the training symbols X, hard decision Q(X̂) and a poste-
riori soft decision X̃; the phase vector θ̂ is updated by an
embedded second-order phase-locked loop (PLL) as used
in [1] and [45]. The MIMO TEQ applies a MMSE equalizer,
and then hard or soft decisions of the equalized symbols are
fed to the SISO demappers or the iterative MIMO adaptive
channel estimator, respectively. The SISO demappers output
the extrinsic information of the transmitted bits {LEe {cn}}

N
n=1,

which is then passed to the de-interleavers and treated as
the a priori information {LDa {bn}}

N
n=1 for the MAP decoder.

Finally, the MAP decoders output extrinsic information
{LDe {bn}}

N
n=1, which is further fed back to the equalizer as

the a priori information {LEa {cn}}
N
n=1 of the transmitted bits.
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TABLE 1. Exponential-weighted Homotopy RLS-DCD adaptive algorithm for MIMO channel estimation.

FIGURE 3. Block diagram of iterative N ×M MIMO receiver coupled with adaptive sparse channel estimator.

After several turbo iterations, the MAP decoders output
estimates of transmitted bits {an}Nn=1.

A. RECEIVED SIGNAL MODEL FOR MIMO EQUALIZATION
In the following, we assume the symbol rate sampling. LetLf
and Lp be the length of the noncausal and causal parts of the
equalizer, respectively. In order to perform the equalization
and estimate the transmitted symbols at time k , we consider
an observation window containingLp+Lf +1 received signal
vectors, i.e., y(k−Lp), · · · , y(k+Lf ). The received data can
be written as [20], [56]

rk = Hksk + nk (36)

where Hk is given by (37), shown at the bottom of the next
page, and

rk =
[
yT (k + Lf ), · · · , yT (k − Lp)

]T
, (38)

sk =
[
xT (k +Kf + Lf ), · · · , xT (k −Kp − Lp)

]T
, (39)

nk =
[
ηT (k + Lf ), · · · , ηT (k − Lp)

]T
. (40)

The channel length is P = Kp + Kf + 1, where Kf and Kp
are the length of precursor and postcursor parts of the chan-
nel response, respectively. For convenience, we will denote
K = N (Kp + Kf + Lp + Lf + 1) the overall length of the
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vector sk and L = M (Lp + Lf + 1) the overall length of the
vector rk . The noise vector nk is assumed to be zero-mean
complex Gaussian, i.e., nk ∼ CN (0, σ 2

n IL). The Hk is a
block channel matrix made up ofHp(k) defined in (5), hence,
the size ofHk becomes L×K.

B. LINEAR MMSE TURBO EQUALIZATION
In practice, the channel impulse responses have to be esti-
mated and then are used to calculate the coefficients of
the TEQ. We denote Ĥk and Ek = Hk − Ĥk the chan-
nel estimate and the corresponding channel estimation error,
respectively. Let us assume that Ek has zero mean and it is
uncorrelated with Ĥk and sk . Hence, we can rewrite (36) as
rk = Ĥksk + (Eksk + nk ). Given Ĥk , the linear MMSE
estimate of xn(k) is obtained from [20], [38], [56]

x̂n(k) = f̂†n(k)
(
rk − Ĥksn(k)

)
, (41)

f̂n(k) =
(
Ĥk6n,kĤ†

k + σ
2
wIL

)−1
ĥn(k), (42)

where

sn(k) =
[
xT (k +Kf + Lf ), · · · , xT (k − 1), x̌Tn (k),

xT (k + 1), · · · , xT (k −Kp − Lp)
]T
, (43)

x(k) = [x̄1(k), x̄2(k), · · · , x̄N (k)]T , (44)

6n,k = diag(vn,1, · · · , vn,k−1, 1, vn,k+1, · · ·,

vn,K), (45)

x̌n(k) = [x̄1(k), · · · , x̄n−1(k), 0, x̄n+1(k), · · · ,

x̄N (k)]T, (46)

and where x(k) is a priori mean vector of x(k), and 6n,k is
the a priori covariance matrix of x(k). The vector ĥn(k) is the
(N (Lp+P− 1)+ n)-th column of Ĥk . Hence, we can obtain
x̄n(k) and vn,k from a priori log-likelihood ratios (LLRs) as
in [56]

x̄n(k)
1
= E(xn(k)) =

∑
αi∈A

αi · P(xn(k) = αi), (47)

vn,k
1
= Cov(xn(k), xn(k)) =

∑
αi∈A
|αi|

2
· P(xn(k)

= αi))− |x̄n(k)|2, (48)

where

P(xn(k) = αi) =
J∏
j=1

P(cjn(k) = si,j),

=

J∏
j=1

1/2 ·
(
1

+s̃i,j · tanh(LEa (c
j
n(k)/2)

)
, (49)

the bit pattern si
1
= [si,1, si,2, · · · , si,J ] corresponds

to αi ∈ A, and

s̃i,j
1
=

{
+1, si,j = 0
−1, si,j = 1.

(50)

The extrinsic LLR for cjn(k) is given by (51), shown at the
bottom of the this page, where µ̂n(k) = f̂Hn (k)ĥn(k), and A0

j
and A1

j are the set of all constellation points such that si,j is
0 and 1, respectively [56].

C. A POSTERIORI SOFT DECISION
After first equalization, the a posteriori soft decision x̃n(k) of
the equalized symbol x̂n(k) is available and can be calculated
as [27], [37]

x̃n(k) =
∑
αi∈A

αiP
(
xn(k) = αi|x̂n(k)

)
(52)

where P
(
xn(k) = αi|x̂n(k)

)
is the a posteriori probability

of xn(k) and is given by (53), shown at the bottom of the
this page. P (xn(k) = αi) is the a priori probability and can
be calculated with the a priori LLRs from the MAP decoder
as in (49), and p

(
x̂n(k)

)
is computed with the normalization∑2q

i=1 P
(
xn(k) = αi|x̂n(k)

)
= 1. Under the assumption of

the Gaussian distribution as in [56], the equalizer output x̂n(k)
conditioned on xn(k) = αi is given by:

p
(
x̂n(k)|xn(k) = αi

)
=

1

πδ̃2n
exp

{
−
|x̂n(k)− x̃n(k)αi|2

δ̃2n

}
,

(54)

Hk =

Hp−Kf (k + Lf ) · · · Hp−Kp (k + Lp) 0 0

0
. . . · · ·

. . . 0
0 0 Hp+Kf (k − Lp) · · · Hp+Kp (k − Lp)

, (37)

LEe
(
cjn(k)

)
= ln

∑
θ∈A0

j
exp

(
−
|x̂n(k)−µ̂n(k)θ |2

µ̂n(k)(1−µ̂n(k))
+

1
2

∑J
i=1,i6=j s̃i,jL

E
a (c

i
n(k))

)
∑
θ∈A1

j
exp

(
−
|x̂n(k)−µ̂n(k)θ |2
µ̂n(k)(1−µ̂n(k))

+
1
2

∑J
i=1,i6=j s̃i,jL

E
a (cin(k))

) (51)

P
(
xn(k) = αi|x̂n(k)

)
=
p(x̂n(k)|xn(k) = αi)

p(x̂n(k))
P(xn(k) = αi). (53)
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where the a posteriori variance of xn(k) is obtained as

δ̃2n =

2Q∑
i=1

|αi − x̃n(k)|2P
(
xn(k) = αi|x̂n(k)

)
. (55)

Over the turbo iterations, the reliability of the a posteriori
soft decision x̃n(k) increases thus improving the accuracy of
channel estimation and also speeding up the convergence of
the channel estimator.

D. A POSTERIORI SOFT DECISION DRIVEN HOMOTOPY
RLS-DCD ALGORITHM
In the iterative channel estimation based on adaptive filter-
ing, the adaptive filter is driven by the decision error e(k).
The adaptive channel estimation algorithm aims to minimize
the variance of the decision errors, so the reliability of the
decision plays a very important role in the adaptive channel
estimation. In practice, the adaptive channel estimator gener-
ally works under two modes: the training mode and direct-
decision mode. According to the mode, we can define three
types of decision error as following [58]

e(k) = y(k)− Ĥ(k − 1)χ (k) ∈ CM×1, (56)

ê(k) = y(k)− Ĥ(k − 1)Q(χ̂ (k)) ∈ CM×1, (57)

ē(k) = y(k)− Ĥ(k − 1)χ̄ (k) ∈ CM×1, (58)

where χ(k) presents the perfect decision corresponding to
the training mode. The vector χ̄ (k) consists of a priori soft
decisions of transmitted symbols under the direct-decision
mode, andQ(χ̂ (k)) denotes the hard decision of the equalizer
output, χ̂ (k). In what follows, the vectors e(k), ē(k) and ê(k)
are named the perfect decision error vector, a priori soft deci-
sion error vector and hard decision error vector, respectively.

In existing iterative adaptive channel estimation algo-
rithms, the hard decision or a priori soft decision symbols are
used for driving the estimator. In [27] and [37], an efficient
adaptive turbo equalizer is proposed, where the more reliable
a posteriori soft decisions are used in the adaptive update of
the channel coefficients and for theMMSE equalizer. In order
to reduce the complexity of the adaptive turbo equalization,
the equalizer filter coefficients are adaptively updated via
the normalized LMS (NLMS) [39] or the IPNLMS [24]
algorithm. The DA-TEQ scheme with the a posteriori soft
decisions achieves faster convergence and higher spectrum
efficiency than schemes with hard decision or with a priori
soft decision. Inspired by [37], here, we use the a posteriori
soft decisions to drive the channel estimator. For convenience,
we define the a posteriori decision error vector as

ẽ(k) = y(k)− Ĥ(k − 1)χ̃ (k) ∈ CM×1 (59)

where χ̃ (k) is the a posteriori soft decision vector of the
equalizer output χ̂ (k).
The proposed iterative channel estimator comprises the

following two stages:

1) TRAINING STAGE
The known training symbols xn(k) within the training sym-
bol vector χ (k) are used to estimate the channel impulse
response.

2) Direct-Decision Stage
There are no known training symbols available at this stage.
The hard-decisions of the equalizer output x̂n(k) are usually
used for tracking the channel. However, the hard-decision
is not reliable, leading to error decisions on the transmitted
symbols. Hence, the decision errors will cause the error prop-
agation, which can be catastrophic for turbo equalization.
Iterative channel estimators in turbo equalization schemes
mostly employ the hard-decision or a priori soft decisions
at the direct-decision stage. At the initial stage of turbo
equalization, the a priori or a posteriori soft-decision from
the decoder or equalizer is not yet available, thus we use
hard-decisions of the equalizer output as training symbols
for the channel estimation. In subsequent iterations, the a
posteriori soft decisions, which possess higher reliability than
the a priori soft decisions, are utilized.

E. A POSTERIORI SOFT DECISION DRIVEN
TURBO EQUALIZATION
The quality of the soft decision plays a very important role in
the performance of the MMSE equalizer. The a priori soft
decisions are adopted in many adaptive turbo equalization
schemes [21], [22], [57]. With the more reliable a posteri-
ori soft decisions, performance of MMSE equalizer can be
improved [37]. The output of a posteriori soft decision driven
equalizer, x̂n(k), is obtained as

x̂n(k) = f̂Hn (k)
(
rk − Ĥk s̃n(k)

)
(60)

Here, we utilized the a posteriori soft decisions s̃n(k) =[
x̃T (k +Kf + Lf ), · · · , x̃T (k − 1), ExTn (k), x̃

T (k + 1), · · · ,
x̃T (k −Kp − Lp)

]T instead of the a priori soft decisions
s̄n,k in (41), where x̃(k) =

[
x̃1(k), x̃2(k), · · · , x̃N (k)

]T when
k ′ 6= k for k ′ ∈ [k − Kp − Lp, k + Kf + Lf ], and
Exn(k) = [x̃1(k), · · · , x̃n−1(k), 0, x̃n+1 (k), · · · , x̃N (k)]T when
k ′ = k; obviously, x̃n(k) is excluded for avoiding self cancel-
lation [37].

V. COMPLEXITY COMPARISON FOR MIMO
CHANNEL ESTIMATORS
In this section, the complexity of two channel estimators,
EW-RLS and EW-HRLS-DCD, is compared. The algorithm
complexity is evaluated in terms of the number of real-valued
multiplications, additions, square-root, and division opera-
tions per time sample.

The work [28] details the complexity of the
EW-HRLS-DCD algorithm for SISO system. According to
the general structure of adaptive MIMO channel estimator as
shown in Fig. 2, theN×M MIMO system can be treated asM
SISO systems with a channel length of L = NP each. Hence,
the complexity of the EW-HRLS-DCD algorithm for MIMO
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TABLE 2. Computational complexity of the EW-HRLS-DCD channel estimator.

TABLE 3. Computational complexity of the EW-RLS channel estimator.

system can be easily calculated by following steps in [28] for
a SISO system. We can approximately estimate the complex-
ity of the channel estimator based on the EW-HRLS-DCD
algorithm for a MIMO system as presented in Table 2.

In Table 1, step 13 requires using the leading `1-DCD
algorithm, where Mb is the number of bits used for rep-
resentation of entries in the solution vector, this defining
the accuracy of the fixed-point representation [44], and
Nu is a maximum number of DCD iterations. The update of
the vector cm(k|k − 1) in the leading `1-DCD algorithm is
the most consuming part of the algorithm. The details of
the involving computation of the leading `1-DCD algorithm
are found in [28, Table 2], and the reader is referred to
detail [52].

In overall, as shown in Table 2, the EW-HRLS-DCD algo-
rithm requires about 32MNP+5M |I |+2M |I |(Mb+Nu) real-
valued multiplications, 25MNP+ 2M |I | + 2M |I |(Mb + Nu)
real-valued additions,M (1+NP)+M (Mb+Nb) square-root
operations, and 2MNP−M |I | real-valued divisions.

For comparison, arithmetic operations in the conventional
EW-RLS algorithm described by equations (16)-(19) are
listed in Table 3. The overall complexity of the conven-
tional EW-RLS algorithm roughly requires 12(NP)2+8MNP
real-valued multiplications, 9(NP)2 + 6MNP + M real-
valued additions, and (2M + 2NP + 1)NP real-valued
divisions.

For first example, for N = 2, M = 8, P = 40, K = 6,
Nu = 4, Mb = 15, and assuming that |I | = K , we obtain
that the EW-HRLS-DCD algorithm from [52] requires about
23×103 multiplications, 18×103 additions, 800 square-root
operations, and 1.2× 103 divisions per time index. The same
figures for the EW-RLS algorithm are 80 × 103, 61 × 103,
0, and 14 × 103, respectively. Thus, compared to the
EW-RLS algorithm, the EW-HRLS-DCD algorithm reduces

the number of multiplications by about 3.5 times, the number
of additions by about 3.4 times, and the number of divisions
by about 11 times.

For another example with the parameter setup the same as
in the first example except for the length of channel P, which
is now P = 100, the EW-HRLS-DCD algorithm requires
about 53×103 multiplications, 42×103 additions, 1.8×103

square-root operations, and 3.2×103 divisions per time index.
The same figures for the EW-RLS algorithm are 490 × 103,
370×103, 0, and 83×103, respectively. Thus, compared to the
EW-RLS algorithm, the EW-HRLS-DCD algorithm reduces
the number of multiplications by about 9 times, the number
of additions by about 9 times, and the number of divisions by
about 26 times.

VI. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of a receiver
with the proposed soft-decision-driven sparse channel esti-
mation and turbo equalization scheme and compare it to other
receivers.

A. EXPERIMENTAL ENVIRONMENT
The experiment was conducted in the Songhua Lake, Jilin
province, China (SHLake2013) on Nov. 2013. The lake depth
at the experimental site is 48.6m. Two transducers (antennas)
were deployed off a small boat and submerged at about
5 m and 6 m below the surface, respectively. During the
experiment, the small boat was drifting with an approximate
maximum speed of 0.25m/s. The receive vertical linear array
of 48 hydrophones was moored with the first hydrophone
(closest to the lake bottom) at about 7 m above the lake
bottom, and other hydrophones evenly spaced by 0.25m. The
communication range was about 2.1 km at the start of the
experiment.
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FIGURE 4. The structure of the data streams in a two-transducer transmission in the SHLake2013 experiment.

B. SIGNALING AND DATA STRUCTURE
For MIMO transmission, two concurrent data streams with
the BICM horizontal encoding scheme were transmitted by
using two transducers. The input bits were encoded by a rate
Rc = 1/2 convolutional coder with generator polynomial
[171, 133] in octal format. The carrier frequency was fc =
3 kHz and the symbol rate was 2 k symbols per second (ksps).
The pulse shaping filter was a square-root raised cosine filter
with a roll-off factor of 0.2 [40], leading to an occupied
channel bandwidth of about 2.4 kHz. The sampling rate
was 25 kHz at the receiver end.

The data structure of the two data streams and rele-
vant parameters are shown in Fig. 4. Preamble up-chirp
and postamble down-chirp, Doppler-insensitive waveforms,
were added before and after the data burst for coarse
frame synchronization and estimation of an average Doppler
shift over the whole data burst. In order to reduce the
co-channel interference, two Gold sequences of length 511,
Doppler-sensitive waveforms, generated from preferred pairs
of m-sequences [40] and added before and after the data
payload were used for coarse frame synchronization and
initial estimation of channel parameters [40]. Following the
frame synchronization signal is one data packet (payload)
with various modulation formats. Only data with QPSK,
8PSK and 16QAM modulations are used for performance
evaluation, since the detection performance is very good with
the BPSK modulation. The payload is separated from the
m-sequence and up-chirp or down-chirp signal by the gap
with the duration 150 ms for avoiding the inter-block inter-
ference. The length of each payload is 8000 symbols between
two gaps. Each burst packet is transmitted every 15 s. The
entire duration of data transmission is 12 minutes. The
approximate SNR, which is estimated by using the sig-
nal part and silent part of received signal, is in the range
of 20 dB to 32 dB.

In order to show characteristics of the UWA channel
during the experiment, we use the conventional EW-RLS
algorithm to estimate the channel impulse response (CIR)
over 8000 symbols with QPSK modulation as an exam-
ple. In Fig. 5, the CIR between the first transducer and

last hydrophone (near the surface) is shown in Fig. 5(a).
Fig. 5(b) shows the CIR between the second transducer
and last hydrophone estimated by using the matched filter
applied to the preamble and postamble chirp signals. In Fig. 5,
we can observe that the channel multipath spread is about
16 ∼ 20 ms, corresponding to a channel length of 32 ∼ 40
taps in terms of the symbol rate Rs = 2 ksps. There are three
clusters with high energy in the delay domain. The arrival
paths fluctuate very rapidly. It is important to notice that the
channel impulse response is sparse.

C. PERFORMANCE VERSUS THE TRAINING OVERHEAD
In order to investigate the convergence performance of chan-
nel estimators based on the soft decisions, we only con-
sider 2 × 4 MIMO configuration, as an example. Firstly,
we divide the whole hydrophone array into sub-arrays with
four hydrophones. In this sub-section, we consider the sepa-
ration of the 2× 48 MIMO system into twelve 2× 4 MIMO
systems, so for each modulation format and 12 transmit-
ted packets we can equivalently obtain 144 received bursts.
Secondly, training symbols are periodically inserted into the
data to estimate the fast time-varying channel. The whole
payload is divided into eight sub-blocks with Ns = 1000
symbols in each. For each sub-block, the first Np symbols
are utilized as the training symbols and the remaining Nd =
Ns − Np data symbols. The resulting training overhead is
β = Np/(Np + Nd ), and the corresponding data rate is
(1 − β) × RsJNRc kbps. The choice of Np depends on the
modulation scheme as shown in Table 4. Table 4 lists two
configurations with two training overheads each. To ensure
a fair comparison between all adaptive channel estimators,
the parameters for each estimator are optimized by exhaustive
search so that the lowest possible BER is achieved. In order
to reduce the dimension of the exhaustive search, some
parameters for the MIMO turbo linear equalizer are fixed;
more specifically, Kp, Kf , Lp and Lf are set to 80, 40, 40,
and 40, respectively. These parameters can be estimated using
the preamble and postamble chirp signals. The convergence
speed of the NLMS-type algorithms is much slower than
that of the RLS-type algorithms, therefore, to improve the
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FIGURE 5. Examples of the CIR estimated over one burst transmission. The CIRs measured between the first transducer and last hydrophone
are shown on the top row. The CIRs measured between the second transducer and last hydrophone are shown on the bottom row. CIR is
measured using: (a) and (d) the preamble up-chirp with the correlation method; (b) and (e) the postamble down-chirp with the correlation
method; (c) and (f) data signals and the classical EW-RLS algorithm with λ = 0.997.

TABLE 4. Receiver configurations for the analysis of convergence performance.

TABLE 5. Total number of packets achieving the specified BER level for configuration C1.

performance, the data reuse technique is used in the IPNLMS
channel estimator configured as in [23], [37], and [38]. The
detection performance is measured based on the number of
data packets achieving a specific BER level. Table 5 and
Table 6 show the summary of the results for configuration
C1 and configuration C2, respectively. The performance of
iterative channel estimation based on the IPNLMS [38] and
conventional EW-RLS is also included. We can observe the
following results from Table 5: 1) the performance of all
schemes is improved with iterations. However TEQs based
on RLS-type algorithms outperform the TEQ based on the

IPNLMS even after the first iteration. The performance gap
between TEQs based on RLS-type algorithms and IPNLMS
is further increased for the 8PSK and 16QAM modulation
schemes due to more accurate channel estimates obtained by
the RLS-type based channel estimators; 2) the performance
improvement is significant at the first, second and third iter-
ations; 3) the TEQ based on the EW-HRLS-DCD algorithm
outperforms the TEQ based on the EW-RLS algorithm.

Next, we consider how the detection performance of the
TEQs is affected by the training overhead. Firstly, the sim-
ilar trends in behavior of the TEQs between configurations
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FIGURE 6. Performance of the 2× 4 MIMO system after 5 iterations for
(a) configuration C1; (b) configuration C2.

C1 and C2 can be observed, but the increase in the training
overhead improves the performance of all the three TEQs.
We observe that the TEQ based on the IPNLMS algorithm is
particularly sensitive to the training overhead. A considerable
performance gain is achieved after the first iteration for all
three modulation formats. On the other hand, after five itera-
tions the improvement for the IPNLMS algorithm is small due
to the slow convergence and limited by the fast time-varying
channel (i.e. shorter channel coherence time). For example,
the final number of the packets with zero BER increases from
86 to 97 after five iterations for the QPSK modulation. With
the RLS-type based channel estimators for all modulation
formats as shown in Table 6, there is some increase in the
number of packets that achieve the target BER by increasing
the number of training symbols.

Fig. 6 details the demodulation results. As shown in the
figure, the EW-HRLS-DCD based TEQ can successfully
retrieve the 141 data packets out of 144 packets for the
QPSK modulation. This implies that our proposed receiver
can achieve a data rate of 3.2 kbpswith a low error probability.
On the other hand, for the 8PSK case, with our receiver

and 20% training overhead, there are 122 packets with
BER < 10−4, there are 137 packets with BER < 10−4

when 30% training overhead is used. Note that for the
16QAM modulation, the large performance gain can be
observed in terms of the total number of the packets with
BER < 10−2.

The constellation diagram is a useful tool to demonstrate
the reliability of the received and equalized symbols. The
evolutional behavior of the equalized and a posteriori soft-
decision symbols in terms of constellation diagram are shown
in Fig. 7 and Fig. 8, respectively. Results for the 16QAM
modulation in the four iterations are only presented. In Fig. 7,
for the channel estimator based on the IPNLMS algorithm,
the improvement in the quality of the equalized symbols with
iterations is little, while the improvement in quality obtained
by RLS-type channel estimators is more considerable. On the
other hand, compared to the RLS channel estimator, the EW-
HRLS-DCD channel estimator can achieve better quality of
equalized symbols with more iterations.

Fig. 8 shows the evolution of the a posteriori soft-decision
symbols. What is interesting to observe is that the soft-
decision symbols in all the three schemes can almost converge
to the ideal constellation points. For schemes based on RLS
and EW-HRLS-DCD channel estimators, these results are
consistent with the results shown in Fig. 7(b) and Fig. 7(c).
From Fig. 7(a), it is however difficult to recognize the modu-
lation scheme even after five iterations. Obviously, the result
shown in Fig. 8(a) is a counterintuitive from the observation
in Fig. 7(a). This appears due to inaccurate channel estimation
provided by the IPNLMS algorithm, which is catastrophic for
turbo equalization. The a posteriori soft-decision evaluated
from the equalizer based on the IPNLMS channel estimator
converges to the wrong constellation points due to the error
propagation incurred by inaccurate channel estimates. With
a high quality of channel estimation as shown in Fig. 8(b)
and Fig. 8(c), the a posteriori soft-decision symbols are
more reliable than equalized symbols due to accurate channel
estimates and the usage of the soft decoder. However, with
inaccurate channel estimates, the a posteriori soft-decision
symbols convergence to wrong constellation points due to
the error propagation in turbo iteration procedure as shown
in Fig. 8(a).

D. PERFORMANCE VERSUS MIMO SIZE
Table 7 shows three configurations of MIMO system used
to demonstrate the effect of the MIMO size on the receiver
performance. The 2 × 48 MIMO system is grouped into
multiple smaller MIMO systems according to the number of
hydrophones, leading to 144, 72 and 48 received packets for
the 2× 4, 2× 8 and 2× 12 MIMO setups, respectively.
In Fig. 9 it can be seen that with the QPSK modulation, all

the MIMO receivers can achieve perfect data recovery with
eight or twelve hydrophones after five turbo iterations.

For the 8PSK modulation, the IPNLMS-based MIMO
receiver improves the performance with more hydrophones,
but it cannot achieve the zero BER performance. The main
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TABLE 6. Total number of packets achieving the specified BER level for configuration C2.

FIGURE 7. Constellation diagrams of the equalized symbols for one burst. Five iterations are conducted with the iterative
channel estimation algorithm: (a) IPNLMS; (b) RLS; (c) EW-HRLS-DCD.

TABLE 7. Receiver configurations for the analysis of convergence performance.

reason is that the demodulation for a higher modulation
order requires a higher accuracy of channel estimation, which
cannot be provided by the IPNLMS algorithm. However,

the zero-BER detection is achieved by MIMO receivers with
both RLS- and EW-HRLS-DCD-based channel estimators,
in the 2× 12 configuration.
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FIGURE 8. Constellation diagrams of the a posteriori soft-decision symbols for one burst. Five iterations are conducted with
the iterative channel estimation algorithm: (a) IPNLMS; (b) RLS; (c) EW-HRLS-DCD.

In Fig. 9(c), detection results are shown for the 16QAM
modulation. Generally, the performance of all channel esti-
mators keeps improvingwithmore hydrophones. For the 2×8
MIMO setup, 2, 8 and 12 error free packets of 72 packets
are received with IPNLMS, RLS and EW-HRLS-DCD based
receiver, respectively. There are 36, 59 and 64 data packets
out of 72 packets with BER < 10−2 for these estimators,
respectively. With the 2 × 12 MIMO configuration, there
are 33, 46 and 48 data packets out of 48 packets with
BER < 10−2 for the three estimators, respectively.

E. COMPARISON BETWEEN HARD-DECISION AND
SOFT-DECISION DRIVEN TURBO EQUALIZATION
As shown in many research works [20], [23], [31], [37],
[38], [57], [58], the quality of the output of turbo equalizer
with high order modulation is very sensitive to the chan-
nel estimation errors or misadjustment errors produced by
a specific adaptive algorithm. On the other hand, the hard
decision of the equalizer output detriments the quality of
channel estimation and MMSE equalizer due to the error
propagation.

Since the true CIRs are not known for the experimental data
processing, we can not evaluate the accuracy of channel esti-
mation with various feedback information in terms of MSE.

In order to quantify the performance gain brought by channel
estimators with different feedback, in [21], the behavior of
turbo receiver was investigated in terms of decision-directed
mean squared error (DD-MSE) at the output of equalizer ver-
sus the number of iterations. The DD-MSE can be estimated
adaptively as follows [21], [37]:

εk+1MSE = γ ε
k
MSE + (1− γ )|ek |2, (61)

where the forgetting factor γ is set to 0.99. The error ek can
be replaced by ê(k), ē(k), or ẽ(k) corresponding to the hard
decision error, a priori soft decision error, or a posteriori soft
decision error defined as in (57), (58) and (59), respectively.
It is noted that ek is replaced by the hard decision error due
to unavailable a priori information from decoder at the initial
turbo iteration.

From the analysis in the previous subsections, with a small
MIMO size, the TEQs based on the IPNLMS algorithm
experience problems for high order modulation due to the
error propagation. Therefore, the comparison between the
proposed TEQ and the hard decision based TEQ is limited to
the 2×8 MIMOwith 8PSK modulation. In addition, we only
choose those packets, which do not experience convergence
problem by using all the three channel estimators, for fair
benchmark in following analysis.
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FIGURE 9. Performance of the 2× 4, 2× 8 and 2× 12 MIMO after
5 iterations with modulation: (a) QPSK, (b) 8PSK and (c) 16QAM.

Fig. 10 depicts the DD-MSE for the three channel estima-
tors and for the hard-decision and a posteriori SD feedback.
Clearly, for all the estimators, the TEQ with the a posteriori
SD outperforms that with the hard-decisions. With the a
posteriori SD, the IPNLMS based channel estimator approx-
imately obtains 4 dB DD-MSE gain, the RLS based channel
estimator approximately obtains 7 dB DD-MSE gain, the
EW-HRLS-DCD based channel estimator approximately
obtains 7 dB DD-MSE gain with respect to that with the

FIGURE 10. DD-MSE of the equalizer output after first and fifth iteration.
(a) IPNLMS, (b) RLS, (c) EW-HRLS-DCD.

hard-decision feedback. On the other hand, comparison
of the three channel estimators shows that the smallest
DD-MSE is achieved by the EW-HRLS-DCD algorithm with
the a posteriori SD.
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FIGURE 11. Detection performance of the TEQs with the hard-decision
and the a posteriori SD after first, third and fifth turbo iterations for
the 2× 8 MIMO setup: (a) IPNLMS, (b) RLS, (c) EW-HRLS-DCD.

Finally, Fig. 11 demonstrates the performance of TEQs
with three channel estimators versus the number of turbo
iterations in terms of the percentages of packets with
different BERs. In overall, all the three channel estimators

with SD feedback can dramatically improve the performance
of the turbo receiver, while a limited improvement is achieved
by TEQs with channel estimators driven by the hard deci-
sion. The best performance is achieved by the TEQ with the
SD-driven EW-HRLS-DCD based channel estimator; this is
due to the reliable SD feedback and exploitation of sparsity
of the UWA channel. The most of the performance gain
is obtained after three iterations for all the receivers, and
the improvement is negligible after the fifth iteration. For
the IPNLMS-based TEQ after the fifth iteration, there are
27 data packets with zero BER out of the total 72 packets
if the SD feedback is used, while there are only 9 zero-
BER data packets for the hard decision feedback. For the
RLS-based TEQ after the fifth iteration, there are 54 zero-
BER data packets for the SD feedback, while there are
38 zero-BER data packets for the hard decision feedback.
For the EW-HRLS-DCD-based TEQ after the fifth iteration,
there are 61 zero-BER data packets for SD the feedback,
and only 40 zero-BER data packets for the hard decision
feedback. As opposed to the RLS- and EW-HRLS-DCD-
based channel estimators, no matter what kind of feedback is
taken by the TEQwith the IPNLMS-based channel estimator,
it always suffers from the convergence issue due to the short
training sequence and fast time-varying UWA channel. How-
ever, the proposed EW-HRLS-DCD based channel estimator
efficiently deals with this problem.

VII. CONCLUSION
In this paper, we have proposed and investigated a novel turbo
equalizer for MIMO UWA systems with single-carrier mod-
ulation. A novel sparse adaptive filtering algorithm recently
proposed for single input single output systems, and based on
Homotopy iterations, DCD iterations, and reweighting, has
been extended to efficiently estimate the fast time-varying
sparse MIMO underwater acoustic channels. The reliable
a posteriori soft decisions, instead of traditional a priori
soft decisions or hard decisions, are feedback to the channel
estimator and MMSE equalizer, leading to better accuracy of
channel estimation and better performance of MMSE equal-
izer in the proposed turbo MIMO equalizer. Through the
experiment conducted in Songhua Lake in 2013, we have ver-
ified that the proposed turbo equalizer significantly outper-
forms the existing schemes based on the IPNLMS algorithm
and conventional RLS algorithmwith a lower complexity and
better BER performance.
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