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ABSTRACT This paper focuses on the parameter estimation of a class of bilinear systems, for which the
input-output representation is derived by eliminating the state variables in the systems. Based on the obtained
identification model and the hierarchical identification principle, a hierarchical auxiliary model based least
squares iterative algorithm is derived, to improve the computation efficiency and the parameter estimation
accuracy by using the auxiliary model identification idea and the interval-varying input-output data. For
comparison, an auxiliary model based least squares iterative algorithm is presented. The simulation results
show that the proposed algorithm has better performance in estimating the parameters of bilinear systems.

INDEX TERMS Parameter estimation, hierarchical principle, auxiliarymodel, least squares, bilinear system.

I. INTRODUCTION
Parameter estimation is the foundation of dynamic systems
modeling and controller design, and has been widely used
in diverse fields of science and engineering [1]–[3]. In many
of these applications, such as the control of industrial pro-
cesses and the nuclear fission, the systems to be identified
show nonlinear behaviour. Therefore, the parameter estima-
tion of nonlinear systems is of primary importance [4]–[6].
Many parameter estimation methods have been proposed for
nonlinear systems [7]–[10], such as the subspace identifica-
tion method [11], [12], the intelligent algorithm [13], [14],
the data-driven identification method [15] and the EM
method [16]. Besides, for improving the convergence speed,
a linear filter based multi-innovation stochastic gradient algo-
rithm [17] and a state observer based hierarchical multi-
innovation stochastic gradient algorithm [18] were proposed
for nonlinear systems.

One particularly meaningful model for the nonlinear sys-
tem identification is the bilinear model, which has the advan-
tages of simpleness of structure and similarity to the linear
model [19]. The inputs and the states in the bilinear model are
multiplicatively coupled, which makes it can economically
characterise a wide class of nonlinear phenomena. Appli-
cations include control systems, modeling and control of
industrial processes such as chemical processes or biological

processes, heat exchange systems, nuclear engineering, and
others [20]–[24]. However, it has difficulty in using these
models effectively because of the parametric uncertainty
associated with the models. Hence, the parameter estimation
of bilinear models is necessary and has become a hot topic in
the field of system control and identification.

Several identification methods for bilinear systems have
appeared in the literature. For example, some classical
methods based on orthogonal series approach [25], Walsh
funcitons [26], block-pulse functions [27], Chebyshev poly-
nomials [28], Legendre polynomials [29], Taylor poly-
nomials [30], Galerkin methods [31] and Hartley-based
modulating functions [32] have been studied for bilinear sys-
tems at the early time. Besides, Inagaki and Mochizuki [33]
proposed a Volterra kernels estimation method for bilinear
systems; Tsoulkas et al. [34] derived an estimation method
based on cumulants for input-output bilinear systems.
However, the computational complexity of the methods
in [33] and [34] increases exponentially as the order of the
bilinear system increases. Recently, the maximum likelihood
methods [35], [36], the least squares methods [37] and the
gradient methods [38], [39] have been developed for param-
eter estimation of bilinear systems.

Generally, the least squares based iterative methods have
a faster convergence speed than the gradient based iterative
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methods. Therefore, the gradient based iterative methods
proposed in [38] and [39] have a slower convergence speed.
However, the least squares based iterative methods involved
with the matrix inversion, which needs much computation
burden. The least squares estimation algorithm of bilinear
systems in [37] is recursive. Different from them, and for
improving the computation efficiency of the least squares
based iterative methods, this paper focuses on the problem
of estimating the parameters of bilinear systems with colored
noise and develops some new least squares based iterative
identification algorithms based on the auxiliary model identi-
fication idea and the hierarchical identification principle. The
main contributions are as follows.
• The difficulty of identifying the bilinear state space sys-
tems is that their model structure contains the products
of the states and inputs, the input-output representation
of a bilinear system is derived from a bilinear state space
system for the identification by eliminating the state
variables in the models.

• According to the hierarchical identification principle
and the auxiliary model identification idea, an auxiliary
model based least squares iterative (AM-LSI) algorithm
and a hierarchical auxiliary model based least squares
iterative (H-AM-LSI) algorithm are derived for bilinear
systems by using the interval-varying input-output data.

• As the computation of the covariance matrix with large
sizes needs large computational burden, the least squares
based iterative methods have low computational effi-
ciency for large scale systems. Therefore, the proposed
H-AM-LSI algorithm can reduce much computation
burden when the system orders are large.

The rest of the paper is organized as follows. Section II sim-
ply derives the identification model for bilinear systems with
colored noise. Section III presents an AM-LSI identification
algorithm for comparison. Section IV develops a H-AM-LSI
identification algorithm based on the hierarchical identifi-
cation principle. Section V provides a numerical example
validating the algorithms proposed. Finally, we make some
concluding remarks in Section VI.

II. SYSTEM DESCRIPTION AND IDENTIFICATION MODEL
Let us define some notation. ‘‘A =: X ’’ or ‘‘X := A’’ stands
for ‘‘A is defined as X ’’. 1n represents an n-dimensional col-
umn vector whose elements are 1. The superscript T denotes
the matrix transpose. z−1 stands for a unit backward shift
operator: z−1y(t) = y(t − 1).
Consider the following bilinear systemwith the observabil-

ity canonical form:

x(t + 1) = Ax(t)+ Bx(t)u(t)+ gu(t), (1)

y(t) = hx(t)+ w(t), (2)

where x(t) := [x1(t), x2(t), · · · , xn(t)]T is the n-dimensional
state vector, u(t) ∈ R and y(t) ∈ R are the system
input and output, respectively, w(t) ∈ R is a correlated
noise with zero mean and may be a white noise process,

an autoregressive (AR) process, a moving average (MA)
process or an ARMA process, and A ∈ Rn×n, B ∈ Rn×n,
b ∈ R1×n, g ∈ Rn and h ∈ R1×n are constant matrices and
vectors:

A :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

 ,

B :=
[
0
b

]
∈ Rn×n,

b := [−bn,−bn−1,−bn−2, · · · ,−b1],

g := [g1, g2, · · · , gn−1, gn]T,

h := [1, 0, · · · , 0, 0].

From (1), we have the following representation

x1(t + 1) = x2(t)+ g1u(t),
x2(t + 1) = x3(t)+ g2u(t),

...

xn−1(t + 1) = xn(t)+ gn−1u(t),
xn(t + 1) = −anx1(t)− an−1x2(t)− an−2x3(t)

− · · · − a1xn(t)− [bnx1(t)+ bn−1x2(t)
+bn−2x3(t)+ · · · + b1xn(t)]u(t)+ gnu(t).

(3)

Moving the terms gives

x2(t) = x1(t + 1)− g1u(t),
x3(t) = x2(t + 1)− g2u(t)

= x1(t + 2)− g1u(t + 1)− g2u(t),
x4(t) = x3(t + 1)− g3u(t)

= x1(t + 3)− g1u(t + 2)− g2u(t + 1)− g3u(t),
...

xn(t) = xn−1(t + 1)− gn−1u(t)
= x1(t + n− 1)− g1u(t + n− 2)
−g2u(t + n− 3)− · · · − gn−1u(t).

(4)

Multiplying both sides of the last equation in (4) by z gives

xn(t + 1) = x1(t + n)− g1u(t + n− 1)− g2u(t + n− 2)

− · · · − gn−1u(t + 1). (5)

Substituting (5) into the last equation in (3), we have the
following relation,

−[an, an−1, an−2, · · · , a1]


x1(t)
x2(t)
x3(t)
...

xn(t)
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−[bn, bn−1, bn−2, · · · , b1]


x1(t)
x2(t)
x3(t)
...

xn(t)

 u(t)+ gnu(t)
= x1(t + n)− g1u(t + n− 1)− g2u(t + n− 2)

− · · · − gn−1u(t + 1). (6)

According to the matrix form of Equation (4) and from (6),
and referring to the method in [37] and [40], we have

(1+ a1z−1 + a2z−2 + · · · + anz−n)znx1(t)

+ [(b1z−1 + b2z−2 + · · · + bnz−n)znx1(t)]u(t)

= [gn + an−1g1 + an−2g2 + · · · + a1gn−1, gn−1 + an−2g1
+ an−3g2 + · · · + a1gn−2, · · · , g2 + a1g1, g1]

×


u(t)

u(t + 1)
...

u(t+n−1)

+{[bn−1g1 + bn−2g2 + · · · + b1gn−1,
bn−2g1 + bn−3g2 + · · ·

+ b1gn−2, · · · , b1g1, 0]


u(t)

u(t + 1)
...

u(t + n− 1)

}u(t). (7)

Define

[cn, · · · , c2, c1]

:= [gn + an−1g1 + an−2g2 + · · ·

+ a1gn−1, · · · , g2 + a1g1, g1] ∈ R1×n, (8)

[dn, · · · , d3, d2]

:= [bn−1g1 + bn−2g2 + · · · + b1gn−1, · · · ,

b1g1] ∈ R1×(n−1). (9)

Then Equation (7) can be rewritten as

(1+ a1z−1 + a2z−2 + · · · + anz−n)znx1(t)

+ [(b1z−1 + b2z−2 + · · · + bnz−n)znx1(t)]u(t)

= (c1z−1 + c2z−2 + · · · + cnz−n)znu(t)

+ [(d2z−2 + d3z−3 + · · · + dnz−n)znu(t)]u(t). (10)

Define the following polynomials:

A(z) := 1+ a1z−1 + a2z−2 + · · · + anz−n, ai ∈ R,
B(z) := b1z−1 + b2z−2 + · · · + bnz−n, bi ∈ R,
C(z) := c1z−1 + c2z−2 + · · · + cnz−n, ci ∈ R,
D(z) := d2z−2 + d3z−3 + · · · + dnz−n, di ∈ R.

Hence, Equation (10) can be rewritten as

A(z)znx1(t)+ u(t)[B(z)znx1(t)] = C(z)znu(t)

+ u(t)[D(z)znu(t)].

Replacing t with t − n, we have

x1(t) =
C(z)+ u(t − n)D(z)
A(z)+ u(t − n)B(z)

u(t).

Inserting x1(t) into (2), we can obtain the input-output repre-
sentation of the bilinear state space system in (1)–(2) as

y(t) =
C(z)+ u(t − n)D(z)
A(z)+ u(t − n)B(z)

u(t)+ w(t). (11)

For studying the parameter estimation of bilinear systems,
this paper considers w(t) in (11) as an AR process. That is,
E(z)w(t) = v(t), where v(t) ∈ R is a white noise process with
zero mean, E(z) is a polynomial in z−1 and

E(z) := 1+ e1z−1 + e2z−2 + · · · + enez
−ne , ei ∈ R.

Assume that the orders n and ne are known and u(t) = 0,
y(t) = 0 and v(t) = 0 for t 6 0. The objective is to develop
new least squares based iterative algorithms for estimating
the parameters ai, bi, ci, di and ei from the observation data
by using the auxiliary model identification idea.

Introduce the intermediate variable

α(t) :=
C(z)+ u(t − n)D(z)
A(z)+ u(t − n)B(z)

u(t) ∈ R. (12)

Define the parameter vectors

θ := [aT, bT, cT, dT, eT]T ∈ R4n+ne−1,

a := [a1, a2, · · · , an]T ∈ Rn,

b := [b1, b2, · · · , bn]T ∈ Rn,

c := [c1, c2, · · · , cn]T ∈ Rn,

d := [d2, d3, · · · , dn]T ∈ Rn−1,

e := [e1, e2, · · · , ene ]
T
∈ Rne ,

and the information vectors

ϕ(t) := [ϕT
1(t),ϕ

T
2(t),φ

T
1(t),φ

T
2(t),ψ

T(t)]T ∈ R4n+ne−1,

ϕ1(t) := [−α(t − 1),−α(t − 2), · · · ,−α(t − n)]T ∈ Rn,

ϕ2(t) := [−u(t − n)α(t − 1),−u(t − n)α(t − 2), · · · ,

− u(t − n)α(t − n)]T ∈ Rn,

φ1(t) := [u(t − 1), u(t − 2), · · · , u(t − n)]T ∈ Rn,

φ2(t) := [u(t − n)u(t − 2), u(t − n)u(t − 3), · · · ,

u(t − n)u(t − n)]T ∈ Rn−1,

ψ(t) := [−w(t − 1),−w(t − 2), · · · ,−w(t − ne)]T ∈ Rne .

Thus, E(z)w(t) = v(t) can be written as

w(t) = [1− E(z)]w(t)+ v(t) = ψT(t)e+ v(t). (13)

Equation (13) is the noise model.
From (12), we have

α(t) = [1− A(z)− u(t − n)B(z)]α(t)

+[C(z)+ u(t − n)D(z)]u(t)

= −

n∑
i=1

aiα(t − i)−
n∑
i=1

biu(t − n)α(t − i)

+

n∑
i=1

ciu(t − i)+
n∑
i=2

diu(t − n)u(t − i)

= ϕT
1(t)a+ ϕ

T
2(t)b+ φ

T
1(t)c+ φ

T
2(t)d. (14)
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Substituting (13) and (14) into (11) gives

y(t) = α(t)+ w(t) (15)

= ϕT
1(t)a+ ϕ

T
2(t)b+ φ

T
1(t)c+ φ

T
2(t)d + w(t)

= ϕT
1(t)a+ ϕ

T
2(t)b+ φ

T
1(t)c+ φ

T
2(t)d + ψ

T(t)e

+ v(t) (16)

= ϕT(t)θ + v(t). (17)

Equation (17) is the identification model for the bilinear
system in (11), the parameter vector θ contains the parameters
ai, bi, ci and di of the system model and the parameter ei of
the noise model.

III. THE AUXILIARY MODEL BASED LEAST SQUARES
ITERATIVE ALGORITHM
For the purpose of showing the advantages of the proposed
algorithm, the following gives the auxiliary model based
least squares iterative algorithm using interval-varying input-
output data for comparisons.

Define an integer sequence {ts : s = 0, 1, 2, · · · } which
satisfies

0 = t0 < t1 < t2 < t3 < · · · < ts−1 < ts < ts+1 < · · · ,

1 ≤ t∗s := ts+1 − ts. (18)

Replacing t in (14)-(17) with ts gives

α(ts) = ϕT
1(ts)a+ ϕ

T
2(ts)b+ φ

T
1(ts)c+ φ

T
2(ts)d, (19)

y(ts) = α(ts)+ w(ts) (20)

= ϕT
1(ts)a+ ϕ

T
2(ts)b+ φ

T
1(ts)c+ φ

T
2(ts)d

+ψT(ts)e+ v(ts), (21)

= ϕT(ts)θ + v(ts) (22)

with

ϕ(ts) = [ϕT
1(ts),ϕ

T
2(ts),φ

T
1(ts),φ

T
2(ts),ψ

T(ts)]T,

ϕ1(ts) = [−α(ts − 1),−α(ts − 2), · · · ,−α(ts − n)]T,

ϕ2(ts) = [−u(ts − n)α(ts − 1),−u(ts − n)α(ts − 2), · · · ,

− u(ts − n)α(ts − n)]T,

φ1(ts) = [u(ts − 1), u(ts − 2), · · · , u(ts − n)]T,

φ2(ts) := [u(ts − n)u(ts − 2), u(ts − n)u(ts − 3), · · · ,

u(ts − n)u(ts − n)]T,

ψ(ts) := [−w(ts − 1),−w(ts − 2), · · · ,−w(ts − ne)]T.

According to the identification model in (22), define a
quadratic criterion function

J1(θ ) :=
t∗s −1∑
j=0

[y(ts + j)− ϕT(ts + j)θ ]2.

Minimizing J1(θ ) and letting its partial derivative with
respect to θ be zero give

∂J1(θ )
∂θ

= −2
t∗s −1∑
j=0

ϕ(ts + j)[y(ts + j)− ϕT(ts + j)θ ] = 0.

Assume that the information vector ϕ(ts) is persistently excit-

ing, that is,

[
t∗s −1∑
j=0

ϕ(ts + j)ϕT(ts + j)

]
is an invertible matrix.

Then the least squares estimate of θ is

θ̂ (ts) =

t∗s −1∑
j=0

ϕ(ts + j)ϕT(ts + j)

−1 t∗s −1∑
j=0

ϕ(ts + j)y(ts + j).

(23)

However, some problems arise. The information vector ϕ(ts)
contains the unknown terms α(ts − i) (i = 1, 2, · · · , n) and
the unmeasured noise terms w(ts − i) (i = 1, 2, · · · , ne),
Equation (23) cannot compute the estimate θ̂ (ts) directly. The
approach is based on the auxiliary model identification idea
and the iterative principle. Let α̂k (ts− i) and ŵk (ts− i) be the
estimates of α(ts − i) and w(ts − i). Define ϕ̂k (ts), ϕ̂1,k (ts),
ϕ̂2,k (ts) and ψ̂k (ts) as the estimates of ϕ(ts), ϕ1(ts), ϕ2(ts)
and ψ(ts):

ϕ̂k (ts) := [ϕ̂T

1,k (ts), ϕ̂
T

2,k (ts),φ
T
1(ts),φ

T
2(ts), ψ̂

T

k (ts)]
T

∈ R4n+ne−1,

ϕ̂1,k (ts) := [−α̂k−1(ts − 1),−α̂k−1(ts − 2), · · · ,

− α̂k−1(ts − n)]T ∈ Rn,

ϕ̂2,k (ts) := [−u(ts − n)α̂k−1(ts − 1),

− u(ts − n)α̂k−1(ts − 2), · · · ,

− u(ts − n)α̂k−1(ts − n)]T ∈ Rn,

ψ̂k (ts) := [−ŵk−1(ts − 1),−ŵk−1(ts − 2), · · · ,

− ŵk−1(ts − ne)]T ∈ Rne .

Let θ̂k (ts) := [âT

k (ts), b̂
T

k (ts), ĉ
T

k (ts), d̂
T

k (ts), ê
T

k (ts)]
T be the esti-

mates of θ = [aT, bT, cT, dT, eT]T at iteration k . Based on the
auxiliary model identification idea, we define an auxiliary
model α̂k (ts) = ϕ̂

T

1,k (ts)âk (ts)+ϕ̂
T

2,k (ts)b̂k (ts)+φ
T
1(ts)ĉk (ts)+

φT
2(ts)d̂k (ts). From (20), we havew(ts−i) = y(ts−i)−α(ts−i).

Replacing α(ts) with its estimates α̂k (ts) gives the estimate of
w(ts) as ŵk (ts − i) = y(ts − i)− α̂k (ts − i).
Replacing ϕ(ts) in (23) with ϕ̂k (ts), we have

θ̂k (ts) =

t∗s −1∑
j=0

ϕ̂k (ts + j)ϕ̂
T

k (ts + j)

−1

×

t∗s −1∑
j=0

ϕ̂k (ts + j)y(ts + j). (24)

From the above derivations, we can summarize the auxiliary
model based least squares iterative (AM-LSI) identification
algorithm for the bilinear systems using interval-varying
input-output data:

θ̂k (ts) =

t∗s −1∑
j=0

ϕ̂k (ts + j)ϕ̂
T

k (ts + j)

−1

×

t∗s −1∑
j=0

ϕ̂k (ts + j)y(ts + j), (25)
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TABLE 1. The computational efficiency of the AM-LSI algorithm.

ϕ̂k (ts) = [ϕ̂T

1,k (ts), ϕ̂
T

2,k (ts),φ
T
1(ts),φ

T
2(ts), ψ̂

T

k (ts)]
T,

(26)

ϕ̂1,k (ts) = [−α̂k−1(ts − 1),−α̂k−1(ts − 2), · · · ,

− α̂k−1(ts − n)]T, (27)

ϕ̂2,k (ts) = [−u(ts − n)α̂k−1(ts − 1),

− u(ts − n)α̂k−1(ts − 2), · · · ,

− u(ts − n)α̂k−1(ts − n)]T, (28)

φ1(ts) = [u(ts − 1), u(ts − 2), · · · , u(ts − n)]T, (29)

φ2(ts) = [u(ts − n)u(ts − 2), u(ts − n)u(ts − 3), · · · ,

u(ts − n)u(ts − n)]T, (30)

ψ̂k (ts) = [−ŵk−1(ts − 1),−ŵk−1(ts − 2), · · · ,

− ŵk−1(ts − ne)]T ∈ Rne , (31)

α̂k (j) = ϕ̂
T

1,k (j)âk (ts)+ ϕ̂
T

2,k (j)b̂k (ts)

+φT
1(j)ĉk (ts)+ φ

T
2(j)d̂k (ts),

j = ts, ts + 1, , · · · , ts+1 − 1, (32)

ŵk (ts − i) = y(ts − i)− α̂k (ts − i), i = 1, 2, · · · , ne,

(33)

θ̂k (ts) = [âT

k (ts), b̂
T

k (ts), ĉ
T

k (ts), d̂
T

k (ts), ê
T

k (ts)]
T, (34)

âk (ts) = [â1,k (ts), â2,k (ts), · · · , ân,k (ts)]T, (35)

b̂k (ts) = [b̂1,k (ts), b̂2,k (ts), · · · , b̂n,k (ts)]T, (36)

ĉk (ts) = [ĉ1,k (ts), ĉ2,k (ts), · · · , ĉn,k (ts)]T, (37)

d̂k (ts) = [d̂2,k (ts), d̂3,k (ts), · · · , d̂n,k (ts)]T, (38)

êk (ts) = [ê1,k (ts), ê2,k (ts), · · · , êne,k (ts)]
T. (39)

The steps involved in the AM-LSI algorithm for com-
puting the parameter estimates θ̂k (ts) of bilinear sys-
tems using interval-varying input-output data are listed as
follows.
1) Set s = 0, t0 = 0, and let t∗s = ts+1 − ts be a random

positive integer, and give a small ε > 0.
2) Collect the input-output data {u(j), y(j), j = ts, ts +

1, · · · , ts+1 − 1}.
3) Let k = 1, and set the initial values: α̂0(j) is a random

number, j = ts, ts + 1, , · · · , ts+1 − 1, and ŵ0(ts − i) is
a random number, i = 1, 2, · · · , ne.

4) Form ϕ̂1,k (ts), ϕ̂2,k (ts), φ1(ts), φ2(ts) and ψ̂k (ts) using
(27) – (31), respectively, and form ϕ̂k (ts) using (26).

5) Update the estimate θ̂k (ts) using (25) and read âk (ts),
b̂k (ts), ĉk (ts) and d̂k (ts) from θ̂k (ts) in (34).

6) Compute α̂k (ts) using (32), and compute ŵk (ts−i) using
(33).

7) Compare θ̂k (ts) with θ̂k−1(ts), if ‖θ̂k (ts)− θ̂k−1(ts)‖ >
ε, increase k by 1 and go to Step 4; otherwise, increase
s by 1 and go to Step 2.

The computational efficiency of the AM-LSI algorithm is
shown in Table 1. The floating point operations (flops) are
used to evaluate the computational efficiency of the algo-
rithm, and we define n0 in Tables 1–2 as n0 := 4n+ ne − 1.

IV. THE HIERARCHICAL AUXILIARY MODEL BASED
LEAST SQUARES ITERATIVE ALGORITHM
As the computation of the covariance matrix with large sizes
needs large computational burden, the AM-LSI algorithm has
low computational efficiency for large scale systems [41],
[42]. In the following, we divide the bilinear system into three
subsystems based on the hierarchical identification principle,
and develop a hierarchical AM-LSI algorithm for identifying
the bilinear system in (22) using interval-varying input-output
data.

Note that the identification model in (21) includes five sub-
information vectors ϕ1(ts), ϕ2(ts), φ1(ts), φ2(ts) and ψ(ts),
where ϕ1(ts) and ϕ2(ts) contain the unmeasurable variables
α(ts− i) and are unknown, φ1(ts) and φ2(ts) are consisting of
the observed data and are known, ψ(ts) contains the unmea-
surable noise terms w(ts− i) and is unknown. Define two new
information vectors

Γ (ts) := [ϕT
1(ts),ϕ

T
2(ts)]

T
∈ R2n,

Φ(ts) := [φT
1(ts),φ

T
2(ts)]

T
∈ R2n−1,

and the corresponding parameter vectors

ϑ := [aT, bT]T ∈ R2n,

ζ := [cT, dT]T ∈ R2n−1.

Define three intermediate variables

y1(ts) := y(ts)−ΦT(ts)ζ − ψT(ts)e, (40)

y2(ts) := y(ts)− Γ T(ts)ϑ − ψT(ts)e, (41)

y3(ts) := y(ts)−ΦT(ts)ζ − Γ T(ts)ϑ . (42)
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TABLE 2. The computational efficiency of the H-AM-LSI algorithm.

According to the hierarchical identification principle, Equa-
tion (21) can be decomposed into the following three ficti-
tious subsystems:

y1(ts) = Γ T(ts)ϑ + v(ts), (43)

y2(ts) = ΦT(ts)ζ + v(ts), (44)

y3(ts) = ψT(ts)e+ v(ts). (45)

The parameter vectors ϑ = [aT, bT]T, ζ = [cT, dT]T and e to be
identified are included in the three subsystems, respectively.

According to the identification models in (43)–(45), define
three quadratic criterion functions

J2(ϑ) :=
t∗s −1∑
j=0

[y1(ts + j)− Γ T(ts + j)ϑ]2,

J3(ζ ) :=
t∗s −1∑
j=0

[y2(ts + j)−ΦT(ts + j)ζ ]2,

J4(e) :=
t∗s −1∑
j=0

[y3(ts + j)− ψT(ts + j)e]2.

Minimizing J2(ϑ), J3(ζ ) and J4(e), and letting their partial
derivatives with respect to ϑ , ζ and e be zero, respectively,
we have

∂J2(ϑ)
∂ϑ

= −2
t∗s −1∑
j=0

Γ (ts + j)[y1(ts + j)− Γ T(ts + j)ϑ] = 0,

∂J3(ζ )
∂ζ

= −2
t∗s −1∑
j=0

Φ(ts + j)[y2(ts + j)−ΦT(ts + j)ζ ] = 0,

∂J4(e)
∂e

= −2
t∗s −1∑
j=0

ψ(ts + j)[y3(ts + j)− ψT(ts + j)e] = 0.

Assume that the information vectors Γ (ts), Φ(ts) and ψ(ts)

are persistently exciting, that is,

[
t∗s −1∑
j=0

Γ (ts + j)Γ T(ts + j)

]
,[

t∗s −1∑
j=0

Φ(ts + j)ΦT(ts + j)

]
and

[
t∗s −1∑
j=0

ψ(ts + j)ψT(ts + j)

]
are invertible matrixes. Then the least squares estimates of
ϑ , ζ and e are

ϑ̂(ts) =

t∗s −1∑
j=0

Γ (ts + j)Γ T(ts + j)

−1

×

t∗s −1∑
j=0

Γ (ts + j)y1(ts + j), (46)

ζ̂ (ts) =

t∗s −1∑
j=0

Φ(ts + j)ΦT(ts + j)

−1

×

t∗s −1∑
j=0

Φ(ts + j)y2(ts + j), (47)
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ê(ts) =

t∗s −1∑
j=0

ψ(ts + j)ψT(ts + j)

−1

×

t∗s −1∑
j=0

ψ(ts + j)y3(ts + j). (48)

Substituting (40)–(42) into (46)–(48), respectively, we have
the following relations,

ϑ̂(ts) =

t∗s −1∑
j=0

Γ (ts + j)Γ T(ts + j)

−1 t∗s −1∑
j=0

Γ (ts + j)

× [y(ts + j)−ΦT(ts + j)ζ − ψT(ts + j)e], (49)

ζ̂ (ts) =

t∗s −1∑
j=0

Φ(ts + j)ΦT(ts + j)

−1 t∗s −1∑
j=0

Φ(ts + j)

× [y(ts + j)− Γ T(ts + j)ϑ − ψT(ts + j)e], (50)

ê(ts) =

t∗s −1∑
j=0

ψ(ts + j)ψT(ts + j)

−1 t∗s −1∑
j=0

ψ(ts + j)

× [y(ts + j)−ΦT(ts + j)ζ − Γ T(ts + j)ϑ]. (51)

However, we can see that the information vectors ϕ1(ts)
and ϕ2(ts) in Γ (ts) contain the unknown terms α(ts − i)
(i = 1, 2, · · · , n), the information vector ψ(ts) contains
the unknown noise terms w(ts − i) (i = 1, 2, · · · , ne),
and the parameter vectors ϑ , ζ and e in (49)–(51) are also
unknown. Therefore, Equations (49)–(51) cannot compute
ϑ̂(ts), ζ̂ (ts) and ê(ts) directly. The approach is based on the
auxiliary model identification idea and the iterative principle.
Let α̂k (ts − i) and ŵk (ts − i) be the estimates of α(ts − i) and
w(ts − i). Define Γ̂ k (ts), ϕ̂1,k (ts), ϕ̂2,k (ts) and ψ̂k (ts) as the
estimates of Γ (ts), ϕ1(ts), ϕ2(ts) and ψ(ts):

Γ̂ k (ts) := [ϕ̂T

1,k (ts), ϕ̂
T

2,k (ts)]
T
∈ R2n,

ϕ̂1,k (ts) := [−α̂k−1(ts − 1),−α̂k−1(ts − 2), · · · ,

− α̂k−1(ts − n)]T ∈ Rn,

ϕ̂2,k (ts) := [−u(ts − n)α̂k−1(ts − 1),

− u(ts − n)α̂k−1(ts − 2), · · · ,

− u(ts − n)α̂k−1(ts − n)]T ∈ Rn,

ψ̂k (ts) := [−ŵk−1(ts − 1),−ŵk−1(ts − 2), · · · ,

− ŵk−1(ts − ne)]T ∈ Rne .

Let ϑ̂k (ts) := [âT

k (ts), b̂
T

k (ts)]
T, ζ̂ k (ts) := [ĉTk (ts), d̂

T

k (ts)]
T and

êk (ts) be the estimates of ϑ = [aT, bT]T, ζ = [cT, dT]T and
e at iteration k . Based on the auxiliary model identification
idea, we define an auxiliary model α̂k (ts) = Γ̂

T

k (ts)ϑ̂k (ts) +
ΦT(ts)ζ̂ k (ts). From (20), we havew(ts−i) = y(ts−i)−α(ts−i).
Replacing α(ts) with its estimates α̂k (ts) gives the estimate of
w(ts) as ŵk (ts − i) = y(ts − i)− α̂k (ts − i).
Replacing Γ (ts), ψ(ts), ζ and e in (49) with their estimates

Γ̂ k (ts), ψ̂k (ts), ζ̂ k−1(ts) and êk−1(ts), and replacing Γ (ts),
ψ(ts), ϑ and e in (50) with their estimates Γ̂ k (ts), ψ̂k (ts),

ϑ̂k (ts) and êk−1(ts), and replacingψ(ts), Γ (ts), ζ and ϑ in (51)
with their estimates ψ̂k (ts), Γ̂ k (ts), ζ̂ k (ts) and ϑ̂k (ts), we have

ϑ̂k (ts) =

t∗s −1∑
j=0

Γ̂ k (ts + j)Γ̂
T

k (ts + j)

−1

×

t∗s −1∑
j=0

Γ̂ k (ts + j)[y(ts + j)−ΦT(ts + j)ζ̂ k−1(ts)

− ψ̂
T

k (ts + j)êk−1(ts)], (52)

ζ̂ k (ts) =

t∗s −1∑
j=0

Φ(ts + j)ΦT(ts + j)

−1

×

t∗s −1∑
j=0

Φ(ts + j)[y(ts + j)− Γ̂
T

k (ts + j)ϑ̂k (ts)

− ψ̂
T

k (ts + j)êk−1(ts)], (53)

êk (ts) =

t∗s −1∑
j=0

ψ̂k (ts + j)ψ̂
T

k (ts + j)

−1

×

t∗s −1∑
j=0

ψ̂k (ts + j)[y(ts + j)−Φ
T(ts + j)ζ̂ k (ts)

− Γ̂
T

k (ts + j)ϑ̂k (ts)]. (54)

Therefore, we can summarize the hierarchial auxiliary model
based least squares iterative (H-AM-LSI) identification algo-
rithm for bilinear systems using interval-varying input-output
data:

ϑ̂k (ts) =

t∗s −1∑
j=0

Γ̂ k (ts + j)Γ̂
T

k (ts + j)

−1

×

t∗s −1∑
j=0

Γ̂ k (ts + j)[y(ts + j)−ΦT(ts + j)

×ζ̂ k−1(ts)− ψ̂
T

k (ts + j)êk−1(ts)], (55)

ζ̂ k (ts) =

t∗s −1∑
j=0

Φ(ts + j)ΦT(ts + j)

−1

×

t∗s −1∑
j=0

Φ(ts + j)[y(ts + j)− Γ̂
T

k (ts + j)

×ϑ̂k (ts)− ψ̂
T

k (ts + j)êk−1(ts)], (56)

êk (ts) =

t∗s −1∑
j=0

ψ̂k (ts + j)ψ̂
T

k (ts + j)

−1

×

t∗s −1∑
j=0

ψ̂k (ts + j)[y(ts + j)−Φ
T(ts + j)

×ζ̂ k (ts)− Γ̂
T

k (ts + j)ϑ̂k (ts)], (57)
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Γ̂ k (ts) = [−α̂k−1(ts − 1),−α̂k−1(ts − 2), · · · ,

− α̂k−1(ts − n),−u(ts − n)α̂k−1(ts − 1),

− u(ts − n)α̂k−1(ts − 2), · · · ,

− u(ts − n)α̂k−1(ts − n)]T, (58)

Φ(ts) = [u(ts − 1), u(ts − 2), · · · , u(ts − n),

u(ts − n)u(ts − 2), u(ts − n)u(ts − 3), · · · ,

u(ts − n)u(ts − n)]T, (59)

ψ̂k (ts) = [−ŵk−1(ts − 1),−ŵk−1(ts − 2), · · · ,

− ŵk−1(ts − ne)]T, (60)

α̂k (j) = Γ̂
T

k (j)ϑ̂k (ts)+Φ
T(j)ζ̂ k (ts),

j = ts, ts + 1, , · · · , ts+1 − 1, (61)

ŵk (ts − i) = y(ts − i)− α̂k (ts − i), i = 1, 2, · · · , ne,

(62)

ϑ̂k (ts) = [â1,k (ts), â2,k (ts), · · · , ân,k (ts), b̂1,k (ts),

b̂2,k (ts), · · · , b̂n,k (ts)]T, (63)

ζ̂ k (ts) = [ĉ1,k (ts), ĉ2,k (ts), · · · , ĉn,k (ts), d̂2,k (ts),

d̂3,k (ts), · · · , d̂n,k (ts)]T, (64)

êk (ts) = [ê1,k (ts), ê2,k (ts), · · · , êne,k (ts)]
T. (65)

The identification steps of the H-AM-LSI algorithm
in (55)–(65) to compute the parameter estimates ϑ̂k (t), ζ̂ k (t)
and êk (t) for bilinear systems using interval-varying input-
output data are listed as follows.
1) Set s = 0, t0 = 0, and let t∗s = ts+1 − ts be a random

positive integer. Set ζ̂ 0(ts) = 12n−1/p0 and ê0(ts) =
1ne/p0, and give a small ε > 0.

2) Collect the input-output data {u(j), y(j), j = ts, ts +
1, · · · , ts+1 − 1}.

3) Let k = 1, and set the initial values: α̂0(j) is a random
number, j = ts, ts+ 1, · · · , ts+1− 1, and ŵ0(ts− i) is a
random number, i = 1, 2, · · · , ne.

4) Form Γ̂ k (ts),Φ(ts) and ψ̂k (ts) using (58) – (60), respec-
tively.

5) Update the estimates ϑ̂k (ts), ζ̂ k (ts) and êk (ts) using
(55) – (57), respectively.

6) Compute α̂k (ts) using (61), and compute ŵk (ts − i)
using (62).

7) If ‖ϑ̂k (ts)− ϑ̂k−1(ts)‖+‖ζ̂ k (ts)− ζ̂ k−1(ts)‖+‖êk (ts)−
êk−1(ts)‖ > ε, increase k by 1 and go to Step 4;
otherwise, obtain the iteration k and the parameter
estimates ζ̂ k (ts) and êk (ts), and set ζ̂ 0(ts+1) = ζ̂ k (ts)
and ê0(ts+1) = êk (ts), increase s by 1 and go to Step 2.

The computational efficiency of the H-AM-LSI algorithm
is given in Table 2. The difference between the total flops of
the AM-LSI algorithm and the H-AM-LSI algorithm is given
by

N1 − N2 = 2n30 + 2n20t
∗
s + 2n0t∗s − 2ne − {2[(2n)3

+ (2n−1)3 + n3e]+2[(2n)
2
+ (2n−1)2 + n2e]t

∗
s

+ 6n0t∗s − 2ne}

= 2[n30 − (2n)3 − (2n− 1)3 − n3e]+ 2[n20 − (2n)2

FIGURE 1. The AM-LSI estimation errors δ versus k with different σ2.

− (2n− 1)2 − n2e − 4n0]t∗s

= 2[n30 − (2n)3 − (2n− 1)3 − n3e]+ 2[8n(n−
9
4
)

+ 2n(ne − 1)+ 6ne(n− 1)+ 4]t∗s . (66)

Obviously, the value of N1 − N2 is positive when the system
order n is large, that is, the H-AM-LSI algorithm has a higher
computational efficiency than the AM-LSI algorithm for the
large scale bilinear systems.

V. EXAMPLE
Consider a bilinear system:

[A(z)+ u(t − n)B(z)]y(t)

= [C(z)+ u(t − n)D(z)]u(t)+ w(t),

E(z)w(t) = v(t),

A(z) = 1+ a1z−1 + a2z−2 = 1+ 0.60z−1 + 0.55z−2,

B(z) = b1z−1 + b2z−2 = 0.20z−1 − 0.25z−2,

C(z) = c1z−1 + c2z−2 = 0.10z−1 − 2.40z−2,

D(z) = d2z−2 = 0.11z−2,

E(z) = 1+ e1z−1 + e2z−2 = 1+ 0.15z−1 − 0.10z−2.

The parameter vector to be estimated is given by

θ = [a1, a2, b1, b2, c1, c2, d2, e1, e2]T

= [0.60, 0.55, 0.20,−0.25, 0.10,

− 2.40, 0.11, 0.15,−0.10]T.

The example is simulated with MATLAB software. In the
simulation, the input {u(t)} is taken as a persistent excitation
sequence with zero mean and unit variance, {v(t)} is taken as
an uncorrelated sequence noise with zero mean and variance
σ 2
= 1.002, σ 2

= 2.002 and σ 2
= 3.002, respectively.

Applying the AM-LSI algorithm and the H-AM-LSI algo-
rithm to estimate the parameters of this system, the param-
eters and the estimation errors with different noise variances
are shown in Tables 3–4. The estimation errors δ versus k are
shown in Figures 1–2, where δ := ‖θ̂k − θ‖/‖θ‖.

From the simulation results in Tables 3–4 and Figures 1–2,
we can draw the following conclusions.
• The H-AM-LSI algorithm generates smaller
estimation errors than the AM-LSI algorithm – see
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TABLE 3. The AM-LSI estimates and errors with different σ2.

FIGURE 2. The H-AM-LSI estimation errors δ versus k with different σ2.

Tables 3 – 4. In other words, the parameter estimates
accuracy of the H-AM-LSI algorithm is higher than the
AM-LSI algorithm.

• The parameter estimation errors of both the AM-LSI
algorithm and the H-AM-LSI algorithm become small
as the noise variance decreases – see Figures 1–2.

• The parameter estimation errors given by the AM-LSI
algorithm and the H-AM-LSI algorithm become smaller
with increasing iteration k – see Tables 3–4.

In order to validate the model, we use the AM-LSI esti-
mates and the H-AM-LSI estimates to construct the estimated
model, respectively, the predicted outputs are

ŷi(ts) = y(ts)− vi(ts)

= y(ts)− Êi(z)y(ts)+ Êi(z)α̂i(ts), (67)

where α̂i(ts) :=
Ĉi(z)+u(ts−n)D̂i(z)
Âi(z)+u(ts−n)B̂i(z)

u(ts), that is, α̂i(ts) = [Âi(z)−

1+ u(ts − n)B̂i(z)]α̂i(ts)+ [Ĉi(z)+ u(ts − n)D̂i(z)]u(ts).
Define ŷi,f (ts) := Êi(z)y(ts) and α̂i,f (ts) := Êi(z)α̂i(ts), then

(67) can be expressed as

ŷi(ts) = y(ts)− ŷi,f (ts)+ α̂i,f (ts). (68)

Using the AM-LSI parameter estimates in Table 3 with the
noise variance σ 2

= 1.002 and k = 10 to construct the AM-
LSI estimated model

ŷ1(ts) = y(ts)− ŷ1,f (ts)+ α̂1,f (ts),

ŷ1,f (ts) = (1+ 0.14191z−1 − 0.08416z−2)y(ts),

α̂1,f (ts) = (1+ 0.14191z−1 − 0.08416z−2)α̂1(ts),

Â1(z) = 1+ 0.61208z−1 + 0.55645z−2,

B̂1(z) = 0.19841z−1 − 0.26972z−2,

Ĉ1(z) = 0.09425z−1 − 2.39801z−2,

D̂1(z) = 0.13350z−2,

α̂1(ts) = [Â1(z)− 1+ u(ts − n)B̂1(z)]α̂1(ts)

+ [Ĉ1(z)+ u(ts − n)D̂1(z)]u(ts).

Using the H-AM-LSI parameter estimates in Table 4 with the
noise variance σ 2

= 1.002 and k = 10 to construct the H-
AM-LSI estimated model

ŷ2(ts) = y(ts)− ŷ2,f (ts)+ α̂2,f (ts),

ŷ2,f (ts) = (1+ 0.13271z−1 − 0.10039z−2)y(ts),

α̂2,f (ts) = (1+ 0.13271z−1 − 0.10039z−2)α̂2(ts),
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TABLE 4. The H-AM-LSI estimates and errors with different σ2.

FIGURE 3. The predicted outputs ŷ1(t), actual outputs y (t) and their
errors ŷ1(t)− y (t) versus t based on the AM-LSI estimates.

Â2(z) = 1+ 0.59735z−1 + 0.54902z−2,

B̂2(z) = 0.19890z−1 − 0.25800z−2,

Ĉ2(z) = 0.09843z−1 − 2.39862z−2,

D̂2(z) = 0.13100z−2,

α̂2(ts) = [Â2(z)− 1+ u(ts − n)B̂2(z)]α̂2(ts)

+ [Ĉ2(z)+ u(ts − n)D̂2(z)]u(ts).

In order to validate these estimated models, we use the rest
tr = 100 data from t = t∗s + 1 to t = t∗s + tr to compute the
predicted outputs ŷi(t) of the system. Their predicted outputs
ŷi(t), actual outputs y(t) and their errors ŷi(t)−y(t) are plotted
in Figures 3–4 for the AM-LSI and H-AM-LSI algorithms.
Using the estimated outputs to compute the root-mean-square

FIGURE 4. The predicted outputs ŷ2(t), actual outputs y (t) and their
errors ŷ2(t)− y (t) versus t based on the H-AM-LSI estimates.

errors (RMSEs)

Error(ŷ1) :=
[
1
tr

t∗s +tr∑
j=t∗s +1

[ŷ1(t)− y(t)]2
]1/2
= 1.07019,

Error(ŷ2) :=
[
1
tr

t∗s +tr∑
j=t∗s +1

[ŷ2(t)− y(t)]2
]1/2
= 1.06931.

From Figures 3–4, we can see that the predicted outputs
ŷ1(t) and ŷ2(t) are very close to the true outputs y(t), and
the RMSEs of the two algorithms are very close to the noise
standard deviation σ = 1.00. In other words, the estimated
model can capture the dynamics of the system.
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VI. CONCLUSIONS
This work mainly presents an auxiliary model based least
squares iterative (AM-LSI) algorithm and a hierarchical
auxiliary model based least squares iterative (H-AM-LSI)
algorithm for the bilinear systems with an AR process by
using interval-varying input-output data. Compared with the
AM-LSI algorithm, the H-AM-LSI algorithm has a lower
computational burden and a higher parameter estimation
accuracy. The simulation results shown that all the proposed
algorithms can identify bilinear systems well and can give
accurate parameter estimates for bilinear systems. However,
the convergence analyses of the proposed method is very dif-
ficult and worth further studying. The proposed methods can
be extended to other linear nonlinear systems and nonlinear
systems with different structure and colored noise, and can be
applied to other fields.
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