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ABSTRACT Compressive Sensing (CS) is a new sensing modality, which compresses the signal being
acquired at the time of sensing. Signals can have sparse or compressible representation either in original
domain or in some transform domain. Relying on the sparsity of the signals, CS allows us to sample the
signal at a rate much below the Nyquist sampling rate. Also, the varied reconstruction algorithms of CS
can faithfully reconstruct the original signal back from fewer compressive measurements. This fact has
stimulated research interest toward the use of CS in several fields, such as magnetic resonance imaging,
high-speed video acquisition, and ultrawideband communication. This paper reviews the basic theoretical
concepts underlying CS. To bridge the gap between theory and practicality of CS, different CS acquisition
strategies and reconstruction approaches are elaborated systematically in this paper. The major application
areas where CS is currently being used are reviewed here. This paper also highlights some of the challenges
and research directions in this field.

INDEX TERMS Compressive sensing, sparsity, CS acquisition strategies, random demodulator, CS recon-

struction algorithms, OMP, CS applications.

I. INTRODUCTION

After the famous Shanon sampling theorem, introduction of
compressive sensing (CS) is like a major breakthrough in
signal processing community. CS was introduced by Donoho,
Candes, Romberg, and Tao in 2004 [1]-[3]. They have devel-
oped its mathematical foundation. CS is basically used for
the acquisition of signals which are either sparse or com-
pressible. Sparsity is the inherent property of those signals
for which, whole of the information contained in the signal
can be represented only with the help of few significant
components, as compared to the total length of the signal.
Similarly, if the sorted components of a signal decay rapidly
obeying power law, then these signals are called compressible
signals, refer Fig.1. A signal can have sparse/compressible
representation either in original domain or in some transform
domains like Fourier transform, cosine transform, wavelet
transform, etc. A few examples of signals having sparse
representation in certain domain are: natural images which
have sparse representation in wavelet domain, speech sig-
nal can be represented by fewer components using Fourier
transform, better model for medical images can be obtained
using Radon transform, etc. A good introduction about basis,
frames and dictionaries in which the sparsest possible rep-
resentation of a signal can be obtained, is available in

articles [12]-[16]. Acquisition of sparse signals using tradi-
tional methods requires: i) sampling using Nyquist-criterion,
which results in too many samples compared to the actual
information contents of the signal, ii) compressing the signal
by computing necessary transform coefficients for all the
samples, retaining only larger coefficients and discarding the
smaller ones for storage/transmission purposes. Addressing
the question “why to take too many samples, when most
of them are to be discarded?”’, CS simplifies the signal
acquisition by taking far fewer random measurements. Fig.2
depicts the comparison between traditional sampling and CS
sampling schemes.

Another limitation of sampling using Nyquist-rate is that
the rate at which sampling has to be done, may not be practical
always. For example, in case of multiband signals having
wide spectral range, sampling rate suggested by Nyquist-
criterion may be orders of magnitude higher than the speci-
fications of best available analog-to-digital converter (ADC).
The sampling rate using Nyquist-criterion is decided by the
highest frequency component present in signal, whereas,
sampling rate in CS is governed by the signal sparsity.
The CS measurements are non-adaptive, i.e., not learning
from previous measurements. The resulted fewer compres-
sive measurements can be easily stored or transmitted. This
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FIGURE 1. Rapid decay of coefficients of a signal when represented using
suitable transform, obeying power law.

Input Signal Output Measurements

S = >
yq pling » Compr

x(1) yim]

(a)

Input Signal Output Measurements

x(t)

Random Sampling

(Sub-Nyquist) yim]

(b)

FIGURE 2. A comparision of sampling techniques: (a) traditional
sampling, (b) compressive sensing.

gives an impression of compressing the signal at the time of
acquisition only and hence the name ‘Compressive Sensing’.
CS allows the faithful reconstruction of the original signal
back from fewer random measurements by making use of
some non-linear reconstruction techniques. Because of all
these features, CS finds its applications especially in the areas
i) where, number of sensors are limited due to high cost, e.g.,
non-visible wavelengths, ii) where, taking measurements is
too expensive, e.g., high speed A/D converters, imaging via
neutron scattering, iii) where, sensing is time consuming, e.g.,
medical imaging, iv) where, sensing is power constrained,
etc. [4]-[7].

Motivation and Contribution: Although, there are other
good survey papers, like, [160], [161], available in litera-
ture in the area of CS, this area lacks a systematic review
paper, which covers both theory and implementations, for a
smooth transition from theory to practicality. Also the current
research areas and the challenges encountered in the field,
needs to be surveyed to further boost the research in this
area. This paper tries to cover the above mentioned aspects
and also present some related future scopes. As far as the
theoretical aspects of CS are concerned, the field of CS is
equipped with rigorous mathematical analysis and proofs,
which are not easy to grasp. After an in-depth literature
survey, the important concepts underlying CS, are briefed
here, in an easy to understand manner.

A. ACQUISITION MODEL
CS works by taking fewer random measurements which are
non-adaptive. The CS acquisition model can be described
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FIGURE 3. CS Model: (a) acquisition model, (b) reconstruction model.

mathematically by (1) and is shown in Fig.3(a).
y = ¢x, (H

where, x € R" or C" is an input signal of length n, ¢ €
R™*" or C™*" is an m x n random measurement matrix and
y € R™ or C™ is the measurement vector of length m. The
Input signal and the random measurement matrix are multi-
plied together to generate compressive measurements. Here,
the number of measurements taken are much lesser than the
length of input signal, i.e., m < n. The size of measurement
matrix and hence the number of measurements is proportional
to the sparsity of input signal. To further reduce the number of
measurements which are necessary for perfect reconstruction,
the measurement matrix must be incoherent with basis in
which signal has sparse representation [4], [5], [8].

B. RECONSTRUCTION MODEL

The CS reconstruction model is shown in Fig.3(b). The inputs
to the reconstruction algorithm are the measurement vector y
and reconstruction matrix ®, where ® = ¢ x ¥ € R™"
or C™" and v is the sparsifying basis of the signal x.
The signal x can be represented as a linear combination of
columns of i or the basis vectors as

x=Y sy = s 2
i=1

where, s € R” is the sparse coefficient vector of length n,
having fewer significant/nonzero entries. The original signal
can be recovered back from compressive measurements by
solving (1), which is an underdetermined system of linear
equations and have infinite number of possible solutions.
In such cases, the unique solution can be obtained by posing
the reconstruction problem as an {p-optimization problem
given by (3). The £p-optimization problem searches for a
solution having minimum £p-norm subject to the given con-
straints. This is equivalent to trying all the possibilities to find
the desired solution [4], [5], [8].

§ =argmin|s|lo subjectto Os =y, 3)
)

VOLUME 6, 2018



M. Rani et al.: Systematic Review of CS: Concepts, Implementations and Applications

IEEE Access

where § is the estimate of s and ||s||o denotes the £p-norm of s.
Although £ is not a proper norm, it is a pseudonorm or quasi-
norm, which represents the number of non-zero elements of
a vector [17]. Searching for a solution of (3) by trying all
possible combinations is computationally extensive exercise
even for a medium sized problem. Hence, £y-minimization
problem has been declared as NP-hard. Alternates have been
proposed in literature, which are capable of obtaining a solu-
tion similar to the £p-minimization for the above problem,
in near polynomial time. One of the options is to use convex
optimization and searching for a solution having minimum
£1-norm, as given by (4). This is considered as a feasible
option because solvers available from linear programming
can be used for solving the £{-minimization problems in near
polynomial time.

§ = argmin||s||; subjectto ®s =y, )
S

where ||s||; denotes the £1-norm of s, which represents the
absolute sum of elements of a vector. The generalized expres-
sion of a norm is given by (5), from which definition of £; and
other relevant norms can be obtained wherever required [17].

G lxllpy = Y 1x PP, 5)
1
The output of CS reconstruction algorithm is an esti-
mate of sparse representation of x, i.e., 5. The estimate
of x, i.e., X can be obtained from § by taking its inverse
transform [10], [11], [28].

C. NECESSRAY AND SUFFICIENT CONDITIONS FOR
PERFECT RECOVERY

1) RESTRICTED ISOMETRY PROPERTY (RIP)

Let k be the sparsity of vector s, then necessary condition for
recovering s from measurements y is that the matrix ® must
obey RIP of order k, as given in (6).

®
19ul2 4 s ©)

llu ll2

where u is a vector having the same k-nonzero entries as s
and § > 0 is known as restricted isomery constant [4]. This
inequality states that matrix ® must preserve the distance
between two k-sparse vectors. However, a sufficient condi-
tion for a robust solution is that matrix ® must satisfy relation
given by (6) for an arbitrary 3 k-sparse vector u. It has been
found in literature that calculating ¢ is itself a very tough task,
so another simpler condition which guarantees stable solution
is incoherence [8], [9].

1-6<

2) INCOHERENCE

This condition states that for faithful reconstruction, the mea-
surement basis ¢ and sparse basis ¥ must be incoherent from
each other. The relation for finding the coherence between
two matrices is given in (7). This is a measure of maximum
correlation among any two elements of given pair of matrices.

wle, ¥) = \/ﬁlggf;znlm, Vil @)
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TABLE 1. Number of required compressive measurements.

Number of measurements
m 2 cklogn/k

m > cuk(log n)*

m ~ O(klogn)

m ~ O(k?* log n)

Matrix type

ii.d. Gaussian and Bernoulli
Partial Fourier
Any other random

Deterministic

The range of coherence is u(p, ¥) € [1, o/n] [5]. In case of
partial Fourier sensing matrix, the relation of coherence, u,
with number of measurements, m, is given in Table 1. This
dependancy shows that a lower value of coherence is desired,
which in turn lowers the number of measurements required
for CS reconstruction. A few examples of incoherent pairs of
basis are spikes and Fourier, wavelets and noiselets, spikes
and sinusoids, etc. [7], [8].

D. MEASUREMENT MATRICES AND NUMBER OF
MEASUREMENTS

A proper selection of measurement matrix, ¢ is the key
to the success of CS. The general measurement matrices
used in CS are the random matrices drawn from i.i.d. Gaus-
sian or Bernoulli distribution and partial Fourier matrices, etc.
It has ben proved in literature that these random matrices are
incoherent with any other basis, as well as obeys the RIP
condition of perfect recovery. If ¢ has Gaussian distribution
and v belongs to an orthonormal basis, then matrix ® = ¢,
will also have Gaussian distribution and hence will be able to
recover exact solution with high probability [8]. The number
of measurements required for faithful reconstruction for par-
ticular choice of measurement matrix are given in Table 1,
where c is a positive constant [6], [7].

Although, the CS has been proposed along with ran-
dom measurement matrices. But the problem with ran-
dom matrices is that we can’t store and reproduce them
at receiver. It means that these matrices needs to transmit-
ted along with the signal, which is not practical for signal
processing applications. So the research interest has been
diverted towards the design of deterministic and structured
measurement matrices that can be used as CS measurement
matrices. Examples of such matrices are circulant, toeplitz,
structured random matrices, etc., which has made it possible
to use CS for practical applications. The advantages of struc-
tured random matrices are faster acquisition, lesser storage
requirement, reproducibility and reduced transmission over-
head, while the drawback is the requirement of higher number
of measurements compared to random matrices [53]-[55].

This section has presented the theoretical concepts of CS
in a simplified manner. Now, relating theory to practical-
ity, a systematic review of implementation aspects of CS
is presented in next sections. Section II reviews the acqui-
sition techniques proposed in literature, for the sampling a
signal using CS. Section III presents the CS reconstruction
approaches with a discussion on popular algorithms under
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FIGURE 4. CS acquisition using RD technique. (a) Block diagram of RD.
(b) Input-output waveforms generated at each stage. (c) Unique
frequency signatures obtained after integrator stage for two different
frequencies f; Hz and f, Hz.

each category. A comparison of reconstruction approaches is
also presented, which will help readers to choose a suitable
reconstruction approach for a particular application in hand.
Section IV categorizes the prominent application areas where
CS is currently being used, along with the basic idea behind
some of the areas. Section V discusses some of the challenges
and associated research opportunities in this field.

Il. CS ACQUISITION STRATEGIES

The main requirement of CS for proper reconstruction is
that the measurements must be taken randomly. To meet
this requirement, different techniques has been proposed in
literature. This section summarizes the operating principle of
these acquisition techniques.

A. RANDOM DEMODULATOR

Random demodulator (RD), proposed by Laska et al.,
in 2007, is a compressive sampler used to sample signals at a
rate below the Nyquist. RD shown in Fig.4(a), also termed as
analog to information converter (AIC), is an efficient wide-
band signal sampler. The input signal x(#) is first multi-
plied with a pseudorandom sequence consisting of +/ — 1s,
known as chipping sequence p.(¢). This is equivalent to the
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convolution in frequency domain and results in spreading
the signal frequency to low frequency regions, as shown
in Fig.4(b). The next stage is an integrator, serving as a low
pass filter (LPF), which is used to obtain a unique frequency
signature of signal in lower frequency region. Fig.4(c) shows
the unique frequency signatures, obtained from RD, for two
different frequency signals. Now, the highest frequency of
the signal so obtained lies in lower frequency region and
hence can be sampled using a low rate ADC to obtain vector
of digital measurements. These fewer compressive measure-
ments can be easily then be stored or transmitted. The unique
frequency signature is the information about the original
signal that is contained in random measurements and helps
in reconstructing the original signal back from compressive
measurements.

In matrix form the operation of the RD can be described by
two matrices P and H, shown in (8). The matrix Pisann X n
diagonal matrix of chipping sequence, having elements p; €
+/—1and H is an m x n accumulate and dump matrix serving
as an integrator. The number of ones in each row of matrix H
determines the number of samples to be accumulated for one
measurement and are generally given by the ratioR = |n/m].
In (9), x is the result of multiplying x with pseudorandom
sequence of 4+/ — 1s, X is further multiplied by H to obtain
the measurement vector y. Here, ¢ can be considered as the
product of two matrices H and P [18], [19].

P1 111---
P = ; H= 11---
Py 111---
®)
X = Px
y=Hx = ¢x ;. 9)
¢ = HP

In case of RD, the minimum number of measurements
required for perfect reconstruction are O(k log W /k), where
k is the sparsity and W is the Bandwidth of signal x.

B. MODULATED WIDEBAND CONVERTER (MW(C)

MWC was proposed by Mishali and Eldar [21], in 2010.
This is a parallel architecture and is used for sampling sparse
wideband signals, like multiband signals. The block diagram
of MWC is shown in Fig.5. The input signal x(t) is applied to
all the channels simultaneously, which is then multiplied with
the different chipping sequence in each channel, i.e., p.1(¢),
pe2(t) upto pey (2). This results in spreading the spectral por-
tion from each band to the baseband. This signal is passed
through a low pass filter and then sampled at a rate much
below the Nyquist. If the cutoff frequency of the filter is say
2T , then the sampling rate will be 7= < fny, and depends
on B, the width of single band of x( t) The overall sampling
rate is N x f;, where, N is the number of channels and f;
is the per channel sampling frequency. A sufficiently large
number of low rate band mixtures yi[m] to yy[m], allows
to recover a sparse multiband signal x(z). MWC construct
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FIGURE 5. CS acquisition using MWC technique.

the reconstruction model in frequency domain and solves the
£1 block sparsity problem periodically, to find the bands of
spectrum having non-zero power content. Compared to RD,
this architecture is faster and easier to implement.

C. RANDOM MODULATION PRE-INTEGRATOR (RMPI)
RMPI was proposed by Yoo et al., in 2012. This architecture
is similar to MWC and is the paralleled version of RD. This
is being utilized for sampling ultrawideband (UWB) signals.
A simplified version of RMPI is shown in Fig.6. The UWB
input signal x(¢) is first divided into different frequency bands.
Each channel of RMPI selects a particular frequency band
from input signal with the help of frequency selective filters.
The selected frequency band is then multiplied with a differ-
ent chipping sequence in each channel, i.e., p.1(¢) to pey ().
After integrating and sampling, N sets of measurement vec-
tors yi[m] to yy[m] are generated in parallel. Different from
MWC, RMPI uses integrator in place of LPF, which plays
an important role in differing their reconstruction method.
Compared to RD, this architecture allows further reduction
in sampling rate by the amount of parallelism used.

D. RANDOM FILTERING

This technique was proposed by Tropp et al. [22], in 2006.
The input signal x, is acquired by performing convolution
with a random-tap finite impulse response (FIR) filter 4. The
first stage is then followed by downsampling the filtered sig-
nal by a factor of |n/m] to obtain compressive measurements
v, as shown in Fig.7. The filter taps are random and can be
obtained from random distributions like Gaussian distribution
N (0, 1) with zero mean and variance one, Bernoulli distribu-
tion of 4/ — 1s. This technique is applicable for compressible,
continuous and streaming signals.

E. RANDOM CONVOLUTION

This measurement strategy was proposed by Romberg [23],
in 2009. In this technique, the first row of measurement
matrix ¢ consists of random pulses. Then, next row is
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FIGURE 7. CS acquisition using random filter technique.

obtained by circular shift of a previous row. This procedure is
repeated for all other rows to generate measurement matrix.
The measurement matrix so generated, is then convolved with
the input signal x to obtain the measurement vector y =
¢ * x. This matrix is a structured random matrix and have
advantages like faster acquisition, easy storage and transmis-
sion. It has been shown as a universal sampling method, i.e.
incoherent with any fixed orthobasis.

F. COMPRESSIVE MULTIPLEXER

Slavinsky et al. [24],in 2011 proposed another parallel archi-
tecture for signal acquisition using CS, known as compressive
multiplexer (CMUX). Exploiting the joint signal sparsity, this
architecture samples the multichannel data using single ADC
operating at sub-Nyquist-rate, as shown in Fig.8. In each
channel, the baseband signal is obtained from conventional
RF tuner, which is then smeared in frequency by multiplying
random chipping sequences p.1(¢) to p.y(t), where N is the
number of channels required to sample the given bandwidth
B. The number of channels can be upper bounded by N <
%%, where B = NW. The modulated signals are then

c(log B)

summed across the channels and sampled once per chip
by single ADC operating at Nyquist-rate. This multiplexed
signal is recovered via multi-channel separation.

G. RANDOM EQUIVALENT SAMPLING (RES)

This is another technique which is based on random sampling
mechanism. This is being used to sample the periodic high
frequency analog signals at sub-Nyquist-rate. The use of CS
reconstruction for the signals acquired using RES, was pro-
posed by Zhao et al. [25],in2011. CS reconstruction for RES
achieves higher SNR while requiring fewer RES samples
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compared to the traditional method. The block diagram of
signal acquisition using RES is shown in Fig.9. RES samples
the signal at random positions by dithering the phase of ADC
sampling clock with the help of a variable delay circuitry
implemented using the control module. A level-triggering
circuitry is used to provide fixed reference trigger-pulses to
the control module to align the samples. The time-to-digital
converter (TDC) circuitry is used to measure the relative sam-
ple positions, which are required to generate the measurement
matrix using Whittaker-Shannon interpolation formula. The
measurement matrix so generated is used for applying the CS
reconstruction on RES sampled signal.

H. RANDOM TRIGGERING-BASED MODULATED
WIDEBAND COMPRESSIVE SAMPLING (RT-MW(CS)
RT-MWCS was proposed by Zhao et al. [26], in 2016, for
sparse multiband signals. The block diagram of RT-MWCS
is shown in Fig.10. Compared to MWC, this is a single
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channel architecture, which requires multiple runs of acqui-
sition. Once triggered, the input signal x(#) is first multi-
plied with a pseudorandom sequence consisting of +/ — 1s.
After low pas filtering the multiplied signal x(¢), the sig-
nal is sampled at random positions using RES mechanism.
For reconstruction, a multiple measurement vector (MMYV)
method is used to estimate the sparse multiband signal in
frequency domain. RT-MWCS has simple architecture and
is not subjected to the ADC bandwidth barrier. The dis-
advantage of this scheme is the more time required for
acquisition.

I. QUADRATURE ANALOG-TO-INFORMATION

CONVERTER (QAIC)

QAIC was proposed by Haque et al. [27], in 2014. This
is a bandwidth flexible and spectrum blind approach for
wideband sensing. The bandwidth flexibility and improved
energy efficiency are achieved at the cost of increased com-
plexity, compared to MWC. The block diagram of QAIC
is shown in Fig.11. The input signal x(z), is fist downcon-
verted and low pass filtered to restrict the RF bandwidth.
The two outputs Q(#) and I(#) of downconverter, are then
passed through the two N-channel MWCs separately. The
downconversion allows us to use short and low frequency
pseudorandom sequences during signal randomization step
of MWC. The outputs of MWCs are the given to a pairwise
complex combiner to select either upper or lower band cluster
and to generate N outputs yi[m] to yy[m].

The important features of all CS acquisition strategies are
summarized in Table 2. This may be helpful in selecting
an acquisition technique for a particular application, since,
acquisition strategies seems to be signal dependent.

IIl. CS RECONSTRUCTION APPROACHES

CS reconstruction algorithms try to find out the sparse estima-
tion of the original input signal, from compressive measure-
ments, in some suitable basis or frame or dictionary. A lot of
research has been done on this aspect of CS, to come up with
better performing algorithms. The research driving factors in
this area are ability to recover from minimum number of mea-
surements, noise robustness, speed, complexity, performance
guarantees, etc. [8]. The CS reconstruction algorithms are
mainly classified under six approaches, as shown in Fig.12.
This section summarizes the popular algorithms under each
approach.
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TABLE 2. Summary of CS acquisition strategies.

Acquisition Strategy | Measurement Type used

Measurement Constraint

Features Application

—Serial Architecture

Wideband signal ac-

RD Pseudorandom m ~ O(klogW [k) .
— Easy to implement quisition
—Parallel Architecture
N ~4M log(L/2M) — Multi ADCs
N = number of channels | — faster and easier to implement com- | Wideband signal ac-
MWC Pseudorandom M = number of bands pared to RD quisition
L = length of PRBS — reconstruction requires solution of £}
block sparsity problem periodically
—Parallel Architecture
— Multi ADCs i isi-
RMPI Pseudorandom m > cu*k(logn)® UWB signal acquisi

— Sampling rate decreases as order of
parallelism increases

tion

Random Filtering

Random Gaussian or

Bernoulli

m 2 cklogn/k

— Serial Architecture

— Easy to implement

Streaming and com-
pressible signal ac-
quisition

Random Convolution

Structured Random

m > ck(logn)®

—Serial Architecture

—Requires full knowledge of signal be-
forehand

Universal
Acquisition strategy

— Parallel Architecture

N<E 1 i—chs
CMUX Pseudorandom k c(log B)* _ Single ADC Mult} ghannel data
acquisition
N = number of channels | — Exploits joint sparsity
Ts =Q -Ty+Ts mod Ty | —Serial Architecture
i e - . . . . high frequency ana-
RES Random position based Ty = sampling period —single ADC log signal acquisition
Ty = fundamental period | —stores sample positions
—Serial Architecture
R ; isiti — Single ADC
Pseudorandom+Random uns or acquisition . Wideband signal ac-
REMWCS position based ~ 4M log(L/2M) — low complexity quisition
— higher acquisition time
— uses MMV method for reconstruction
—Parallel Architecture
— improved energy efficienc i i -
QAIC Pseudorandom N ~4M log(2L/M) prov &y Y Wideband signal ac

— bandwidth flexibility

quisition

— higher complexity

A. CONVEX OPTIMIZATION APPROACH

This approach poses the CS reconstruction problem as a con-
vex optimization problem which can be solved by utilizing
solver from linear programming. The convex formulations
proposed in literature, for obtaining the sparse representation
of a signal, are discussed below:

1) BASIS PURSUIT

Basis Pursuit (BP) was proposed by Chen et al. [28],in 1999 .
It is a convex optimization problem, which searches for a
solution having minimum £;-norm, subject to the equality
constraint given in (10).

§ = argmin |s]|;; subjectto @s = y. (10)
N

BP is used in CS to find the sparse approximation § of

input signal x, in dictionary or matrix ®, from compres-

sive measurements y. BP can recover faithfully only if, the

measurements are noise-free.
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2) DENOISING USING CONVEX APPROACH

If the measurements are corrupted by noise, then to suppress
the noise, exact reconstruction is not desired. The denoising
can be achieved by relaxing the equality constraint in (10)
to account for measurement noise. The widely used formu-
lations for robust data recovery from noisy measurements
are Dantzig selector, basis pursuit denoising (BPDN), total
variation (TV) minimization based denoising, etc.

4881



IEEE Access

M. Rani et al.: Systematic Review of CS: Concepts, Implementations and Applications

4882

Basis Pursuit Denoising: BPDN was introduced by
Chen et al. [28], in 1999, in the field of computational
harmonics. This is same as Least Absolute Shrinkage
Selection operator (LASSO), which was introduced by
Tibshirani [30] in 1996, in statistics. To account for the
noise in measurements, BPDN poses the sparse estima-
tion problem, as an optimization problem given by (11).
It shows that, BPDN searches for a solution having
minimum £;-norm subject to the relaxed condition on
constraint. The quadratic inequality constraint used by
BPDN states that for the obtained solution, the squared
£>-norm of the error between y and ®s should be less
than or equal to €.

1
§ = argmin|s||;; subjectto 5“()’ - 093 <,
S
(11)

where, £;, also known as euclidean norm, represents the
length or size of a vector [17]. Some algorithms solve
BPDN in its Lagrangian form, which is an unconstrained
optimization problem and can be rewritten as in (12).

- . 1
§ = argminllsih + S0 — COIER 12)

Equations (11) and (12) are equivalent for certain value
of A, which is unknown a priori. Value of A balances
between error and sparsity of solution. Popular algo-
rithms that has been used to solve (12) are primal-
dual interior-point method, fixed-point continuation, etc.
A slightly different version of BPDN posed by LASSO
in constrained form is (13).

1
$ = min §||(y — @s)||%; subject to ||s]j; <e€. (13)
N

Dantzig Selector: This formulation was introduced by
Candes and Tao [29] in 2007. They tackled the noise
in measurements by posing the sparse estimation prob-
lem, as an optimization problem given by (14). Dantzig
searches for a solution having minimum £1-norm subject
to the constraint that the squared £o.-norm of the error
between y and ®s should be less than or equal to €.

. . . 1
§ =argmin|s||;; subject to §||(y — Q)% <e,
s
(14)
where, £~-norm is defined as ||x]loc = max | x; | and
l

represents the max value in array [17].

Total Variation Denoising: TV norms are the £1-norms
of derivatives. This method was originally proposed for
image denoising by Rudin et al. [31], in 1992. This
searches for a solution having minimum total variation
among its components, subject to the constraint of keep-
ing squared norm of error less than or equal to €. The

constraints of this optimization program (15) are deter-
mined by signal statistics, which allows noise removal.

1
§ =argmin|s|l7v; subjectto §||(y — Q93 <e.
s
(15)

Solvers for Convex Approach

Bregman
Algorithm
Fixed Point
Continuation

FIGURE 13. Solvers used for solving convex optimization problem of CS
reconstruction.

Simplex
Algorithm

Interior-point
Algorithm

3) SOLVERS FOR CONVEX APPROACH

Solvers are required to solve the optimization problems
described above. The BP problem in (10) can be solved
by linear programming algorithms like simplex algorithm
known as BP-simplex, interior-point algorithm known as
BP-interior. Here, simplex can be defined as a convex polyhe-
dron formed by the set of all feasible solutions (points) [28].
Apart from simplex and interior-point algorithms, the other
popular algorithms for solving convex optimization problems
are fixed point continuation (FPC), gradient projection for
sparse representation (GPSR), Bregman iteration algorithm,
etc. Fig.13 shows some popular solvers for solving the convex
optimization problems. The algorithmic steps of these solvers
are described below:

e BP-Simplex Algorithm: The basic steps for solving
the BP problem using simplex algorithm are shown
in Fig.14(a) and are described below:

i). Initial basis selection: initial basis are a set of n
linearly independent columns selected from a dictionary.
Using initial basis, find the initial feasible solution,
which corresponds to one of vertices of the simplex.

ii). Swapping: swap one column in current basis with
the column not in the basis that gives best improvement
in objective function. This is equivalent to jumping on
the vertices of simplex for searching the solution, in the
direction of improving the objective function.

iii). Repeat step ii), until no further improvement is
possible. At last, the optimal solution is achieved.

o BP-Interior Algorithm: The basic steps for solving the
BP problem using interior-point algorithm are shown
in Fig.14(b) and are described below:

1). Initial solution: start from a non-sparse initial solution
which is well inside the interior of simplex.

ii). Apply transformation that sparsifies the solution.
This corresponds to moving the solution inside the sim-
plex in the direction of reaching to a vertex.

iii). Repeat step ii), until a solution having < n signifi-
cant non-zero entries, is reached. The result so obtained
is a feasible solution and corresponds to the vertex of
simplex.

¢ Fixed Point Continuation Algorithm: FPC was proposed
by Hale et al. [32], in 2007. It solves the unconstrained
formulation of £{-minimization problem of the type
(12) or (16).

5§ = argmin A|s||; + G(s), (16)
S
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FIGURE 14. Algorithmic steps of solvers for basis pursuit namely: (a) simplex method and (b) interior-point method.

where G is convex and differential. For noisy case G can
be ||(y — @s)||%. Selection of parameter A has an impact
on solution, which may be chosen by trial and error.
FPC uses shrinkage based iterative procedure shown
in (17) for solving the convex optimization problem
given in (16).

sit! = shrink((s’ — TVG(s )i, wr), (17

where, the shrinkage operator for scalar components can
be defined as in (18). The other parameters like T > 0,
decides the step size of gradient descent and p decides
the allowable distance between s**! and s*.

u—p ifu>p
shrink(u, 8) = {0 if —B<u<p (18)
u+pg ifu< §B.

o Gradient Projection for Sparse Representation: GPSR
proposed by Figueiredo et al. [33], in 2007, also solves
the unconstrained formulation of £1-minimization prob-
lem of the type (12) or (16). GPSR makes use of
backtracking line search and updates in the negative
gradient direction for finding the solution. The updates
performed in each iteration of GPSR are given in (19),
which are repeated until the convergence criteria is met.

wh = (s' —a' VF(s")) 4 }

S = o A — st) (19)

where, of > 0 and A! € [0, 1] are some scalar param-
eters and F(-) is the function to be minimized in the
optimization problem.

o Bregman lIteration Algorithm: For solving the con-
strained optimization problem in (10), Osher et al. [34],
proposed a method in 2005, known as Bregman iteration
algorithm. This iteratively solves a small number of
unconstrained problems, known as Bregman Iterations,
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given in (20). It gives a faster and stable solution to the
£1-minimization problem. Other improved versions of
this algorithm are linearized Bregman algorithm [35],
Split Bregman algorithm [36], etc.

yt+1 — yt +y _ @SI
s+ = argmin ls] + @s —y g [ 20
B. GREEDY APPROACH

The convex optimization approach presented above is a
global optimization method. Different from that, the greedy
approach is a step-by-step iterative method. In each itera-
tion, the solution is updated by selecting only those columns
of reconstruction matrix, which are highly correlated with
the measurements. The selected columns are called atoms.
Generally, the atoms selected once, are not included in sub-
sequent iterations of the algorithm. This idea lowers the
computational complexity of the algorithm. Here, the solu-
tion is approached in a greedy fassion and hence, the name.
The advantages of this approach are simple operation, low
computational complexity and faster execution. Drawback is,
it requires knowledge of sparsity of the underlying signal,
before hand [8]. The algorithms the works on this approach
can be further classified into two categories:

1) SERIAL GREEDY ALGORITHMS

The algorithms that can be put under this category are
matching pursuit (MP) proposed by Mallat and Zhang [37],
in 1993, orthogonal matching pursuit (OMP) proposed by
Y. C. Pati et al. [38], in 1993 and gradient pursuit (GP) pro-
posed by Bluemensath and Davies [39], in 2008. Each Iter-
ation of these algorithms selects only one atom in each
iteration and computes the corresponding non-zero entry of
solution vector. Therefore, these algorithms are termed as
serial greedy algorithms. The basic steps of these algorithms
are described below and are shown in Fig.15. All the steps
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FIGURE 15. Algorithmic steps of serial greedy algorithms.

same for the three algorithms, except the update solution step,
as outlined below:

o Initialization: The vector r, an m x 1 residual vector is
initialized with measurement vector y. Vector s, an n x 1
solution set and index set A of size m x 1 are initialized
to null vector. Iteration counter, i is initialized to 1.

o Atom Search: This step finds a column of reconstruction
matrix which is maximally correlated with the residual
vector r. Position of that atom of ® is updated in the
index set or active set A. Here, ®T is the transpose of
matrix ©.

e Update sparse solution: Corresponding to the selected
atoms of ®, the solution set s; is updated. The method
of updating the solution set is described below, which is
different for all the algorithms in this category.

i). In MP, the direct update is performed by directly
adding the previous solution s;_1, with the maximum
correlation value Cp,, of current iteration, using a unit
vector Uy,. The unit vector U; consists of a 1 at position
0; and rest of the entries are zero.

ii). In OMP, the solution set is updated using
least square method. This gives a solution, which
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best fits the subspace, spanned by selected atoms
of ®.
iii). GP updates the solution set in gradient direction.

o Update residual: New residual is calculated by subtract-
ing product ®,;s; from measurement vector y. These
steps are repeated either k times or until the desired value
of the residual is reached.

2) PARALLEL GREEDY ALGORITHMS

The algorithms that can be put under this category are com-
pressive sampling matching pursuit (CoSaMP) and subspace
pursuit (SP). Instead of selecting only one atom from matrix
O, these algorithms operate by selecting k or multiple of k
atoms at a time and hence termed as parallel greedy pursuits.
Rest of the steps are same as described for serial greedy
algorithms. These algorithms are more powerful than serial
counterparts, because they have the capability of removing
the wrong atoms selected during previous iterations. The
main differences between CoSaMP and SP are given below:

e CoSaMP: CoSaMP was proposed by Needell and
Tropp [40] in 2009. Each iteration of CoSaMP selects
2k columns of ®, which are maximally correlated with
the residual vector. These 2k atoms are then added with
k atoms of previous iteration. Out of these 3k atoms,
the best k atoms are retained after least square step of
finding the best fit for sparse vector s. Then, the positions
of these atoms is updated in the active set A.

e Subspace  Pursuit: SP ~ was  proposed by
Dai and Milenkovic [41] in 2009. SP selects k atoms
in each iteration, compared to 2k atoms by CoSaMP,
which in turn reduces its complexity. The lager restricted
isometry constant is required to guarantee convergence
in case of SP as compared to CoSaMP.

C. THRESHOLDING APPROACH

The algorithms under this category, operates on k atoms of
©®, simultaneously. This approach uses some thresholding
operation to update the solution set s;. Rest of the steps are
similar to greedy algorithms. Some of the popular algorithms
that use this approach are iterative hard thresholding (IHT),
iterative soft thresholding (IST), approximate message pass-
ing (AMP), etc.

1) ITERATIVE HARD THRESHOLDING ALGORITHM

This algorithm was proposed by Blumensath and Davies [42],
in 2009. This uses a non-linear thresholding operator n(-)
to keep k largest entries in s and sets all others to zero. The
operation of IHT can be understood by (21).

s = k(s + 2107 (y — Os)), (21)

where A denotes the step size used. The problem with-
the IHT algorithm is that if the step size is kept fixed,
then algorithm may not converge. On the other hand,
if the step size is adaptive, then algorithm becomes more
complicated [43].
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FIGURE 16. Algorithmic steps of AMP algorithm.

2) ITERATIVE SOFT THRESHOLDING ALGORITHM

This algorithm was introduced by Daubechies et al. [44],
in 2004. In this algorithm, hard thresholding used in IHT
algorithm is replaced by element wise soft thresholding oper-
ation 7y (-) with adaptive threshold 6, as given in (22).

ng(s) = sign(s)[| s | =0]+. (22)

The value of 6 is contracted gradually by multiplying with a
scalar parameter p € (0, 1], i.e., 6; = ub;_1. The solution is
updated according to this thresholding operator as per (23),
with initial conditions 7o = y, so = 0 and Cyp = OT .

si = ng,_, (si—1 + Ci—1). (23)

Although, the IST has simpler data flow and is faster
than £-minimization based approaches but its performance
degrades as the signal sparseness decreases, i.e., as value of k
increases.

3) APPROXIMATE MESSAGE PASSING ALGORITHM
The AMP algorithm is an improvement over IST, proposed
by Donoho et al. [45], in 2009. AMP combines thresholding
algorithms with message passing algorithms. The steps of
AMP algorithm are shown in Fig.16. Similar to IST, AMP
also employs component wise thresholding and same thresh-
olding operator ng(-) [46]. The main differences between the
two which leads to improved convergence rate of AMP are:
o The threshold 6 is updated using regularization parame-
ter A as well as past residual r;_1, i.e., 6 = Aﬁ [lrizt]l2-
o The current residual r; is computed using current esti-
mate s; as well as pastresidual 7,1, i.e.,r; = y— Oy, 5+
bri_y, where, b = Liis;|lo.
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FIGURE 17. Algorithmic steps of count-min/median strategies used by
algorithms under combinatorial approach.

The term br;_; in calculation of residual is derived from
the theory of belief propagation in graphical models. This
helps in achieving a significant improvement in the sparsity-
undersampling trade-off. AMP performs very well for deter-
ministic and highly structured measurement matrices, like
partial Fourier, toeplitz and circulant matrices, etc. The
advantages like regular structure, fast convergence and low
storage requirement makes them attractive choice for hard-
ware implementation.

D. COMBINATORIAL APPROACH

Combinatorial algorithms were originally developed for solv-
ing sparse approximation problems in group testing to min-
imize the number of tests to be performed. The algorithms
that come under this category are random Fourier sampling,
heavy hitters on steroids (HHS), chaining pursuits and sparse
sequential matching pursuit [47]. Reconstruction using these
algorithms requires a specific measurement pattern. The mea-
surement matrix ¢ is constructed using a set of discrete-
valued functions, resulting in a specific pattern in ¢, like
exactly equal number of ones in each column but distributed
randomly. This means that each measurement y; is obtained
by combining same number of samples of input signal.

The algorithms that come under this category make use
of two strategies, namely, count-min and count-median. The
steps for obtaining estimate of each sample of original signal
using count-min/median approaches are described below and
are shown in Fig.17. Let x; be the i sample of the original
input signal and X; be the estimate of x;.

i). Identify all the measurements y;s that have used xi’h sample
of input signal in their calculation. This can be done with the
help of measurement matrix.

ii). For count-min strategy, compute minimum value from
the measurements identified in previous step. The minimum
value so obtained is the estimate of the i sample of input

4885



IEEE Access

M. Rani et al.: Systematic Review of CS: Concepts, Implementations and Applications

TABLE 3. Comparative summary of CS reconstruction approaches.

Approach Complexity Attributes Pros Cons
— global optimization method — noise robustness — slower, Complex
Convex ~ O(m2n3) S . o : .
— minimizes {j-norm to find solution — ability to superresolve — difficult to implement for
problems of larger size
—serial  version: —faster, low complexity and noise | —prior knowledge of signal spar-
O(mnk) robustness sity is required
Greedy —parallel version: t—'correl?ttllo(? based step-by-step itera- —parallel versions has ability to dis- | — requires more measurements
O(mn.iter) tve metho card wrong entries selected in previ- | than convex counterparts
ous 1terations —convergence issues
—faster and low complexity —Convergence issue with IST
. . —uses some nonlinear thresholding cri- —better performance requires
Thresholding O(mn.iter) teria to select atoms — ability to add/discard multiple en- | adaptive step size which in-
tries per iterations creases complexity
—computes min or median of mea- —requires noiseless and specific
Combinatorial | linear in n surements identified as consisting of a | —faster and simpler pattern in measurements

particular I/P sample

where 0 < p < 1
same as convex

Non-Convex approaches

—global optimization method

—minimizes £5,-norm to find solution,

— recovers from fewer measurements

than £, counterpart —slower, complex

— functions under weaker RIP — difficult to implement

— no. of measurements and error | for problems of larger size

decreases with p

problem

Bayesian O(nm?)

some known probability distribution

—poses recovery as Bayesian inference

—applicable for signals belonging to

—results are prior dependent
which is difficult to select

—faster and yields more sparser so-
lution

—estimates signal parameters without
user intervention

—high computational cost

(@) (b) ()

FIGURE 18. Example to illustrate sparse solution approximation using
unit normed-balls in 2-D space: (a) ¢,-ball, (b) ¢;-ball, (c) ¢ /-ball.

signal. In count-median strategy, instead of taking minimum
value as estimate, median is computed and is used as estimate.
Count-median is more general than count-min approach.

E. NON-CONVEX APPROACH

All CS reconstruction algorithms tries to find the sparsest
possible solution from compressive measurements. An exam-
ple explaining the ability of different norms to reconstruct the
sparsest solution is shown with the help of unit normed-balls
in Fig.18. In 2-D space, the unit normed-balls can be obtained
by connecting all the points for which the value of their
respective norm is equal to 1. In this example, the solution
s is assumed to be sparse with k& = 1 and lies on the
line intersecting the axes. To estimate the solution, when £;-
ball is expanded, it touches the line at a point which is not
sparse, as shown in Fig.18(a). On the other hand, both ¢;
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and £y /;-balls are able to hit the desired result, as shown
in Fig.18(b) and Fig.18(c), respectively. As described ear-
lier, the £;-minimization, which is a convex optimization
approach, searches for a solution with minimum £;-norm.
The non-convex approach replaces £1-norm by ¢,-norm,
where, 0 < p < 1. This approach is able to recover the
sparse solution from much fewer measurements compared
to the convex approach. Another advantage of non-convex
approach is that a weaker version of RIP condition is suf-
ficient for perfect reconstruction. The algorithms that come
under this category are focal underdetermined system solu-
tion (FOCUSS), iteratively re-weighted least squares (IRLS),
etc. [48].

F. BAYESIAN APPROACH

Different from previous approaches which consider the input
signal to be deterministic, Bayesian approach is applicable
for the input signals which belongs to some known prob-
ability distribution. Hence, this approach seems to be of
more practical interest. The distribution of coefficients of
input signal can be two-state Gaussian-mixture model, i.i.d.
Laplace prior model, etc. This approach pposes the recon-
struction as Bayesian inference problem. The coefficients
of input signal can be estimated using maximum likelihood
estimate (MLE) or maximum a posteriori (MAP) estimate.
The algorithms that are used to solve the Bayesian inference
problem are belief propagation, sparse Bayesian learning
using relevance vector machines, etc. These algorithms are
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FIGURE 19. Major applications of CS.

not accompanied with the notion of reconstruction error.
Another algorithm in this category is Bayesian compressive
sensing (BCS) algorithm, which can compute the error term
and accordingly makes adaptive decisions to find the solu-
tion [56].

A comparative summary of all CS reconstruction
approaches is shown in Table 3, which may be helpful
in selecting a reconstruction approach to meet system’s
requirement. There is a rich literature on CS reconstruction
algorithms, improving further upon the algorithms like OMP,
AMP, weighted £ and others [49]-[52].

IV. APPLICATIONS OF COMPRESSIVE SENSING

CS is being a growing field and a wide variety of applica-
tions has benefited from this sensing modality. Fig.19, shows
a taxonomy listing major applications of CS. This section
overviews the application areas where CS finds its applica-
bility in current scenario. This may be helpful in identifying
an application area to work on using CS.

A. COMPRESSIVE IMAGING

1) SINGLE-PIXEL CAMERA

For image acquisition using CS, several imaging architectures
have been proposed in literature. One of the early and very
famous architecture that demonstrates compressive imaging
is the single-pixel camera proposed by Duarte et al. [57],
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in 2008. This consists of a digital micro-mirror devices
(DMD) array and the mirrors in this array can be turned on/off
using a pseudorandom pattern generated by a pseudorandom
sequence generator as shown in Fig.20. The operation upto
this stage is equivalent to demodulation stage of RD, refer
Fig.4. This multiplies light incident from scene with the pseu-
dorandom pattern through DMD array. The reflected light
from DMD array is then collected and focused onto a single
photon detector and hence the name ‘single-pixel camera’.
The job of this photodiode is equivalent to the integrator stage
RD. The output of photodiode is then sampled by a low rate
ADC to generate set of compressive measurements. These
measurements can be easily stored or transmitted. At receiver
end, the original scene can be reconstructed using CS recon-
struction approach.

2) RADAR IMAGING SYSTEMS

The various types of radar imaging techniques where CS
has been used are synthetic aperture radar (SAR), inverse
synthetic aperture radar (ISAR), through the wall imaging
radar (TWR) and ground penetrating radar imaging (GPR).
In SAR imaging CS has been used to obtain high resolution
map of spatial distribution of targets and terrain from much
lesser transmitted/received data, simultaneously offering the
advantages like resistance to countermeasures and intercep-
tion, capturing much wider swaths while requiring lesser

4887



IEEE Access

M. Rani et al.: Systematic Review of CS: Concepts, Implementations and Applications

Random
Measurements

A/D Converter
Received
Measurements

<
<
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on-board storage. In ISAR imaging, CS makes use of sparsity
inherent in these images since the targets are concentrated
at scattering centers. Here, CS offers advantages like robust-
ness, high resolution from limited pulses. The problems of
TWR imaging like prolonged and high amount of data acqui-
sition required to achieve high resolution 2-D images, can be
solved by using CS. In GPR imaging also, CS exploits the
sparsity and recovers from fewer measurements.

Other imaging applications where CS has been applied
are parallel imaging [71], microwave imaging [72], Sub-
wavelength Imaging [73], underwater imaging [75], etc.

B. BIOMEDICAL APPLICATIONS

Major application of CS in biomedical field is biomedical
imaging. Apart from that, CS has also been applied to the
processing of other biological signals like electrocardiogram
(ECQG), electroencephalographic (EEG) and neural signals,
etc., by exploiting the sparsity present in their features. The
other biomedical applications are genomic sensing, DNA
micro-arrays, study of proteins and bacterial composition
reconstruction, etc.

C. COMMUNICATION SYSTEMS

The research community has accepted the wider applicability
of CS in communication systems. In this section a review
of widely used communication systems where CS is being
applied is presented and also highlighted some important
aspects of communication systems where CS plays an impor-
tant role in making these systems efficient.

1) COMMUNICATION NETWORKS
o Wireless Sensor Networks: The efficient data gather-
ing schemes based on CS has been proposed for wire-
less sensor networks (WSN) in exploiting raw data
compressibility using opportunistic routing. These com-
pressive data gathering schemes offers advantages like
robustness, prolonged network lifetime, reduced energy
consumption and simple routing scheme, etc. Apart from
data gathering, the other aspects of WSNs like routing
protocols, channel estimation, multiple access scheme,
mitigating the data loss problem during transmission,
clone identification, link quality information exchange,
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data acquisition protocols for reactive WSN and target
localization in WSNs has also been looked from the
point of view of CS.

The various WSNs where CS has been applied
are wireless body area networks [93], brain-machine
interface [94] and wireless surface electromyogra-
phy (EMG) [95] for tele-health monitoring; wireless
structural health monitoring [96] and wireless cold chain
monitoring [97]; surveillance [98]; lookup for road-
side open wireless access points [100] and environment
data gathering protocols for environment reconstruc-
tion application for in-depth understanding of physical
world [99]. In context to IoT, CS has been applied to
address the issues like reduction in energy consumption
in handling big data [101], multiuser-detection [102],
etc.

o Antenna Arrays: CS has been used to reduce the num-
ber of elements and background interference in antenna
array to achieve desired beamforming. CS has also been
used to optimize the design of tripole arrays and to deter-
mine target range and azimuth using random frequency
diverse antenna array.

o Cognitive Radio (CR) Networks: CS finds its applica-
bility in CR communication by exploiting the sparsity
in spectrum occupancy due to under-utilization of spec-
trum. CS based AICs have been proposed for efficient
wideband spectrum sensing in CRs. The problem of
primary user detection in CRs has also been addressed
using total variation minimization, modified OMP algo-
rithm, Bayesian framework, blind spectrum detection,
cooperative sensing, distributed sensing, adaptive sens-
ing, etc.

o UWB Communication: UWB communication basically
makes use of CS architecture called RMPI, for acqui-
sition of UWB signals. The reconstruction of original
signal can be done by exploiting its spatial and temporal
information. The other issues like, impulse radio detec-
tion, echo detection, channel estimation, high precision
ranging and non-coherent UWB systems, etc. has also
been addressed using CS.

2) VARIOUS ASPECTS OF COMMUNICATION SYSTEMS
o Direction of Arrival (DoA) Estimation: Method for com-
pressive beamforming using random projections of the
sensor data for DoA estimation has been proposed. CS
also has been used to solve problems in beamforming
like grid-mismatch, reducing the number of sensors,
DoA estimation for non-circular sources and also for the
arrays with multiple co-prime frequencies [109], [110].
o Information Security: Information security is an impor-
tant aspect of communication system. CS addresses this
issue by using measurement matrix as a secret key and
the compressive measurements as an encrypted mes-
sage. This is an auto-encryption feature of CS, which
makes CS as a technique for simultaneous acquisition,
compression and encryption of signals. This security
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feature of CS has been used in image processing for
image tempering localization, image copy detection,
secure image coding, secure watermarking, multi-image
encryption, simultaneous compression-encryption and
fusion, visual cryptography for multichannel trans-
mission, double encryption, remote sensing image
compression, encryption and optical encryption using
computational ghost imaging, etc. The audio signal
processing also makes use of security feature of CS
in audio tempering identification. Similarly, addressing
security aspect in video processing, CS has been used
for video coding, video forgery detection, etc. The other
application utilizing this feature are differential encryp-
tion providing privacy guarantee against adversaries
with arbitrary prior knowledge, multi-signal encryption,
ECG encryption, secure compressive wire-tap channel,
etc. [111]-[120].

o Network Traffic Monitoring: Compressing sensing has
been used to monitor network traffic with minimum
number of measurements, while maintaining acceptable
estimation accuracy. CS with expander graphs has been
used to maintain a compressed summary of average
packet arrival rate and instantaneous packet count using
small number of counters at a router in communication
network. It has also been used to reduce the number of
training symbols in a communication packet and in joint
source-channel network coding [121]-[123].

o Superresolution: Robust superresolution has been
achieved using CS. Prominent work on this aspect
includes spectral estimation in spaceborn tomographic
SAR, single image superresolution, geometric separa-
tion and multi-dimensional superresolution using primal
£1-minimization, etc. [127]-[129].

o Blind Source Separation (BSS): CS for BSS addresses

the separation of signal sources from the mixed
music/speech signal using two-stage cluster-then-£;-
optimization approach and using non-negative matrix
factorization, etc. [130].
The other aspects of communication systems addressed
using CS are feedback reduction for joint user identifi-
cation and SNR estimation, dynamic spectrum access,
indoor white-space exploration, random access in
machine type communications over frequency-selective
fading channels, multichannel sampling, channel esti-
mation in wireless OFDM systems, etc. [124]-[126].

D. PATTERN RECOGNITION

An expression invariant face recognition technique has
been proposed based on CS. This exploits the fact that
expression changes are sparse in consideration to whole
image. Another face recognition technique based on sparsity
preserving projections and ¢{-minimization has been pro-
posed. These projections have been shown to be invariant
to rotations, rescalings and translations of the data and also
contain natural discriminating information even in absence
of class labels.
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A robust speech recognition technique from missing data
has been proposed using CS. This exploits the fact that
missing features are sparse in a wider time window. Another
techniques for robust speaker recognition have also been pro-
posed in literature. In gesture recognition, a technique based
on £1-minimization has been proposed, achieving almost per-
fect user-dependent recognition and mixed-user recognition.
The applicability of CS for gait recognition has also been
demonstrated using gait energy image as the feature extrac-
tion process. Similar applications are iris recognition using
sparse representation, dictionary based computer vision and
pattern recognition, etc.

E. VIDEO PROCESSING

CS has enabled a real-time 3D video acquisition using sin-
gle pixel camera. Among CS based video processing tech-
niques, few are: distributed compressed video sensing in
which sampling of video frames is done independently while
reconstruction is done jointly, adaptive video sensing utilizing
block based CS reconstruction and streaming CS for high
speed periodic videos based on coded projections of dynamic
events, etc.

F. SPEECH AND SOUND PROCESSING

The applicability of CS for speech and sound processing has
been demonstrated in literature. Some of the ways that have
been used for compressive speech processing are: sparse lin-
ear predictions and sparse pattern retrieval in residual domain,
deriving and capturing compressively the sparse feature vec-
tor from mechanism of speech production which is differ-
ent for voiced and nonvoiced speeches, speech enhancement
based on BCS, and CS for speech coding exploiting the
sparsity in phonological features, etc. Similarly, CS for audio
signals includes aspects like security and relative impulse
response estimation, etc. CS has also been applied to sound
field reproduction with application to acoustic and ultrasound
treatment, anthropogenic ocean sound monitoring and source
localization, etc.

G. MANIFOLDS PROCESSING

Manifold models provide a strong framework for represent-
ing structure underlying the high dimensional data with the
help of small number of parameters. CS has been applied to
manifold-modeled data for achieving dimensionality reduc-
tion. The key information regarding manifold-modeled signal
can be preserved using random linear projections. Exploiting
the dependencies among the different dimensions of high
dimensional data, a CS based joint manifold framework has
also been proposed.

H. MICRO AND NANO-ELECTRONICS AND VLSI
APPLICATIONS

The applications in these areas that have been explored
using CS are: noninvasive post-silicon leakage power pro-
file tomography by exploiting the spasity due to correla-
tions in tomogram, post-silicon timing characterization by
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exploring the sparsity of timing variations in wavelet domain,
fine grained processor performance monitoring by exploiting
structured sparsity of processor’s micro-architectural infor-
mation [153], 3D Visualization of the iron oxidation state
in FeO/Fe304 core-shell nanocubes, modeling the spatial
variations of nanoscale ICs by exploring sparsity due to
correlated representation of spatial variations in frequency
domain, quantum state tomography [74], low-cost silicon
characterization of nanoscale integrated circuits, CS based
testing vehicle for 3D TSV pre-bond and post-bond testing
data, online estimation of system’s power distribution fac-
tors [158] and low complexity method for long term field
measurement of insulator leakage current [159], etc.

V. CHALLENGES AND FUTURE SCOPE

CS has gained a wider acceptance in a shorter time span,
as a sampling technique for sampling the signals at their
information rate. CS takes the advantage of sparsity or com-
pressibility of the underlying signal to simultaneously sample
and compress the signal. CS has a strong mathematical foun-
dation also. But, the increasing popularity and acceptability
of CS faces some challenges. We are highlighting some of
the challenges, which also leads to some working directions
in the field.

o There is need for a simple and efficient, universal CS
acquisition strategy which is applicable to majority of
the signals and also leads to faster acquisition.

o Similarly, a universal CS reconstruction algorithm,
which is faster, robust, less complex and gives guaran-
teed convergence is needed.

« Searching a suitable basis, in which signal to be acquired
has sparsest possible representation, is itself a tough
task. If one can identify the basis in which signal has
the sparsest possible representation, then it will help in
faithful reconstruction from further reduced CS mea-
surements. So, a system needs to be developed, which
can determine the sparsifying basis of signal.

o Development of rigorous performance bounds for the
issues like minimum number of measurements and
reconstruction iterations required for perfect reconstruc-
tion, guaranteed convergence, stable recovery, etc., are
also workable areas in this field.

o Also, research is being going on structured CS. The
advantages of this approach are faster acquisition, lower
complexity, easier to implement, etc. But the drawback
is that the faithful reconstruction requires more number
of measurements. Also, it is difficult to have structured
measurement matrices which obey RIP condition. Some
proposals of RIPless CS have also been seen in litera-
ture, which can be worked further to take advantages of
structured measurements in CS.

The theoretical concept of CS described earlier in this
paper is the classical CS. There can be application specific
challenges, that needs to be tackled by modifying the classical
version. Some of the highlights in this regard are presented
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below:

o In case of multidimensional signals, design of an acqui-
sition system and identification of a sparsifying basis
is very difficult. Kronecker product matrices has been
incorporated in CS to solve these problems. Other meth-
ods can be tried in this situation.

o The type of the signals in which non-zero coefficients
occur in clusters, are termed as block sparse signals. The
challenges encountered in applying CS to this type of
the signals are: block-sparsity and block coherence con-
siderations for block based acquisition, modifications in
reconstruction algorithms to account for block sparsity
and model mismatches, etc.

« Insome cases, CS measurements are gathered from mul-
tiple sources, which are related in some sense. In this sit-
uation, Bayesian framework helps in reducing the num-
ber of measurements by a criterion to stop acquisition
when the sufficient number of measurements have been
taken. This also gives a way for robust data fusion from
multiple sources. Another approach is to use distributed
coding algorithms, by exploring the joint sparsity in
multiple signals. Applicability of other approaches can
also be researched for this.

« Inference problems in signal processing like, detection,
classification, estimation and filtering, do not require
full signal reconstruction. Solving the inference prob-
lems from CS compressed measurements only, without
reconstructing the signal is a bigger challenge. This aids
in reducing measurement cost further and allows to get
rid of complex reconstruction process.

o Considering the importance of quantizing the CS mea-
surements in lieu of finite precision, a distortion is intro-
duced in CS measurements. Therefore, reconstruction
algorithms needs to be modified to account for quan-
tization error of CS measurements. Also, the research
is progressing towards recovering the CS measurements
which are quantized using a single bit only. This 1-bit
version of CS offers advantages like simple acquisition
and robustness to gross non-linearities. This is also a
promising direction to explore further.

e Other challenges are, reconstruction from binary
CS measurements, incorporating prior knowledge to
enhance reconstruction performance, addressing archi-
tectural issues for efficient hardware implementation,
efficient software implementations, measurement tech-
niques to further reduce minimum number of measure-
ments, etc.

VI. CONCLUSION

Introduction of CS has revolutionized many areas in signal
processing, where there were limited scopes. Some of the
major contributions are faster MRI, high quality image and
video acquisition using single pixel camera, acquisition of
UWRB signals while drastically reducing the power consump-
tion, etc. This paper has presented a systematical review of
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CS. Considering its rigorous mathematics, which is some-
times a barrier for many young researchers, we presented a
simplified introduction of CS. For an easy transition from the-
ory with practicality, a summary of CS acquisition techniques
and reconstruction approaches has also been presented. The
CS acquisition approach may vary from signal to signal. Sim-
ilarly, the reconstruction approach to be used is also highly
signal dependent, which may further needs to be modified
to suit a particular situation. It will be highly beneficial to
have a universal CS acquisition and reconstruction strategy.
A review of major application areas where CS is currently
being utilized has also been presented.
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