
Received November 8, 2017, accepted December 30, 2017, date of publication January 16, 2018, date of current version March 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2794301

Robotic Arm Based 3D Reconstruction
Test Automation
DEBDEEP BANERJEE , KEVIN YU, AND GARIMA AGGARWAL
Qualcomm Technologies Inc., San Diego, CA 92121, USA

Corresponding author: Debdeep Banerjee (debdeepb@qti.qualcomm.com)

ABSTRACT The 3-D reconstruction involves the construction of a 3-D model from a set of images. The
3-D reconstruction has varied uses that include 3-D printing, the generation of 3-D models that can be
shared through social media, and more. The 3-D reconstruction involves complex computations in mobile
phones that must determine the pose estimation. The pose estimation involves the process of transforming
a 2-D object into 3-D space. Once the pose estimation is done, then the mesh generation is performed
using the graphics processing unit. This helps render the 3-D object. The competitive advantages of using
hardware processors are to accelerate the intensive computation using graphics processors and digital signal
processors. The stated problem that this technical paper addresses is the need for a reliable automated test
for the 3-D reconstruction feature. The solution to this problem involved the design and development of
an automated test system using a programmable robotic arm and rotor for precisely testing the quality
of 3-D reconstruction features. The 3-D reconstruction testing involves using a robotic arm lab to accurately
test the algorithmic integrity and end-to-end validation of the generated 3-D models. The robotic arm can
move the hardware at different panning speeds, specific angles, fixed distances from the object, and more.
The ability to reproduce the scanning at a fixed distance and the same panning speed helps to generate test
results that can be benchmarked by different software builds. The 3-D reconstruction also requires a depth
sensor to be mounted onto the device under examination. We use this robotic arm lab for functional, high
performance, and stable validation of the 3-D reconstruction feature. This paper addresses the computer
vision use case testing for 3-D reconstruction features and how we have used the robotic arm lab for
automating these use cases.

INDEX TERMS Software engineering, software testing, computer vision, robotics and automation, robots.

I. INTRODUCTION
This technical paper focuses on automated testing computer
vision features such as 3D reconstruction. We effectively use
the robotic arm lab to facilitate the test automation.

In computer vision, 3D reconstruction is the process of
capturing the shape and appearance of real objects. This pro-
cess can be accomplished either by active or passive methods.
If the model is allowed to change its shape in time, then it is
referred to as non-rigid or spatiotemporal reconstruction.

The 3D reconstruction algorithms implemented in the
QualcommTechnologies Inc.’s hardware deliverables include
the processing in the CPU/GPU (Graphics Processing Unit).
Some of the solutions offered include RGBD (D stands for
depth information) tracking, flexible region of interest selec-
tion, and more. The figure for 3D reconstruction (Figure 1)
shows the steps for digitally generating a 3D model;
3D printing and online sharing are some of the use cases for
this feature.

FIGURE 1. Depicts the different phases of 3D reconstruction. It includes
the steps of mesh generation and color correction.

3D reconstruction test automation involves a comprehen-
sive software deployment that executes the test cases; they
detect the location of the device under test and then use the
robotic arm to pick up the hardware. It then reads the test

7206
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4907-3054


D. Banerjee et al.: Robotic Arm Based 3D Reconstruction Test Automation

configuration and launches the 3D reconstruction application.
The robotic arm starts panning the object’s hardware. The
robotic arm has 6 joints and it has been programmed to pan
the hardware at specific panning speeds, different angles and
different distances.

The 3D reconstruction feature is tested at two levels. The
first level uses the API level test application that validates
the algorithmic integrity of the computer vision and graphics
functions used in the 3D reconstruction application. The other
level of tests involves the validation of the 3D reconstruction
feature using an end-to-end application of the camera sensor
input.

The automated test may be deployed in various phases
of the software integration so that any new regressions can
be caught early in the software build and integrated into
the test’s life cycle. The goal is to insert automated tests in
continuous integration tests so that any code submitted by the
software developers is tested. Specific 3D reconstruction tests
are executed on these new code changes and any regressions
can be debugged and fixed. This leads to a lower time to catch
and fix new regression issues.

II. MOTIVATION
The testing of 3D reconstruction features at various gates of
the software development lifecycle is critical for successful
commercialization of this feature. The motivation for the
development of the 3D reconstruction test automation was
due to the following points:

A. VALIDATION WITH PANNING OF THE DEVICE
WITH A FIXED SPEED
The panning speed must be the same to conduct performance
tests. It is difficult to maintain the same panning speed while
manually performing the test; therefore, the robotic arm pro-
vides us with an excellent opportunity to accurately perform
these performance tests. With the same panning speed and
fixed distance from the test object, we should accept that the
software engine will generate the same 3D model for every
test.

B. VALIDATION WITH FIXED DISTANCE FROM OBJECT
The panning of the test objects must be a fixed distance from
the device when conducting performance testing. If there are
variations in the distance, the 3D model generated may have
deformations or errors. Additionally, we can calculate pose
estimation at specific distances of the object from the device.
This can be easily achieved by using the robotic arm setup.

C. VALIDATION WITH SAME ORIENTATION
OF THE TEST OBJECT
The object under test may not move and the panning angle
between the phone and the object should be kept constant
when conducting performance tests.

The goal of these performance tests is to be able to replicate
the same results under the same test conditions, such as
panning angle, distance, and speed. In this way we, should be

able to generate the same 3D model every time during these
tests and benchmark the test results across multiple builds.

D. VALIDATION WITH DIFFERENT CAMERA 3D SENSORS
The challenge in testing 3D reconstruction is that we need
to employ multiple camera 3D sensors. We have plans to
test 3D sensors that can be connected to a USB port and
easilymounted on phones.We can program the location of the
holding the device under test using the robotic arm. We can
then ensure that the 3D depth sensor is connected to the
USB port using a cable. We program the robotic arm in such
a way that it does not hold the device where the USB socket
is present. In this way, the mounting of the depth sensor is
facilitated.

III. BACKGROUND AND RELATED WORK
The background to this technical paper reinforces the need for
reliable and accurate test automation for 3D reconstruction
features. We will discuss the presence of the gap between
what is expected as an end-to-end automated test system for
3D reconstruction testing and manual testing of 3D recon-
struction features. We have observed that manual testing
for 3D reconstruction is not accurate since it is difficult to
precisely maintain a fixed distance of the 3D scanner (using
the stereo camera of the phone) from the tested 3D object,
a fixed panning speed and fixed panning angles. The auto-
mated test for 3D reconstruction involves stereo camera based
depth sensors for accurately calculating the distance of the
camera phone from the 3D object for each frame. With the
explosion of 3D based model generation and 3D scanning,
it is of the utmost importance to design and develop reliable
test automation systems to accurately test these 3D model
generations and quantify their quality.

There have been tests conducted on 3D TV monitors. The
discussions include the conditions that should be applied for
standard stereo visual acuity tests. These tests can be executed
on 3D TV monitors. The role of environmental lighting con-
ditions on themeasurement of stereo visual acuity when using
conventional Stereoscopic 3D tests has been emphasized [1].

The effect of luminance and contrast on monocu-
lar or binocular visual acuity [2]–[4] is studied. In parallel,
the recent revival of interest for stereoscopic vision and the
related visual discomfort has been discussed [5], [6]. It has
focused the attention on stereoscopic vision, justifying a fine
analysis of 3D perception dysfunctions, defining the appro-
priate tests and protocols to measure them and providing
recommendations [7]. For testing these features on mobile
phones, robots have been used. It can involve a physical
robot for testing overall smartphone device performance [8].
Profiling deployed SW for testing was discussed extensively
in [9].

Several efforts [10]–[13] have applied symbolic execu-
tion [14]–[16] to generate inputs to Android apps.

Model-based testing has been widely studied in testing
GUI-based programs [17]–[20]. In general, model-based
testing requires users to provide a model of the app’s

VOLUME 6, 2018 7207



D. Banerjee et al.: Robotic Arm Based 3D Reconstruction Test Automation

FIGURE 2. Guided path for scanning a person’s head.

GUI [21], [22] though automated GUI model inference tools
tailored to specific GUI frameworks also exist [23], [24].

Software testing based on GUI events facilitate the end-to-
end automation of applications. Robot-based software testing
is becoming prevalent since it facilitates accurate and precise
testing of repetitive tasks.

IV. SOLUTION
A. OVERVIEW
3D reconstruction is an object scanning feature that allows
users to scan a human head or any object in your room
and generate a 3D image model of the object. The output
meshes are saved in OBJ format. The key differentiators of
this feature are:
• It allows RGBD tracking (which includes depth infor-
mation with RGB data).

• It has online feedback for the reconstructed model.
• It also provides high definition textural mapping.
There are a variety of use cases for 3D reconstruction.

The most significant ones are creating an image model
for 3D-printing and sharing the model through social
network.

B. OBJECTIVE
From a testing perspective, our main goal is to test the
3D reconstruction feature’s functionality, quality, applicabil-
ity, and stability. It should give us a clear high definition
image model. It is important for the feature to be easy to use,
which should not take more than two rounds to complete the
scan. Here are the guidelines for manually scanning the object
using a device with depth sensor:
• Scan an area where it has top diffused light. An average
of 300 diffused LUX should be enough. Avoid direct
lighting and sunlight.

• Move slowly around the test subject and scan the side
and top according to the guided path (Fig. 2).

• If scanning an object on a surface, make sure that the
surface is not reflective.

According to the recommended guidelines for the
3D reconstruction scanning, the depth camera mounted on
the device should scan around the test subject with a proper
distance of between 50 cm to 80 cm. The scanning should
cover the top and bottom of the test subject for a complete

3D model. For example, in the case of scanning a human
head, we need to scan 360 degrees around the head and
stop at every 90 degrees at P1, P2, P3 and P4 to scan the
top and bottom part of the head. After scanning through
the guided path, the software has gathered enough depth
and color information from the test subject to generate a
3D model.

This process may not be too complicated for manual
functional verification testing. However, for the stability test
scenario, we want to catch any bugs that can cause the
app to freeze or crash. This is accomplished by repeating this
scanning process for up to 300 iterations. Then, testing by
manual scanning is too much work and too time-consuming
for the testers. For the quality profiling scenario, we want to
obtain perfect scans of the test subject for comparing different
solutions and different sensors on the market. This requires
that the 3D scan follows the exact same scanning path each
time, which is also impossible when manually holding the
device and walking around the test subject while scanning.
Therefore, we created an automated testing system that uses
a robotic arm to do the scanning. This requires less testing
space, produces more consistent scans and requires signifi-
cantly less manual interaction.

C. 3D RECONSTRUCTION TEST AUTOMATION SETUP
In our 3D reconstruction test automation setup, there are two
key components: the rotor and the robotic arm. The rotor’s
purpose is to control the rotation of the test platform. Since
any depth sensor on the market will require at least 50 cm
scanning distance from the object for quality depth informa-
tion, scanning by circling the object is physically impossible
for most of the robotic arms. We have tried to hang the object
on center top of the robotic arm and let it circle scan from
the outer loop. However, it is still difficult to scan from a
distance greater from the object than the minimum and retain
the same level as the object. It is certainly not feasible to
scan the top of the object for any small and midsize robot
arm. Therefore, we thought of an innovative way to scan the
object using a robotic arm. Instead of scanning around the
object, we keep the depth sensor stationary and let the object
rotate by placing the object on a programmable rotor. This
way the sensor will be able to obtain a scan around the object.
The biggest advantage of this type of a setup is it offers the
freedom to adjust the scanning distances without physical
limitations. Furthermore, the scanning distance is consistent
during the scanning process (Please refer to Fig. 3).

The other key component of the test setup is the robotic
arm. It holds the device with the depth sensor at the proper
level of the object for the round scan. The level of the device
is adjustable by programming the robotic arm for small,
medium and large objects. However, the main purpose of
the robotic arm is to lift the device with the depth sensor
above the scanning objects to scan the top part of them.
By combining the rotor and the robotic arm, we can get a
complete 3D scan of an object with the suggested guided
path.

7208 VOLUME 6, 2018



D. Banerjee et al.: Robotic Arm Based 3D Reconstruction Test Automation

FIGURE 3. 3D scan automation system setup.

D. TEST AUTOMATION ALGORITHM
Our current test automation enables most of the testing pro-
cedure. Before starting the automation, the chosen test object
needs to be placed on the center of the rotor platform for
scanning. Then, the test device with depth sensor needs to
establish a bridge connection over Wi-Fi or a USB cable to
communication with the test station. The test station is also
connected with the rotor setup and the robotic arm to control
them using an automation script.

First, the automation script sends a command to the robotic
arm controller. The execution of the command makes the
robotic arm pick up the device under test. According to the
test parameters, the script triggers the corresponding pre-
generated robot programs to move the test device to the scan-
ning position facing the test object with the same approximate
level. After the device position is ready, the test script sends
commands to the test device to start the scanning at P1. Then,
the script triggers the rotor, and set it to rotate 90 degrees
at the desired speed. The rotor stops for a certain amount
of time at P2, waits for the robotic arm to lift the device to
the top of the test object and down to scan the top of the
object. Then, it rotates another 90 degrees to P3. It repeats
this process for P3 and P4 until it reaches P1 again. At this
point, the automation completes a 360 degree rotation and the
top scans at P1, P2, P3 and P4. The script enables the device to
generate a 3Dmodel of the test object. The script also collects
relevant logs of the 3D scan and then saves them.

The automation program will loop through the pre-set
number of iterations and repeat the scanning process to reach
the iteration count. It will return the device back to where
it picked it up after the iterations are complete; the arm then
moves back to original resting position. The automation script
will collect the test result files and upload them to the defined
result location for the testers to evaluate. Fig. 4 outlines the
program’s algorithm. FIGURE 4. Robotic Arm test automation program algorithm.

VOLUME 6, 2018 7209



D. Banerjee et al.: Robotic Arm Based 3D Reconstruction Test Automation

E. PROGRAMMING ROBOTIC ARM POSITIONS
Here are some insights on how the Denso robotic arm was
programmed to perform the scanning function. We program
the robotic arm using the WINCAPS 3 software and its built-
in option for the 3D arm view. Denso Robotics developed
the WINCAPS3 software. We can simulate the robotic arm’s
concurrent positions and movements with coordinates using
the WINCAPS3 software. We find it to be very helpful to
create 3D models in the simulated environment. In 3D recon-
struction testing, different test objects and various scanning
distances are always needed. These 3D models’ sizes and
coordinates are a good representation of the actual test setup.
They can be used for relative positions when programming
the robotic arm.

In our test plan, we have three categories of test object
sizes: small, medium and large. Additionally, our scanning
distance ranges from 40 cm to 80 cm. A robot program is
needed for each of these categories and distances. In the case
of the large sized model with a scanning distance of 60 cm,
we measure the height of the rotor to be 25 cm and the model
height as 50 cm. The rotor is represented by the cube with
its relative size, and the model is represented by the cylinder
and sphere with their relative sizes. The rotor setup is placed
100 cm away from the base of the robotic arm. We need to
calculate how far to extend the tip of the robotic arm so that
the sensor is placed 60 cm away from the model and the
sensor’s altitude that faces parallel to the model for a good
scan coverage, as indicated in Fig. 5a.

From the diagram in Fig. 5a, we can see that the rotor
with the test model is being set up aligned with the base of
the robotic arm for simplification. The position of the tip of
the robotic arm should have a Y-axis value close to 0. The
distance that the robotic arm should extend out should be
100 cm – 60 cm = 40 cm. Since the robot is facing back-
wards, the X-axis value should be −40 cm. For the height,
we decide to keep the sensor around the center height of the
test model; therefore, in this case, the overall height should be
approximately 25 cm+ 25 cm= 50 cm above the base. From
these simple calculations, the coordinate for the point that the
robotic arm should move to is set as (X, Y, Z) = (−40 cm,
0 cm, 50 cm). Using this point coordinate, the software will
calculate how to rotate the 6 joints of the robotic arm to move
its tip to that point. Next, we need to calculate the coordinate
where the robotic arm can scan the top of the test model.
We are using a golden rule that lets the device lift to a 30◦

angle facing above the top of the test model. At this angle,
the depth sensor will obtain a good coverage of the top. From
Fig. 5b diagram, we are still trying to keep the scanning the
same; therefore, we need to calculate the height at which the
robotic arm must raise above the test model and the distance
it must extend out from the base. Using trigonometry, we can
find that B= C × cos 30 ≈ 52 cm, A= C× sin 30 = 30 cm.
Therefore, we can calculate the X-axis of the tip of robot arm
at about (100 cm – 52 cm) = −48 cm, and the Z-axis should
be 75 cm + 30 cm = 105 cm. The overall coordinate for this
point should be (X, Y, Z) = (−48 cm, 0 cm, 105 cm).

FIGURE 5. (a) Robotic arm at a scanning position scanning to the test
model. (b) Robotic arm at a scanning position at the top of the test model.

With the two coordinates figured out, these corresponding
robotic arm positions are saved into the robot’s program. It is
important to set an arc movement path for the robotic arm to
move between these two positions so that the depth sensor
on the test device always keeps the same scanning distance
defined by the test case.

F. RUNNING THE AUTOMATION SYSTEM
In the actual testing phase, this automation setup design can
be applied to scanning different kinds of test models with
various testing conditions. Here, we have four basic test cases
from our 3D reconstruction test plan (Please refer to Table 1).
We need to scan these test models with different sizes, tex-
tures, scanning distances and light intensities. We check if
the app will keep track of the testing models and complete
the scanning with a good quality reconstructed 3D models.
Likewise, we must catch app crashes or hang-ups during the
stability test cases.

One of the biggest advantages of using the robotic arm for
3D scanning automation is its motion accuracy. To measure
the robotic arm’s accuracy, we attached a laser meter to the
tip of the robotic arm where it holds the device. Since the
test requires a constant specific scanning distance away from
the test subject, we measured the distance on the side and the
top scanning positions of the robotic arm to the test subjects,
as shown in Figure 6.

7210 VOLUME 6, 2018



D. Banerjee et al.: Robotic Arm Based 3D Reconstruction Test Automation

TABLE 1. The four 3D reconstruction test cases.

FIGURE 6. Using laser meter on robotic arm to measure the side and top
distance.

TABLE 2. Distance measurement data on small, medium and large test
subjects.

We repeated this measurement on our standard small,
medium and large size test subjects with scanning distances
of 45 cm, 60 cm and 80 cm. The measured data and the
calculated results are shown in Table 2.

The data in this table showed high consistency and accu-
racy across different sizes of the test subjects and all distances

FIGURE 7. Screenshots of the 3D scan process at the 4 rotor stops.

measured. The overall average accuracy calculated is approx-
imately 96%, which proved that the robotic arm is a great
choice when automating distance sensitive tests.

With the robotic arm motion accuracy confirmed, we can
start the 3D reconstruction automation testing listed in the
test plan. The first test subject is the head model mannequin;
it is set to be scanned at 60 cm distance with different light
intensities. We took screenshots at every 90◦ rotor stop to
check the tracking health status. This is shown in Fig. 7.

Using this automation system, we can successfully scan the
rest of the test models and generate their 3D reconstruction
models.

G. RESULTS
Since the robotic arm takes the scanning device scanning,
the foundations of the 3D model are generated. Through the
depth sensor, first a solid surfacemodel is generated. Then, on
top of that, the mesh of the model is created. The colors of the
actual model captured by the camera sensor are filled-in on
the mesh. From these processes, a full 3Dmodel is generated.

During the 3D reconstruction test using robotic arm scans
of these models, we made some observations.
• The 3D depth sensor required a minimum scanning
distance between the sensor and the test subject. Some
depth sensors are unable to detect objects in front of it if
it is closer than a certain detection range.

• There will be limited textural details on the 3D model
if it is scanning objects with too many details, such as
something furry.

• Small test subjects are difficult to gather significant
depth information. If the scanning is not close enough,
it will lose the detailed textures. If the depth sensor gets
close to capture the details, it will not be able to detect
and scan the object due to range limitations.

• Avoid direct lighting on a reflective object surface. It will
harm the scan quality due to excessive light reflected to
the depth sensor.

VOLUME 6, 2018 7211



D. Banerjee et al.: Robotic Arm Based 3D Reconstruction Test Automation

FIGURE 8. Captures of the reconstructed 3D model of the mannequin.

FIGURE 9. Captures of the reconstructed 3D model of the furry toy.

These are the 3D reconstruction scan results collected from
running the automation and our evaluations.

1) HEAD MODEL MANNEQUIN
The automation captured almost every angle of the man-
nequin by following the guided path. The textures, details and
colors are excellent in this 3D model that was generated from
the scan.

2) FURRY TOY
On the furry toy model’s scanning result, the overall
3D model shape is good as indicated in the snapshot of the
complete model in Figure 9. The furry part is missing some
texture on the top of the toy, including the two small ears. This
is due to the known limitation regarding the high intensity of
the details in the furry area without continuous scanning such
as the body of the furry toy. Therefore, the ears are affected
by the same colored risen tail as the background.

3) SMALL CHINA PIECE
On the small China piece, the scan captured all the color
information well. However, there are some low definition and
missing textures on some parts of the small China piece. The
main reason for that is caused by the small size of the model,
which makes it’s hard for this depth sensor to detect and
continuously track it. A more advanced depth sensor should
perform better on this model.

4) BUILDING MODEL
The 3D reconstruction performed on the building model pro-
vided a relative good result. We can clearly see the windows
and the textures. The automation did capture a small defect

FIGURE 10. Captures of the reconstructed 3D model of the small China.

FIGURE 11. Captures of the reconstructed 3D model of the building
model.

on the edge of this scan. This indicates that more tests need
to be tested on this type of model to discover if it’s a software
performance issue on sharp edges or if it’s due to the testing
conditions (light source, scanning speed, magnitude of the
shaking of this model, etc.).

Using the robotic arm, we can also perform a stability
test on the 3D reconstruction software. We used the program
to run the 3D scanning of the mannequin head model for
30 iterations, which took about an hour to complete. At the
end of the stability test, we were able to see the successfully
generated 3D model for each iteration and no app crash was
detected. This is the first time that we can execute an end-
to-end 3D scan stability test. It has proven the effectiveness
of using the automation test system to test the stability of the
3D scanning use case, which could otherwise be extremely
challenging to manually test.

V. CONCLUSION
The 3D reconstruction test automation is instrumental in
creating a comprehensive test strategy to test functionality,
performance and stability tests. 3D reconstruction tests have
helped the engineering team support multiple software prod-
ucts and objectively benchmark the performance tests for
multiple chipsets. The performance tests include key perfor-
mance indicators, including latency measurement, memory
and CPU profiling tests that help us evaluate the algorithm’s
performance.

3D reconstruction tests using the robotic arm lab have
provided the advantage of performing panning of the device
under different panning speeds and angles to the object.
3D reconstruction tests also involve testing the application
program interface layer for algorithmic validation and then

7212 VOLUME 6, 2018



D. Banerjee et al.: Robotic Arm Based 3D Reconstruction Test Automation

performing end-to-end validation using the android applica-
tions for 3D reconstruction. This approach has enabled us to
thoroughly test and find any function level failures related to
the 3D reconstruction algorithm before we perform the end-
to-end validation using the inputs from the depth for stereo
cameras.

VI. ADVANTAGES OF USING THE 3D RECONSTRUCTION
TEST AUTOMATION
3D reconstruction testing involves the synchronization of a
programmatically controlled robotic arm and a rotor. The
distinctive feature of the 3D reconstruction test automation
is that it provides an objective way to run automated tests and
obtain precise results that can be benchmarked against several
software builds.

The robotic arm has been programmed to execute test
cases that pan the device for specific panning angles, panning
speeds, and angular motions; this provides us with the ability
to validate the algorithm by having the same orientation as
the test subject.

It also uses an external depth sensor mounted onto the
phone under test. This provides us the flexibility to change
and add other external depth sensors and then validate the
algorithm. The on-device test automation involves using
Google Android’s instrumentation method in android phones
to launch intents, apply settings to an application, close the
application, and other functions. We post-process the logs
and the 3D model generated by the device and determine
the results of the test case. This helps the on-device software
validation of the 3D algorithms. We have added test cases in
various software integration points. This has helped us catch
issues related to the software or the 3D algorithms earlier in
the software lifecycle.

The robotic arm has provided a framework for the addition
of test scenarios. We can easily program the robotic arm to
accommodate these new test scenarios. This includes new
software changes or new 3D algorithm feature enhancements
and performance optimizations.

REFERENCES
[1] J. L. de Bougrenet de la Tocnaye, B. Cochener, S. Ferragut, D. Iorgovan,

Y. Fattakhova, and M. Lamard, ‘‘Supervised stereo visual acuity tests
implemented on 3D TV monitors,’’ J. Display Technol., vol. 8, no. 8,
pp. 472–478, Aug. 2012.

[2] C. A. Johnson and E. J. Casson, ‘‘Effects of luminance, contrast, and blur
on visual acuity,’’ Optometry Vis. Sci., vol. 73, no. 12, pp. 864–889, 1995.

[3] J. S. Pointer, ‘‘Influence of selected variables on monocular, interocu-
lar, and binocular visual acuity,’’ Optometry Vis. Sci., vol. 85, no. 2,
pp. 135–142, 2008.

[4] C. H. Y. Chiu and A. H. S. Chan, ‘‘Effect of screen contrast ratio and
luminance level on visual lobe shape,’’ in Proc. Int. Multi-Conf. Eng.
Comput. Sci. (IMECS), vol. 2. Hong Kong, Mar. 2008, pp. 19–21.

[5] M. T. M. Lambooija, W. A. Ijsselsteijna, and I. Heynderickx,
‘‘Visual discomfort in stereoscopic displays: A review,’’ Proc. SPIE,
vol. 6490, no. 1584, pp. 64900I–6490013, 2007. [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6220259

[6] T. Shibata, J. Kim,D.M.Hoffman, andM. S. Banks, ‘‘The zone of comfort:
Predicting visual discomfort with stereo displays,’’ J. Vis., vol. 11, no. 8,
pp. 1–29, Jul. 2011.

[7] Subjective Assessment of Stereoscopic Television Pictures, document Rec.
ITU-R BT.1438, ITU, 2000.

[8] T. Kanstrén, P. Aho, A. Lämsä, H. Martin, J. Liikka, and M. Seppänen,
‘‘Robot-assisted smartphone performance testing,’’ in Proc. IEEE Int.
Conf. Technol. Pract. Robot Appl. (TePRA), May 2015, pp. 1–6.

[9] S. Elbaum and M. Diep, ‘‘Profiling deployed software: Assessing strate-
gies and testing opportunities,’’ IEEE Trans. Softw. Eng., vol. 31, no. 4,
pp. 312–327, Apr. 2005.

[10] A. Machiry, R. Tahiliani, and M. Naik, ‘‘Dynodroid: An input genera-
tion system for Android apps,’’ in Proc. 9th Joint Meeting Found. Softw.
Eng. (ESEC/FSE), 2013, pp. 224–234.

[11] S. Anand, M. Naik, H. Yang, andM. Harrold, ‘‘Automated concolic testing
of smartphone apps,’’ in Proc. ACM Conf. Found. Softw. Eng. (FSE), 2012,
Art. no. 59.

[12] J. Jeon, K. Micinski, and J. Foster, ‘‘Symdroid: Symbolic execution for
dalvik bytecode,’’ Tech. Rep. CS-TR-5022, Jul. 2012. [Online]. Available:
http://www.cs.umd.edu/~jfoster/papers/symdroid.pdf

[13] N. Mirzaei, S. Malek, C. Păsăreanu, N. Esfahani, and R. Mahmood, ‘‘Test-
ing android apps through symbolic execution,’’ in Proc. Java Pathfinder
Workshop (JPF), 2012, pp. 1–5.

[14] C. Cadar, D. Dunbar, and D. Engler, ‘‘KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,’’ in
Proc. 8th USENIX Symp. Oper. Syst. Design Implement. (OSDI), 2008,
pp. 209–224.

[15] P. Godefroid, N. Klarlund, and K. Sen, ‘‘DART: Directed automated
random testing,’’ in Proc. ACM Conf. Program. Lang. Design Imple-
ment. (PLDI), 2005, pp. 213–223.

[16] J. C. King, ‘‘Symbolic execution and program testing,’’ Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[17] R. C. Bryce, S. Sampath, and A. M. Memon, ‘‘Developing a single model
and test prioritization strategies for event-driven software,’’ IEEE Trans.
Softw. Eng., vol. 37, no. 1, pp. 48–64, Jan./Feb. 2011.

[18] A. Memon, M. E. Pollack, and M. L. Soffa, ‘‘Automated test oracles for
GUIs,’’ in Proc. ACM Conf. Found. Softw. Eng. (FSE), 2000, pp. 30–39.

[19] A. M. Memon and M. L. Soffa, ‘‘Regression testing of GUIs,’’ in Proc.
ACM Conf. Found. Softw. Eng. (FSE), 2003, pp. 118–127.

[20] X. Yuan, M. B. Cohen, and A. M. Memon, ‘‘GUI interaction testing:
Incorporating event context,’’ IEEE Trans. Softw. Eng., vol. 37, no. 4,
pp. 559–574, Jul./Aug. 2011.

[21] L. White and H. Almezen, ‘‘Generating test cases for GUI responsibilities
using complete interaction sequences,’’ in Proc. 11th IEEE Int. Symp.
Softw. Rel. Eng. (ISSRE), 2000, p. 110.

[22] X. Yuan and A. M. Memon, ‘‘Generating event sequence-based test cases
using GUI runtime state feedback,’’ IEEE Trans. Softw. Eng., vol. 36, no. 1,
pp. 81–95, Jan./Feb. 2010.

[23] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A.M.Memon, ‘‘UsingGUI ripping for automated testing of Android appli-
cations,’’ in Proc. 27th Int. Conf. Automated Softw. Eng. (ASE), Sep. 2012,
pp. 258–261.

[24] T. Takala, M. Katara, and J. Harty, ‘‘Experiences of system-level model-
based GUI testing of an Android application,’’ in Proc. 4th Int. Conf. Softw.
Testing, Verification Validation (ICST), Mar. 2011, pp. 377–386.

DEBDEEP BANERJEE received themaster’s degree in electrical engineering
from the Illinois Institute of Technology. He has approximately ten years of
industry experience in the field of software/systems engineering. He has been
with the Software Test Automation Team since the inception of the Computer
Vision Project in Qualcomm Technologies Inc., USA, where he is currently
the Software/Systems Development Engineer in test lead for the Computer
Vision Project. He is a Senior Staff Engineer and an Engineering Manager
with Qualcomm Technologies Inc. He is responsible for the test automation
design, planning, development, deployment, code reviews, and managing
the project. He is closely with the software/system teams and gathers test
requirements for the project. He is involved in managing and developing
software for the Computer Vision Lab using the robotic arm.

KEVIN YU is currently a Test Engineer with Qualcomm Technologies, Inc.,
USA, where he has contributed for test automation validation for continuous
integration for computer vision algorithms. He has also validated computer
vision engine features, such as image rectification, for the android software
products.

GARIMA AGGARWAL is currently a Test Engineer with Qualcomm Tech-
nologies, Inc., USA, where he actively focused on MATLAB postprocessing
modules for CV features and various other automation projects.

VOLUME 6, 2018 7213


	INTRODUCTION
	MOTIVATION
	VALIDATION WITH PANNING OF THE DEVICE WITH A FIXED SPEED
	VALIDATION WITH FIXED DISTANCE FROM OBJECT
	VALIDATION WITH SAME ORIENTATION OF THE TEST OBJECT
	VALIDATION WITH DIFFERENT CAMERA 3D SENSORS

	BACKGROUND AND RELATED WORK
	SOLUTION
	OVERVIEW
	OBJECTIVE
	3D RECONSTRUCTION TEST AUTOMATION SETUP
	TEST AUTOMATION ALGORITHM
	PROGRAMMING ROBOTIC ARM POSITIONS
	RUNNING THE AUTOMATION SYSTEM
	RESULTS
	HEAD MODEL MANNEQUIN
	FURRY TOY
	SMALL CHINA PIECE
	BUILDING MODEL


	CONCLUSION
	ADVANTAGES OF USING THE 3D RECONSTRUCTION TEST AUTOMATION
	REFERENCES
	Biographies
	DEBDEEP BANERJEE
	KEVIN YU
	GARIMA AGGARWAL


