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ABSTRACT In this paper, dynamic user-centric cell clustering, which is capable of exploiting dynamics in
the channel states, is investigated for joint intra-cluster interference cancellation in a multi-cell environment.
A resource efficient cluster size minimization problem is formulated to dynamically group the cells into
clusters based on user channel states such that quality-of-service provisioning for cell-edge users can
be improved. The integer programming problem depends largely on the intra-cluster interference weight.
A subgradient algorithm is employed to solve the relaxed problem when no constrain on cooperation cost is
present. To reduce extra burden on backhaul due to base station (BS) cooperation, constraints on the number
of per-BS cooperative links and the maximum user-centric cluster size are introduced to the optimization
problem, which is solved efficiently by a greedy algorithm. Numerical results show that the proposed
dynamic user-centric clustering algorithms achieve significant improvements over existing static and fixed-
size dynamic clustering schemes in terms of cell-edge performance and backhaul efficiency. The proposed
greedy algorithm, in particular, can effectively alleviate the overall and per-BS cooperation cost while
guaranteeing the cooperative gain.With similar resource consumption and outage performance, the proposed
scheme achieves 12.6% higher rate gain compared with existing fixed size dynamic clustering strategy.

INDEX TERMS Channel state information, cooperative receiving, dynamic clustering, inter-cell
interference, QoS provisioning, user-centric.

I. INTRODUCTION
Inter-cell interference (ICI), which is induced by aggres-
sive frequency reuse in multi-cell cellular wireless systems,
may lead to severe performance losses in system throughput
and quality-of-services (QoS) of cell-edge users. In densely
deployed cellular networks, ICI is one of the key factors
that limits the system capacity/throughput [1]. Multi-cell
cooperative processing (MCP), also known as coordinated
multipoint (CoMP) in some recent cellular standards, has
been recognized as a promising technique that effectively
mitigates ICI [2]. The notion of MCP is in general referred to
as any kind of multi-node interference management scheme.
In recent literatures, it usually has a focus on multi-cell
joint signal processing. In the uplink of multi-cell wireless
systems, cooperative receiving is a typical MCP scheme,

where multiple base stations (BSs) jointly receive and
process signals to achieve macro diversity and interference
cancellation [3]. Even though full cooperation among all
the BSs in multi-cell networks can achieve the highest
possible cooperative gain [1], partial cooperation among clus-
tered cells is more practical in real applications when over-
head cost of cooperation is considered. Cooperation cost for
MCP operations mainly takes into account the information
exchange among cooperating BSs, extra synchronization and
channel estimation requirements, as well as the delay and
computational complexity imposed by cooperative receiv-
ing [2], [4], [5]. The cooperation cost is sensitive to the
number of cells involved in the cooperation and the inter-cell
distance, both of which rely heavily on the clustering strategy.
Because the BSs consume more than half of the total energy
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in typical cellular networks [6], it is crucial to properly design
clusters for cooperative receiving such that green communi-
cations can be achieved. In addition, in future ultra dense
cellular networks, the backhaul crunch is of great importance
to resource and interferencemanagement [7]. Considering the
power consumption, backhaul occupation, as well as com-
plexity in signal processing, the tradeoff between the gain
and the cost of cooperation must be carefully addressed in
the clustering strategy design.

Generally there are two categories of cell clustering strate-
gies, namely static clustering and dynamic clustering. The
static schemes pre-define clusters according to system infor-
mation such as radio access network (RAN) architecture and
locations of BSs. Even though typically having low com-
plexity, static clustering achieves only limited cooperative
gains because dynamics in the wireless channels are not
captured [8], [9]. Dynamic clustering, on the other hand,
can periodically reconfigure clusters by considering wireless
fading channel states in the design problem. As a result,
fading dynamics can be exploited to achieve higher coop-
erative gains at the cost of increased complexity. Dynamic
grouping of uplink user equipments (UEs) for joint detec-
tion was proposed in [10]. Dynamic clustering algorithms
based on the knowledge of channel state information (CSI)
were studied for the uplink and downlink in [11] and [12],
respectively. Compared with static clustering, the proposed
algorithms achieved improved fairness and higher gains on
sum-rate with higher complexity. Yoon et al. [13], focused
on QoS provisioning for cell-edge UEs, and a maximum
coordination gain based clustering algorithm was developed.
To reduce complexity of dynamic clustering but still reap
the benefits of exploiting channel dynamics, semi-dynamic
strategies are proposed by limiting the choices to prede-
fined static clusters [14]. It is noted that all the aforemen-
tioned cell clustering algorithms adopted the network-centric
approach, which divides the network into non-overlapping
clusters. Intra-cluster interference can be effectively elimi-
nated through cooperative processing. However, cluster-edge
UEs may still experience severe inter-cluster interference.

To improve service to cluster-edge UEs, edge-specific
clustering has been proposed [15], [16]. The idea of
user-centric clustering conducts clustering based on channel
conditions of each UE such that fairness and cluster-edge
performance can be further improved. By maximizing the
normalized outage capacity of each UE, user-centric adap-
tive clustering was studied for dense cellular networks [17].
A semi-dynamic user-centric clustering algorithm that max-
imizes the average net throughput of cloud-RAN downlink
was proposed in [14]. The tradeoff between spectral effi-
ciency (SE) and load balancing in downlink CoMP was stud-
ied in [18], and a constrained SE maximization problem was
solved in the clustering strategy design. However, there may
exist BSs with favorable conditions for many UEs such that
these BSs would be selected by a relatively large number of
clusters. This imposes heavy cooperation burden onto those
‘‘popular’’ BSs in the form of excessive power consumption

and demand for extra backhaul. Therefore, it is reasonable
to consider cooperation opportunities of a particular BS as
limited resources, and the clustering algorithm should take
into account fairness in imposing cooperation burden onto
the BSs.

It is noted that most existing cell clustering schemes focus
on selection of best cooperation partners under certain con-
straints such that cooperative gain is maximized. A specific
cluster size is usually predefined, and the BSs that maximize
the cooperative gain are selected to form the cluster. For
some UEs which receive strong ICI from a small number
of co-channel UEs, a small cooperation cluster is sufficient
to achieve satisfactory performance. Fixing the cluster size
to a much greater value results in inefficient use of coop-
eration resources. In [19], minimization of the intra-cluster
exchange of the UE data was considered, and a channel
strength based clustering algorithm was proposed for the
downlink. Under the average outage probability constraint,
the number of cooperative BSs was minimized for different
automatic repeat request (ARQ) and hybrid ARQ (HARQ)
protocols [20]. Compared with clustering schemes with
fixed cluster size, better tradeoff between the gain and cost
due to cooperation was achieved through cluster size min-
imization subject to a pre-defined cooperative performance
target. However, existing cell clustering designs usually
assume that the resources for cooperation, e.g., power and
backhaul, were sufficient, and each UE optimizes its clus-
tering strategy independently [20]. More practical con-
siderations should be included in cell clustering designs
for MCP.

In this paper, we investigate user-centric cell clustering for
uplink multi-cell wireless networks for QoS provisioning of
cell-edge UEs, where efficient use of cooperation resources
and fairness among BSs regarding cooperation burden are
taken into consideration. The main contributions are summa-
rized in the following.
• Resource efficient user-centric clustering (REUCC)
problem is formulated as a cluster size minimization
problem, which is shown to have a form of 0-1 integer
programming (IP).

• By invoking the Lagrangian dual approach, approxi-
mate analytic solution to the REUCC problem can be
obtained when constraints on cooperation resources are
not present.

• When the cluster size per UE and the number of cooper-
ation links per BS are constrained, a heuristic dynamic
clustering algorithm based on calculation of the interfer-
ence weight has been proposed.

The remainder of this paper is organized as follows.
In Section II, the system model for dynamic user-centric
cell clustering is presented. The optimization problem that
minimizes the cluster size is formulated in Section III, and
the approximate analytic solution is derived. In Section IV,
constraints on the cluster size and the number of cooperation
links per BS are considered, and the interference weight
based heuristic dynamic user-centric clustering algorithm is
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proposed. Numerical results are presented in Section V,
followed by concluding remarks in Section VI.

II. SYSTEM MODEL
A multi-cell wireless network with clustered cooperative
receiving for the uplink is considered in this work. The
network consists of N cells, each having a single BS with
K receiving antennas. Tight frequency reuse having the fre-
quency reuse factor equal to 1 is considered. Each randomly
located UE is equipped with a single transmit antenna. UEs
transmitting on the same sub-carrier introduce ICI to each
other. The system model is illustrated by Fig.1, where the
solid lines denote signals transmitted from a UE to its serv-
ing BS, and the dashed lines denote interferences to other
cells.

FIGURE 1. An example of the uplink ICI in a multi-cell wireless system.

Assume that the available spectrum is divided into
non-overlapping sub-bands, and in any specific cell one sub-
band is allocated to only one UE according to the orthogonal
allocation principle to eliminate intra-cell interference. Cell
clustering and cooperative receiving over all sub-carriers then
reduces to multiple independent single carrier sub-problems
where we determine the clustering strategy for interfering
UEs on each sub-band before conducting joint processing.
We therefore focus on the ICI among UE transmissions on
one specific sub-carrier, i.e., the single sub-carrier case. The
results can be easily extended to systems using multiple
sub-carriers.

By allocating orthogonal time-frequency resources to dif-
ferent UEs in the same cell, each BS is the primary serving
BS of one UE only. Equivalently, in the simplified single
sub-carrier system model, we have one UE for each BS as
the associated UE. The BS in the n-th cell is denoted as the
n-th BS, and the UE operating on the target sub-carrier in the
n-th cell is denoted as the n-th UE.At the n-th BS, the received
signal yn ∈ CK×1 is given by

yn =
N∑
u=1

hunsu + nn (1)

= hnnsn +
∑
u 6=n

hunsu + nn, (2)

where su denotes the normalized transmitted signal from the
u-th UE with E[sHu su] = 1, hun ∈ CK×1 denotes the channel
state vector from the u-th UE to the n-th BS, and nn ∈ CK×1 is
the additive white Gaussian noise (AWGN) vector with zero
mean and variance σ 2

n for each element. The first term in (2)
represents the desired signal received by the n-th BS, which
is transmitted by the n-th UE, and the second term denotes
the ICI component from interfering UEs.

By employing the zero-forcing (ZF) linear receiver, which
is of low complexity, the 1×K receiving weight vector wn at
the n-th BS is given by [13]

wn =

(
hn Hn hnn

)−1
hn Hn . (3)

In the multiple sub-carrier scenario, the subsequent ZFmatrix
can be obtained similarly by combining multiple row vectors
wns, each for one sub-carrier [11], [13].
Assume that the BS can perfectly estimate the CSI of the

uplink channels from both the served UE and the interfer-
ing UEs. After individual receiving at each UE, the n-th BS
is able to detect the transmitted signal sn of the n-th UE
as ŝ(NC)n , which is given by

ŝ(NC)n = wnyn (4)

= sn +
∑
u 6=n

wnhunsu + wnnn, (5)

where the superscript (NC) denotes the non-cooperation
mode.

With no cooperative receiving, the achievable rate C (NC)
n

of the n-th UE can be derived as

C (NC)
n = log2

1+
1∑

u 6=n
|wnhun|2 + σ̃ 2

n

, (6)

where the effective additive noise variance is given
by σ̃ 2

n = ||wn||
2σ 2

n .
In the cooperation mode, the n-th UE is served by a coop-

eration cluster, denoted as Gn, which consists of An = |Gn|
BSs. The clusterGnmust at least include the n-th UE’s serving
BS, i.e., the n-th BS. On each sub-band, cooperative receiving
within a cluster is achieved by applying additional interfer-
ence mitigation techniques such as successive interference
cancellation (SIC) [21] and interference rejection combining
(IRC) [22] at the cooperating BSs. In this work, we assume
such interference mitigation is done perfectly such intra-
cluster interference is completely removed. From the user-
centric perspective, the above cooperative receiving process
is independently done for each user within its cooperation
cluster on the allocated sub-band. The information exchange
for joint processing is only among BSs within a cluster, and
only on the sub-band reused by the users whose serving
BSs are in the cluster. This process therefore involves no
information exchange among BSs on different sub-bands.
As a result, after cooperative receiving, the n-th BS is able
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to detect the n-th UE’s transmitted signal from

ŝ(CO)n = sn +
∑
u/∈Gn

wnhunsu + wnnn, (7)

where the superscript (CO) denotes the cooperation mode.
The corresponding achievable rate C (CO)

n of the n-th UE in
the cooperation mode is

C (CO)
n = log2

1+
1∑

u/∈Gn
|wnhun|2 + σ̃ 2

n

. (8)

III. RESOURCE EFFICIENT DYNAMIC USER-CENTRIC
CLUSTERING FOR QoS PROVISIONING
From the QoS provisioning point of view, user-centric clus-
tering and cooperative receiving should be used when the
channel state between a UE and its serving BS is poor such
that the QoS requirement cannot be met. An achievable rate
threshold, or a received SINR threshold instead, is often
adopted to specify the QoS requirement of a UE. On the other
hand, because the overhead due to information exchange for
cooperative processing, as well as the computational com-
plexity of clustering algorithms, largely depends on cluster
size, an efficient clustering strategy should have the cluster
size as small as possible.

A. RESOURCE EFFICIENT USER-CENTRIC CLUSTERING
PROBLEM FORMULATION
Updating of cell clustering can be adjusted adaptively accord-
ing to each UE’s mobility and channel dynamics. Typically
a frame-by-frame procedure can be adopted to check if a
UE experiences significant changes in its large-scale chan-
nel state such that it needs to update its cooperative cluster
accordingly. In order to focus on clustering strategy design,
we assume in this work that user association and scheduling
are determined (dynamically) in another separate procedure
before cell clustering, which results in fixed time-frequency
resource allocation during the clustering period.

In user-centric clustering, each cluster is formed for a spe-
cific UE on the UE’s allocated sub-band. As a result, a typical
BS, either a serving BS or a cooperative BS, is possibly
involved in multiple clusters for different UEs on different
sub-bands. A rate threshold CT is employed in this work
as the QoS constraint, which denotes the required uplink
transmission rate of the UEs.1 For the i-th UE (i = 1, · · · ,N ),
if C (NC)

i ≥ CT , the UE experiences relatively good uplink
channel state. We therefore declare this UE as a cell-centre
UE, which does not require cooperative processing to guar-
antee the QoS provisioning. For cell-centre UEs, the single
cell processing on sub-carriers allocated to cell-centre UEs
is straightforward, which are excluded from the user-centric

1Determining CT in real applications is related to the service type and
user priority of each UE. Using different values of CT would not affect the
execution of the proposed and cited clustering algorithms. For demonstration
purpose, in this work we assume that all the UEs have the same QoS
requirement and thus set a unified CT for the formulated problem.

clustering process and the subsequent cooperative receiv-
ing. Conversely, if C (NC)

i < CT , which means the i-th UE
experiences poor channel state such that the QoS require-
ment cannot be satisfied by the serving BS, we declare the
i-th UE is a cell-edge UE which has the initiative for using
cooperative processing [16]. All the cell-edge UEs in the
multi-cell network form a set U , which is defined as

U = {i ∈ U |C (NC)
i < CT , i = 1, · · · ,N }. (9)

The multi-cell cooperative receiving is performed distribu-
tively at each serving BS. Specifically, when a UE fails to
meet the rate thresholdCT , its local serving BS initiates coop-
erative receiving. The BSs in this UE’s cooperative cluster
send their local received signals, i.e., interfering signals to
this UE’s uplink transmission, to this UE’s serving BS. After
collecting all the interfering signals within the cooperative
cluster, the serving BS performs intra-cluster interference
cancellation using successive interference cancellation tech-
niques as in [21]. To achieve resource efficient clustering for
cooperation, the tradeoff between cooperative gain and cost
should be considered in the design objective. Consequently,
in this work the cell clustering problem does not optimize
performance metrics such as rate or outage probability. Alter-
natively, we minimize the cluster size, which is an indicator
of the amount of cooperation resources involved in the joint
processing, subject to rate constraints for cell-edge UEs. The
notion of cooperation resources includes, but not limited to,
signal processing for ICI cancellation, extra overhead for
information exchange, backhaul occupation, etc. It follows
from (8) that if the achievable cooperative rate of the i-th UE
satisfies the rate constraint CT , we have

C (CO)
i = log2

1+
1∑

j/∈Gi
|wih

j
i|
2 + σ̃ 2

i

 ≥ CT . (10)

Equation (10) reveals that with fixed signal power,
the uplink rate of the i-th UE achieved by user-centric
clustering and cooperative processing is determined by the
effective inter-cluster interference

∑
j/∈Gi |wih

j
i|
2 plus the

effective additive noise σ̃ 2
i . The worst case is that when a

UE experiences very poor channel, σ̃ 2
i alone is sufficiently

large such that (10) can never be satisfied even though we
include all the BSs in the network in its cooperative cluster,
i.e. Gi = {1, · · · ,N }. A best effort solution, from the QoS
provisioning perspective, is to allocate the maximum cluster
Gi = {1, · · · ,N } to the i-th UE to make C (CO)

i as close to CT
as possible.

To focus on the clustering scheme design, in the follow-
ing we assume that both hji and σ

2
i are known information.

The effective interference terms |wih
j
i|
2 and the effective

noise terms σ̃ 2
i can be calculated accordingly. For simplicity,

we define the interference weight (IW) from the j-th UE to
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the uplink of the i-th UE as

�
j
i =

{
|wih

j
i|
2, if j 6= i

0, if j = i.
(11)

With a rate constraint CT > 0, (10) is equivalent to∑
j/∈Gi

�
j
i ≤

1
2CT − 1

− σ̃ 2
i , (12)

which means that the clustered cooperative rate constraint is
equivalent to requiring the inter-cluster interference to be no
greater than 1

2CT −1
− σ̃ 2

i .
Denote the set of all the BSs in the network as B = {j ∈

B|j = 1, · · · ,N }. In the single sub-carrier model, because
each UE only has one primary serving BS, we can use cell
indices for both the cell-edge UE set U and the BS set B,
and we also have U ⊆ B. Furthermore, a binary 0-1 vari-
able xi,j is introduced to denote the relationship between the
j-th BS and the cluster Gi of the i-th UE. When xi,j = 1, the
j-th BS belongs to Gi. Conversely when xi,j = 0, j /∈ Gi.
The equivalent QoS constraint (12) is rewritten as∑

j∈B
xi,j�

j
i ≥

∑
j∈B

�
j
i + σ̃

2
i −

1
2CT − 1

. (13)

Based on the above assumptions, we formulate the follow-
ing resource efficient user-centric cell clustering (REUCC)
problem P1 that minimizes the total cluster size in the net-
work subject to QoS constraints for all UEs in U .

P1 : F(v,X)

= min
v,X

∑
i∈U

∑
j∈B

xi,j (14)

s.t.
∑
j∈B

xi,j�
j
i ≥ vi

∑
j∈B

�
j
i + σ̃

2
i −

1
2CT − 1

,
∀ i ∈ U , (15)

xi,i = 1, ∀ i ∈ U , (16)

xi,j + vi ≥ 1, ∀ i ∈ U ,∀ j ∈ B, (17)

xi,j ∈ {0, 1}, ∀ i ∈ U ,∀ j ∈ B, (18)

vi ∈ {0, 1}, ∀ i ∈ U . (19)

As defined earlier, U and B in P1 denote the set of cell-edge
UEs and the set of BSs, respectively. X = {xi,j; i ∈ U , j ∈ B}
is the matrix form that include all xi,j’s, and v = {vi; i ∈ U} is
a 0-1 indicator variable that shows whether constraint (13) is
satisfied. The notation Ai =

∑
j∈B xi,j is used in subsequent

sections to denote the cooperative cluster size for cell-edge
UE i ∈ U . When vi = 1, (15) reduces into (13), and
(17) is equivalent to xi,j ≥ 0,∀j ∈ B, which is satisfied
surely because of the feasible set of xi,j defined by (18).
When vi = 0, on the other hand, it can be observed from
(11) and (17) that (15) is satisfied, which further indicates
that (17) is equivalent to xi,j ≥ 1,∀j ∈ B. We therefore
have xi,j = 1,∀j ∈ B when vi = 0, which is interpreted as

that for the i-th UE, if (13) can not be satisfied, the coopera-
tive cluster Gi is set to B. Moreover, (16) indicates that the
i-th BS, which is the primary serving BS of the i-th UE,
is always included in Gi.

B. REUCC PROBLEM DECOMPOSITION AND
LAGRANGIAN DUAL SOLUTION
Problem P1 is a 0-1 integer programming problemwith linear
objective function and linear constraints. However, analytical
solution to an IP problem is often not available due to the
discrete nature of the optimization variables. In this paper,
we employ the decomposition and Lagrangian dual approach
to address this issue. It can be observed from P1 that all
the constraints are independent of the index i ∈ U and the
objective function. The problem F(v,X) can therefore be
decomposed as

F(v,X) =
∑
i∈U

Fi(vi, xi), (20)

where the row vector xi = {xi,j; j ∈ B}. The sub-problem
Fi(vi, xi) is formulated as

P1.1 : Fi(vi, xi)

= min
vi,xi

Ai (21)

s.t.
∑
j∈B

xi,j�
j
i ≥ vi

∑
j∈B

�
j
i + σ̃

2
i −

1
2CT − 1

, (22)

xi,i = 1, (23)

xi,j + vi ≥ 1, ∀ j ∈ B, (24)

xi,j ∈ {0, 1}, ∀ j ∈ B, (25)

vi ∈ {0, 1}. (26)

The variable vi is an integer that takes its value from
{0, 1}, and it only appears in the constraints of problem P1.1.
We therefore have

Fi(vi, xi) = min {Fi(0, xi),Fi(1, xi)} , (27)

where Fi(0, xi) and Fi(1, xi) denote the value of Fi(vi, xi)
with vi = 0 and vi = 1, respectively. More specifically, when
vi = 0, we have xi,j = 1,∀j ∈ B as discussed in Section III-A.
Then Fi(0, xi) can be rewritten as

P1.2 : Fi(0, xi) = min
xi

∑
j∈B

xi,j (28)

s.t. xi,i = 1, (29)

xi,j ∈ {0, 1}, ∀ j ∈ B. (30)

It is straightforward that Fi(0, xi) = N , where N is the
cardinality of the set B. In this case, xi,j = 1,∀j ∈ B.
When vi = 1, constraint (22) reduces to (13), and (24) is

satisfied surely. We therefore have

P1.3 : Fi(1, xi)

= min
xi

∑
j∈B

xi,j (31)
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s.t.
∑
j∈B

xi,j�
j
i ≥

∑
j∈B

�
j
i + σ̃

2
i −

1
2CT − 1

, (32)

xi,i = 1, (33)

xi,j ∈ {0, 1}, ∀ j ∈ B. (34)

In the extreme case when xi,j = 1,∀j ∈ B, (32) reduces to

σ̃ 2
i ≤

1
2CT − 1

. (35)

If (35) is not satisfied, there is no solution to P1.3. We set
Fi(1, xi) = +∞ and plug it into (27). The solution to P1.2 is
the solution to P1.1 when (35) is not satisfied. When (35) is
satisfied, there is at least one solution to P1.3. Since xi,i = 1,
problem P1.3 reduces to

P1.4 : Fi(1, xi)

= min
x̃i

∑
j∈B

xi,j + 1 (36)

s.t.
∑

j∈B/{i}
xi,j�

j
i ≥

∑
j∈B/{i}

�
j
i + σ̃

2
i −

1
2CT − 1

, (37)

xi,j ∈ {0, 1}, ∀ j ∈ B/{i}, (38)

where x̃i = {xi,j; j ∈ B/{i}}. A Lagrangian relaxation
function can be formulated by writing down the dual of (37)

L(x̃i, λ) =
∑

j∈B/{i}
xi,j + λ

− ∑
j∈B/{i}

xi,j�
j
i

+

∑
j∈B/{i}

�
j
i + σ̃

2
i −

1
2CT − 1


(39)

=

∑
j∈B/{i}

xi,j
(
1− λ�j

i

)

+λ

 ∑
j∈B/{i}

�
j
i + σ̃

2
i −

1
2CT − 1

, (40)

where λ ≥ 0 is the Lagrangian multiplier for (37). We can
further obtain the Lagrangian dual problem of P1.4 as

LD1.4 : max
λ

d(λ) (41)

s.t. λ ≥ 0, (42)

where d(λ) denotes the Lagrangian relaxation problem
of P1.4

LR1.4 : d(λ) = min
x̃i

L(x̃i, λ) (43)

s.t. xi,j ∈ {0, 1}, ∀ j ∈ B/{i} (44)

It can be observed from (40) that minimizing L(x̃i, λ) in
LR1.4 is equivalent to minimizing

∑
j∈B/{i} xi,j(1 − λ�

j
i),

which further implies that the solution to LR1.4 is

xi,j =

{
1, if 1− λ�j

i < 0.

0, if 1− λ�j
i ≥ 0.

(45)

After solving the Lagrangian relaxation problem, we fur-
ther address the Lagrangian dual problem about λ. The sub-
gradient method is often adopted for the search of Lagrangian
multiplier, where the updating of λ is given by

λ(k+1) = P+

λ(k) + δλ(k)
− ∑

j∈B/{i}
x(k)i,j �

j
i

+

∑
j∈B/{i}

�
j
i + σ̃

2
i −

1
2CT − 1

 . (46)

The index k represents the number of iterations, and δλ(k)
denotes the step size used by the k-th iteration. P+ denotes
the mapping from R to R+, i.e., P+[λ] = max(0, λ). The
adaptation terminates when d(λ) converges. Convergence
is guaranteed when suitable step size and termination con-
dition are selected [23]. Due to the weak duality of the
Lagrangian dual problem, a lower bound of P1.4 can be
obtained by solving LD1.4 [24]. If the solution to LD1.4
satisfies all the constraints of P1.4, the solution to LD1.4
is an optimal solution to P1.4. Otherwise, it provides an
approximate (suboptimal) solution to P1.4.

Details of the IW-based unconstrained user-centric
dynamic clustering algorithm (IWUC) for the REUCC prob-
lem without having per-UE or per-cell resource constraints is
given in Algorithm 1. The execution of the IWUC algorithm,
based on the Lagrangian relaxation procedure, requires both
distributive and centralized processing. Specifically, each UE
and its serving BS together determine user-centric clustering
indices xi,j as specified by (45) in each iteration. The serving
BS then reports the clustering indices to a central processing
station (a lead BS in a region or a radio network con-
troller (RNC) type equipment) through backhaul connection
for the update of the dual variable λ according to (46), which
will be broadcast to all the BSs for the update of xi,j in the
next iteration. This procedure is repeated until convergence.

In Step 1 of the IWUC algorithm, the calculation of C (NC)
i

and the comparison between C (NC)
i and CT are conducted

for each i ∈ B, which gives a computational complexity of
max(O(N 3),O(N 2K )). Assume that the number of elements
in U is M ≤ N , the computational complexity is O(MN ) in
Step 2 and Step 3, and it is O(MN 2) and O(M ) in Step 4 and
Step 5, respectively. To sum up, the computational complex-
ity of the IWUC algorithm is max(O(N 3),O(N 2K )). Accord-
ing to our observations in the numerical studies, convergence
of the IWUC algorithm is fast.

IV. USER-CENTRIC CLUSTERING SUBJECT TO PER-UE
AND PER-BS RESOURCE CONSTRAINTS
A. PER-UE AND PER-BS RESOURCE
CONSTRAINTS FOR REUCC
The optimization problem P1 aims at improving uplink rates
of cell-edge UEs to satisfy the QoS constraint usingminimum
cooperative resources (cluster size). For UEs achieving rela-
tively low uplink rate at the non-cooperation mode, a larger
cluster is usually required for cooperative receiving to to
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Algorithm 1 The IW-Based User-Centric Dynamic Clus-
tering Algorithm for REUCC Problem Without Per-UE or
Per-Cell Resource Constraints (IWUC)

Step 1
1) Calculate C (NC)

i for all UEs i = 1, · · · ,N according
to (6); if C (NC)

i < CT , put the i-th UE into the cell-
edge UE set U .

2) Calculate σ̃ 2
i for all i ∈ U .

3) If σ̃ 2
i > 1/(2CT − 1), let vi = 0, xi,j = 1,∀j ∈ B,

Fi(0, xi) = N ; or else, go to Step 4.
4) Initialize the Lagrangianmultiplier λ and the iteration

index k , calculate d(λ) and xi based on (43) and (45),
respectively; k = k + 1, update λ according to (46),
then update d(λ) and xi until d(λ) converges; obtain
Fi(1, xi) based on xi.

5) Obtain the final values of (vi, xi) according to (27).
Go back to Step 2, until all UEs in U finish the
clustering procedure.

satisfy the QoS requirement. In extreme cases when UEs
have very poor channel state, the best effort scheme requires
the UE to use the maximum cluster, i.e. all the BSs in the
system, to approach the QoS target, which is not efficient nor
practical in real applications. We next consider constraints on
the cluster size Ai for each i ∈ U , and introduce an upper
bound on the cluster size AT ≤ N

Ai =
∑
j∈B

xi,j ≤ AT . (47)

For each BS j ∈ B, on the other hand, we denote by Bj
the number of cooperative links provided by the j-th BS
in cooperative receiving for cell-edge UEs in other cells.
In order to balance the cooperation burden among BSs such
that fairness is taken into account in the cooperation, an upper
bound on the cooperative links per BS, denoted by BT ≤ N
is also considered. For short, BT is referred to as the BS
cooperation index in this paper.

Bj =
∑

i∈U/{j}
xi,j ≤ BT . (48)

From a cooperative resource perspective, (47) defines the
maximum resource that a UE can receive, and (48) specifies
the maximum resource each BS would provide. By adding
(47) and (48) to problem P1, the REUCC problem with per-
UE and per-BS resource constraints is reformulated as the
follows.

P2 : F̃(v,X)

= min
v,X

∑
i∈U

Ai (49)

s.t.
∑
j∈B

xi,j�
j
i ≥ vi

∑
j∈B

�
j
i + σ̃

2
i −

1
2CT − 1

,
∀ i ∈ U , (50)

∑
j∈B

xi,j ≤ AT , ∀ i ∈ U , (51)

∑
i∈U/{j}

xi,j ≤ BT , ∀ j ∈ B, (52)

xi,i = 1, ∀ i ∈ U , (53)∑
j∈B

xi,j + vi
∑
j∈B

(1− xi,j) = AT + vi(N − AT ),

∀ i ∈ U , (54)

xi,j ∈ {0, 1}, ∀ i ∈ U and ∀ j ∈ B, (55)

vi ∈ {0, 1}, ∀ i ∈ U . (56)

Problem P2 is also a 0-1 IP problem with linear and non-
linear constraints. However, the introduction of constraint
(48) couples the clustering sub-problems for each UE. Differ-
ent from (17) in P1, this constraint (54) reduces the maximum
cluster size from N to AT such that higher efficiency can be
achieved, but with a reduced level of satisfactory to the QoS
requirement.

B. EFFICIENT GREEDY HEURISTIC SOLUTION
FOR RESOURCE CONSTRAINED REUCC
Due to the use of the Lagrangian dual and sub-gradient
method, iterative searching is incorporated in the IWUC
algorithm. This leads to the high computational complexity
of IWUC as pointed out in Section III-B. Compared to P1,
solving P2 is more involved because of the newly added cou-
pling constraints. To reduce the computational complexity,
we propose a low-complexity heuristic algorithm for P2 in
the following.

It is observed from P2 that (52) is the only constraint
that depends on i. (52) denotes that for all cell-edge UEs,
the cooperation opportunities provided by each BS is limited.
In order to reduce the dimension of the optimization variables
in P2, we first sort UEs in the set U and clustering for
each UE is determined one by one in a queue successively.
To ensure (52), after one UE determines its cooperative
cluster, the remaining cooperation opportunities of each BS
must be updated. The complex IP problem P2 can thus be
simplified and decomposed into a series of IP problems of one
dimensional optimization variables. The following subprob-
lemP2.1 for the i-th UE in the processing queue is formulated
as

P2.1 : F̃i(vi, xi)

= min
vi,xi

∑
j∈B̃(i)

xi,j (57)

s.t.
∑
j∈B̃(i)

xi,j�
j
i ≥ vi

∑
j∈B

�
j
i + σ̃

2
i −

1
2CT − 1

, (58)

∑
j∈B̃(i)

xi,j ≤ AT , (59)

xi,i = 1, (60)
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∑
j∈B̃(i)

xi,j + vi
∑
j∈B̃(i)

(1− xi,j) = AT + vi(βi − AT ),

(61)

xi,j ∈ {0, 1}, ∀ j ∈ B̃(i), (62)

vi ∈ {0, 1}, (63)

where B̃(i) represents the set of BSs which still have coop-
eration opportunities left when determining the cooperative
cluster for the i-th UE, and βi is the cardinality of B̃(i). Note
that B̃(i)

⊆ B because once a BS has reached the maximum
number of cooperation links BT , it must be removed from
B̃(i) to ensure that (52) is satisfied in the following clustering
process for the i-th and the remaining UEs. The serving BS of
the i-th UE is always in its candidate cooperative BS set B̃(i),
i.e. xi,i = 1 is guaranteed surely.

The number of BSs in B̃(i) depends on the sorting order
of UE set U , i.e. the order of the successive processing.
In this work we give higher priority to cell-edge UEs having
higher uplink rates at the non-cooperation mode, i.e., the UEs
are sorted according to descending order of C (NC)

i and the
user-centric clusters are determined successively according
to the order by solving P2.1. It is because cell-edge UEs with
lower rates without cooperation usually suffer from higher
ICI or poorer channel condition, which implies that they are
more likely to require

Similar to (27), for problem P2.1, we have

F̃i(vi, xi) = min
(
F̃i(0, xi), F̃i(1, xi)

)
, (64)

where F̃i(0, xi) and F̃i(1, xi) denote the values of F̃i(vi, xi)
with vi = 0 and vi = 1, respectively.

When vi = 0, subproblem P2.1 reduces to P2.2

P2.2 : F̃i(0, xi) = min
xi

∑
j∈B̃(i)

xi,j (65)

s.t.
∑
j∈B̃(i)

xi,j = AT , (66)

xi,i = 1, (67)

xi,j ∈ {0, 1}, ∀ j ∈ B̃(i). (68)

The number of elements in B̃(i)/{i} is βi − 1. P2.2 can be
solved only when βi ≥ AT . To make C (CO)

i as close to CT as
possible, the (AT − 1) best candidates in B̃(i)/{i}, along with
the i-th BS, are selected to form the i-th UE’s cooperative
cluster. In other words, for the (AT − 1) BSs in B̃(i)/{i} with
highest �j

is, xi,j is set to 1. Conversely, when βi < AT ,
there is no solution to P2.2. A best effort strategy similar to
that discussed in Section III-B can be employed. As a result,
F̃i(0, xi) = min(βi,AT ).
When vi = 1, subproblem P2.1 reduces to the following

problem P2.3.

P2.3 : F̃i(1, xi)

= min
xi

∑
j∈B̃(i)

xi,j (69)

s.t.
∑
j∈B̃(i)

xi,j�
j
i ≥

∑
j∈B

�
j
i + σ̃

2
i −

1
2CT − 1

, (70)

∑
j∈B̃(i)

xi,j ≤ AT , (71)

xi,i = 1, (72)

xi,j ∈ {0, 1}, ∀ j ∈ B̃(i). (73)

Let αi = min(βi−1,AT−1). A total number of αi BSs having
the αi largest �

j
i in B̃(i)/{i} are declared as members of Ã(i),

the set of candidate cooperative cells for the i-th UE. When∑
j∈Ã(i) �

j
i <

∑
j∈B �

j
i+σ̃

2
i −1/(2

CT−1), there is no solution

to P2.3, so we set F̃i(1, xi) = +∞. When
∑

j∈Ã(i) �
j
i ≥∑

j∈B �
j
i+ σ̃

2
i −1/(2CT −1), P2.3 can be solved. We first let

xi,i = 1 and xi,j = 0,∀j ∈ B̃(i)/{i}. For all j ∈ Ã(i), we sort the
candidate cooperative BSs according to the descending order
of�j

i. The j-th BS with the largest�j
i in Ã(i) is removed from

Ã(i) and selected for cooperation by setting xi,j = 1, until∑
j∈B̃(i) �

j
i ≥

∑
j∈B �

j
i+σ̃

2
i −1/(2

CT −1). After determining

all xi,js for the i-th UE, we obtain xi and F̃i(1, xi). Based
on solutions to P2.2 and P2.3, we can obtain the solution
to P2.1 from (64), which gives the clustering scheme for the
i-th UE. The process then moves on to determine the cooper-
ative cluster for the next UE.

The IW-based dynamic cell clustering algorithm with
constraints on cooperative resources (IWCC) is summarized
in Algorithm 2. The IWCC algorithm is mainly based on
distributed processing at the UEs having demand for coop-
eration. In order to calculate �j

i locally, some channel state
information needs to be shared among BSs through back-
haul. The computational complexity of Algorithm 2 is mainly
introduced by Steps 1 through 4. The noncooperative UE rate
C (NC)
i is calculatedN times, once for eachUE. TheseN C (NC)

i
values are then compared with the rate threshold CT , which
gives computational complexity of max(O(N 3),O(N 2K )).
Assume there are M ≤ N UEs in the cell-edge UE set U ,
the value of �j

i is thus calculated M (N − 1) times. In order
to sort the UEs according to their IW �

j
i, up to M sorting

operations would be required in Step 2. When the upper
bound of the cluster size is less than or equal to N , i.e.
AT ≤ N , there are N evaluations of

∑
j∈B �

j
i+ σ̃

2
i −

1
(2CT −1)

,
and up to M (AT − 1) additions and comparisons to check
the constraint

∑
j∈B̃(i) xi,j�

j
i ≥

∑
j∈B �

j
i + σ̃

2
i −

1
(2CT −1)

.

The computational complexity is thus O(N 2K ) from Step 2
to Step 4. Therefore the IWCC algorithm has computational
complexity of max(O(N 3),O(N 2K )). It can be observed that
the computational complexity of the IWUC algorithm and
that of the IWCC algorithm have the same order of magni-
tude. However, the iterative procedure of the IWUC algorithm
would make its actual computational complexity higher than
that of the IWCC algorithm.

Note that the information exchange over the backhaul
for execution of the IWUC and IWCC algorithms is much
lower than the backhaul resource occupation due to multi-cell
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Algorithm 2 The IW-Based Dynamic Cell Clustering
Algorithm for REUCC Problem Subject to Constraints on
Cooperative Resources (IWCC)

Step 1
1) Calculate C (NC)

i (i = 1, · · · ,N ) for all UEs accord-
ing to (6); if C (NC)

i < CT , put the i-th UE into the
cell-edge UE setU ; sort the UEs inU according to the
descending order of C (NC)

i ; initialize the candidate
BS set B̃(i) and the number of cooperative links Bj
the j-th BS allows for all j ∈ B.

2) For the i-th UE in U , calculate �j
i for all j ∈ B̃(i)/{i},

and sort them in a descending order; calculate αi =
min(βi− 1,AT − 1), the BSs having the αi largest�

j
i

values are designated as members of the set Ã(i).
3) If

∑
j∈Ã(i) �

j
i <

∑
j∈B �

j
i + σ̃ 2

i − 1/(2CT − 1),
the cooperative cluster of the i-th UE Gi is the union
of Ã(i) and {i}; otherwise, go to Step 4.

4) If
∑

j∈Ã(i) �
j
i ≥

∑
j∈B �

j
i + σ̃

2
i − 1/(2CT − 1), let

xi,i = 1, and xi,j = 0,∀j ∈ B̃(i)/{i}; select the BS
having the largest �j

i from the set Ã(i), set xi,j = 1
and remove the BS from the Ã(i) until

∑
j∈Ã(i) �

j
i <∑

j∈B �
j
i+ σ̃

2
i −1/(2CT −1); allocate all BSs having

xi,j = 1 to the i-th UE as its cooperative cluster Gi.
5) For all j ∈ Gi, let Bj = Bj + 1; if Bj = BT , delete the

j-th BS from the candidate BS set for the remaining
UEs in U except for the j-th one.

6) Repeat Step 2 through 5 until all UEs in U finish their
clustering.

cooperative processing and therefore is negligible. With suf-
ficient backhaul capacity, the low complexity and fast conver-
gence properties of the clustering algorithms guarantee that it
would not be difficult to keep pace with the dynamic change
of the wireless channels.

V. NUMERICAL RESULTS
In this section, we validate the performance of the proposed
user-centric cell clustering algorithms through numerical
examples. As in [13] and [19], a 19-cell wireless network
employing the urban macro cell system model was simulated
to evaluate the performance of the proposed user-centric
dynamic cell clustering algorithms.

As has been discussed in Section II, in the system we
only considered one single sub-band, and one single UE is
randomly placed within the cell range of each BS (which is
the serving BS of the UE) according to uniform distribution.
A total number of 10,000 independent realizations were sim-
ulated for UE locations and channel states. Assume that the
receiving antennas of each BS are co-located, which implies
they share the same path-loss and large-scale fading. Normal-
ized equal transmission power is assumed for all UEs. Numer-
ical simulation model parameters are summarized in Table 1.
The uplink channel from the i-th UE to the k-th receiving

TABLE 1. System setting parameter values for numerical simulations.

antenna at the j-th BS is modeled as

hi,j,k = γi,j,k
√
Gβd−αi,j 0i,j, (74)

where γi,j,k denotes the small scale fading coefficient follow-
ing circular symmetric complexGaussian distribution γi,j,k ∼
NC(0, 1),G is the BS receiving antenna gain, 0i,j denotes the
log-normal distributed shadowing coefficient which has a dB
spread of 8dB, di,j is the distance in kilometers between the
i-th UE and the receiving antenna of the j-th BS, and α and β
denote the path-loss exponent and the path-loss constant,
respectively. The path-loss model (in dB) employed in the
simulation is given by [11]

PLi,j = 148.1+ 37.6 log10(di,j), (75)

which corresponds to the model parameters α = 3.76 and
β = 10−14.81.

FIGURE 2. The achievable uplink rates of cell-edge UEs by clustering and
cooperative processing with different AT , CT when BT = 18.

We first studied uplink rates achieved by cell-edge UEs
using the proposed IWUC and IWCC algorithms with
fixed BS cooperation index BT . Different combinations of
(AT ,CT ) were used in the simulation, and the corresponding
results are shown in Fig.2. In Fig.2, the performance gap
between the two algorithms is greater with smaller AT and/or
greater CT . As we increase the value of AT , the achievable
cell-edge UE rate of the IWCC algorithm approaches that of
the IWUC algorithm. A smaller CT would result in smaller
number of cell-edge UEs requiring clustering and cooperative
receiving for QoS provisioning, and the target of clustered
transmission rates of the cell-edge UEs is lower such that

8534 VOLUME 6, 2018



Z. Zhang et al.: Dynamic User-Centric Clustering for Uplink Cooperation in Multi-Cell Wireless Networks

FIGURE 3. The achievable uplink rates of cell-edge UEs by clustering and
cooperative processing with different BT , CT when AT = 19.

it can be achieved using smaller cluster sizes. On the other
hand, AT reflects the amount of the cooperative resource that
each UE can use for clustered cooperative receiving. Less
cooperative resource can be allocated to each UE in IWCC
when AT is smaller. As a consequence, it is more difficult for
the UEs to achieve higher CT when AT is small, which result
in a wider performance gap between the IWUC and IWCC
algorithms. Therefore for larger CT , a relatively greater AT
value should be used in the IWCC algorithm to approach
the performance of the IWUC case, which indicates a higher
demand for cooperative processing.

By fixing AT = 19, Fig.3 presents the achievable rate per-
formance of cell-edge UEs achieved by the IWUC and IWCC
algorithms, with different combinations of (BT ,CT ). Similar
to the observations from Fig.2, with greater CT , i.e. higher
QoS requirement, the IWCC tends to have higher cooperation
demand, which is reflected by the BS cooperation index BT ,
to approach the performance of the IWUC.

Comparisons with existing clustering schemes were also
made for the proposed algorithms with cooperative resource
constraint values AT = 4 and BT = 3, and the QoS
requirement (uplink rate threshold) was set to CT = 2
Bits/sec/Hz/user. The schemes used for comparison include:
the static clustering algorithm with fixed cluster size of
7 (denoted as ‘Static’) [8], the interference weight based
non-overlapping clustering algorithm in [13] (denoted as
‘IW’) also with fixed cluster size of 7, the channel state
based user-centric clustering algorithms with the fixed cluster
size 4 and 7 (denoted as ‘CS-4’ and ‘CS-7’) [19].2

Fig.4 presents the average cluster size of cell-edge UEs
using different clustering algorithms. Although fixed cluster
size is set in the ‘Static’ and ‘IW’ algorithms, the practical
cluster size is smaller due to the limitation of a 19-cell model
used in the simulation. It can be observed from Fig.4 that
the proposed IWCC algorithm requires the smallest average
cluster size. Compared to the IWUC algorithm, which already

2The CS algorithms from [19] were originally proposed for the downlink.
Without loss of generality, they were modified in this work to adapt to the
uplink system settings. The corresponding computations and performance
comparisons were conducted by replacing the downlink channel strength
measures by their uplink counterparts.

FIGURE 4. The average cluster size with different clustering strategies.

outperformed existing clustering schemes with nonconstant
cluster sizes, the average cluster size of the IWCC was
further reduced by 24% and achieved the smallest in the
comparison. For cell-edge UEs experiencing extremely poor
channel state, the IWUC algorithm allocates unconstrained
cooperative resources to these UEs, which is reflected by
increased average cluster size. While for the IWCC, there is a
trade-off between the QoS provisioning and the AT constraint
for those extremely unfavorable cell-edge UEs.

FIGURE 5. The maximum cooperation links per BS achieved by different
clustering strategies.

The maximum number of cooperation links per BS
achieved by different user-centric clustering algorithms are
compared in Fig.5. As discussed earlier, the number of
cooperation links a BS provides is a direct indicator of the
cooperation burden of the BS. Note that the BS’s cooperation
burden also increases dramatically with the number of sub-
carriers if the scheme is deployed independently for each sub-
carrier. The difference between various clustering algorithms
in the single sub-carrier case (shown in Fig.5) will be further
magnified when multiple sub-carriers are being scheduled.
It is therefore significant to control the number of cooper-
ation links per BS in the single sub-carrier problem under
investigation. In Fig.5, all clustering algorithms exhibit con-
siderably large maximum cooperation links per BS, except
the proposed IWCC algorithm. This is because IWCC obeys
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FIGURE 6. The UE rate CDFs of the cell-edge UEs achieved by different
clustering strategies.

strictly the constraint on the BS cooperation index BT = 3.
Even compared with the CS-4 algorithm which specifies a
relatively small fixed cluster size, the maximum number of
cooperation links per BS of the IWCC is 60% lower, which
indicates much superior control of BS cooperation burden.
Compared with the worst CS-7 algorithm, near 80% of the
cooperation burden reduction was achieved by the IWCC.

Fig.6 plots the cumulative distribution functions (CDFs)
of the uplink rates of cell-edge UEs (those with C (NC)

i < CT )
achieved by different clustering algorithms. The performance
of the non-cooperation case is also shown as a lower bound
benchmark (denoted as ‘NC’). Among all the clustering algo-
rithms, the IW algorithm exhibits the worst performance in
terms of UE rate CDF. This is because the IW strategy divides
all the cells in the network into non-overlapping clusters,
where each cluster conducts cooperative receiving for all the
cell-edge UEswithin its range. Degradation of the rate perfor-
mance is thus introduced by the resource sharing mechanism.
The CS-7 achieved the most superior rate CDF in Fig.6,
which is the outcome of using much larger cluster size, i.e.
much higher system overhead, than the other schemes. From
the resource-performance trade-off point of view, the CS-7
algorithm gives an upper bound benchmark for the rate CDF
and cooperation resource consumption. Although the IWUC
algorithm can obtain an approximate optimal solution to the
clustering problem P1 without introducing per-UE or per-BS
resource constraint, its UE rate performance in Fig.6 is not
optimal because the optimization object of P1 is minimiza-
tion of the cluster size. Specifically, the cluster size would
stop growing once the cooperative rate of the UE reaches the
rate threshold. By further restricting the available cooperation
resources, the rate performance of the IWCC algorithm is
further degraded, as shown in Fig.6.

Fig.7 further presents the achievable UE rate CDFs of all
the UEs, where both cell-edge and cell-centre UEs are taken
into account. To avoid unnecessary cooperation, clustering
and cooperative receiving are only conducted for cell-edge
UEs who do not satisfy the rate threshold CT with single
cell processing, while QoS provisioning can be guaranteed
for the cell-centre UEs without multi-cell joint processing.

FIGURE 7. The UE rate CDFs of all UEs achieved by different clustering
strategies.

FIGURE 8. The CDF of the outage probability of all UEs in the network
achieved by different clustering strategies.

Compared with Fig.6, Fig.7 shows similar trends but nar-
rower gaps among the CDF curves.

Fig.8 shows the CDF of the QoS outage probabilities of all
UEs in the network, where the QoS (rate) threshold is set to
CT = 2 Bits/sec/Hz/user. The outage event occurs when the
UE rate falls below the outage rate threshold, and it is themain
consideration of QoS provisioning. Without imposing further
constraints, the proposed IWUC algorithm focuses on the
satisfaction of the rate threshold with a minimum cluster size,
which leads to the best performance on the outage analysis
in Fig.8. The CS-7 algorithm, even though consumes the
highest cooperative resources, achieved worse outage prob-
ability performance than the IWUC in Fig.8. This is because
fixing the cluster size in CS-7 would waste some BS coopera-
tion resources on UEs with relatively good channel condition
so that the UEs experiencing even worse channel condition
may not receive sufficient cooperation resources. Compared
with the CS-4 scheme, the proposed IWCC algorithm exhibits
significantly lower resource demand according to results
shown in Figs.4 and 6. But in terms of outage performance
shown in Fig.8, the IWCC algorithm slightly outperforms the
CS-4, which indicates a more efficient cooperation resource
utilization of the proposed clustering mechanism.

To further evaluate trade-off in clustered cooperative
receiving, we studied average cooperative rate gain (with
respect to NC) achieved by unit cooperation resource,
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FIGURE 9. The average rate gain consuming a cooperative resource unit
with different clustering algorithms.

i.e. one cooperation link occupying the backhaul on one
time-frequency resource block. The corresponding results
are shown in Fig.9. It is observed that the proposed IWCC
and IWUC algorithms perform much better than the other
algorithms in comparison. Particularly the IWCC algorithm
utilized the cooperation resources most efficiently, which
verifies the conclusionwemade above. By putting constraints
to upper bound the cluster size and per-BS cooperation
resource, the IWCC scheme imposed stringent control over
the cooperation resources such that efficient utilization of the
resources can be achieved. The IWUC algorithm, even though
outperforms the IWCC on both rate and outage performance,
consumed significantly higher cooperation resources, which
led to less efficient use of cooperation resources compared
with the IWCC scheme. With similar cooperation resource
consumption, the CS-4 algorithm achieved lower rate gain
per unit cooperation resource (0.7267 v.s. 0.8185), compared
with the IWCC scheme.

TABLE 2. Computational complexity of different clustering schemes.

Table 2 summarizes computational complexities of differ-
ent clustering algorithms, where the number of both additions
and multiplications are taken into account. The static algo-
rithm is out of consideration, since it exhibits the ignorable
computational complexity due to the nature of static strategy.
The CS-4 and CS-7 algorithms have the same computational
complexity in clustering, because the criteria for cooper-
ative partner selection are the same. The only difference
lies in the number of cooperative partners, which is labeled
as ‘CS’ in Table 2. It is straightforward that the computa-
tional complexity of the IWUC scheme is much higher than
that of CS and IWCC, which is due to the iterative search
of the Lagrangian multiplier. The IW algorithm designs
non-overlapping clusters for all cell-edge UEs at the same

time, which leads to a large dimensionality of the clustering
optimization problem. Hence, the computational complexity
of IW is also much higher than that of CS and IWCC,
but is slightly lower than that of IWUC. The computational
complexity of the proposed IWCC algorithm is close to that
of the least complex CS algorithm, where the numbers of
additions andmultiplications are 15% and 3%higher thanCS,
respectively. By imposing critical constraints on the cluster
size and the BS cooperation resources, the IWCC algorithm
achieved a 12.6% improvement on the rate gain compared
with the CS-4 scheme with the same cost of cooperation
resources, while exhibiting similar cell-edge rate and out-
age performance. Therefore, the proposed IWCC algorithm
achieved a satisfactory trade-off between performance and
computational complexity.

VI. CONCLUSION
In this paper, we have investigated dynamic user-centric clus-
tering for uplink cooperative receiving in multi-cell wireless
networks subject to constraints on BS cooperation resources.
The focus of the study has been placed on cell-edge UEs,
which are defined by achievable uplink rates when cooper-
ation is not available. A resource efficient cluster size mini-
mization problem has been formulated to achieve improved
QoS provisioning for cell-edge UEs through cooperative
processing of clustered BSs. The 0-1 integer programming
problem that minimizes the user-centric cluster size has
been solved by an IWUC algorithm, which depends on the
inter-cluster interference weight (IW) and solved the prob-
lem by dual decomposition and subgradient-based technique.
By imposing constraints on the cluster size of each cell-edge
UE and on cooperation burden of each BS, an IWCC algo-
rithm has been proposed to address the further constrained
clustering problem with greedy heuristics. Numerical results
have shown that the proposed IWUC algorithm significantly
outperforms other clustering algorithms in outage proba-
bility, which indicates superior QoS provisioning property.
The IWCC algorithm, on the other hand, has achieved good
tradeoff between the gain and cost due to clustering and
cooperative processing, with modest computational complex-
ity. Specifically, it has exhibited the highest rate gain per
unit cooperation resource consumption and has demonstrated
good control over the cooperation burden of the BSs and the
system.
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