
Received November 24, 2017, accepted January 4, 2018, date of publication January 15, 2018, date of current version March 13, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2794258

A Cloud-Based Architecture for Multimedia
Conferencing Service Provisioning
ABBAS SOLTANIAN 1, FATNA BELQASMI2, SAMI YANGUI 1,3,
MOHAMMAD A. SALAHUDDIN 4, (Member, IEEE),
ROCH GLITHO1,5, AND HALIMA ELBIAZE6
1Concordia University, Montreal, QC H3G 1M8, Canada
2Zayed University, Abu Dhabi 144534, United Arab Emirates
3LAAS-CNRS, Université de Toulouse, INSA, 31400 Toulouse, France
4David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
5University of Western Cape, Cape Town 7535, South Africa
6Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada

Corresponding author: Abbas Soltanian (ab_solta@encs.concordia.ca)

This work was supported in part by the NSERC SAVI Research Network, in part by the NSERC Discovery Grant Program,
in part by the FQRNT New Researcher Start-Up Program, and in part by the Canada Research Chair in End-User Service Engineering for
Communications Networks.

ABSTRACT Multimedia conferencing is the real-time exchange of multimedia content between multiple
parties. It is the basis of several interactive multiuser applications, such as distance learning and mul-
timedia multiplayer online games. The cloud-based provisioning of the conferencing services on which
these applications rely on can have several benefits, including the easy provisioning of new applications,
efficient use of resources, and elastic scalability. This paper proposes a holistic cloud-based architecture for
conferencing service provisioning, which covers both the infrastructure and platform layers of the cloud.
The proposed infrastructure layer offers conferencing substrates-as-a-service (e.g., dial-in signaling, video
mixing, and audio mixing), instead of virtual machines or containers. The platform layer abstracts the details
of the conferencing concepts and offers a high-level interface to simplify conference service provisioning
for a wide range of service and application providers (experts versus non-experts). It also enables the
on-the-fly scaling of the running conferences while guaranteeing the required quality of service, enables
substrates composition to create new conferencing services, and eases the reuse of conferencing services
in building new applications. The presented architecture is supported by a proof-of-concept prototype and
performance measurements. The latter provides the analysis of resource allocation efficiency and response
time, as well as the scalability of the system under suboptimal and over-provisioned conditions. It also
provides recommendations for service providers regarding the best alternatives for provisioning their service.

INDEX TERMS Cloud computing, conferencing service provisioning, infrastructure-as-a-service, multime-
dia conferencing, platform-as-a-service, substrate-as-a-service.

I. INTRODUCTION
Cloud computing is a paradigm for swiftly provisioning a
shared pool of configurable resources (e.g., storage, network,
applications, and services) on demand. It has three key facets:
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS) [1]. It has several
benefits, such as the rapid provisioning of new services,
scalability, and elasticity. Multimedia conferencing is the
conversational exchange of media content (e.g., voice, video
and text) between multiple parties [2]. It is an important
component of conferencing applications (e.g., online video
meeting, distance learning, and massively multiplayer online
games).

For cost efficiency and to cut the development time, con-
ferencing application providers can use conferencing services
(e.g., dial-in video conferencing and dial-out audio
conferencing) offered by third parties. Such services could
be provisioned as SaaS using a PaaS that eases their devel-
opment. Conferencing services can themselves rely on basic
conferencing building blocks (e.g., signaling, audio mixer
and video mixer), referred to in this paper as the conferencing
substrates. Conferencing service provisioning refers to the
entire life-cycle of the conferencing service, i.e., develop-
ment, deployment, and management [3]. Provisioning con-
ferencing services in the cloud is quite challenging. One
challenge for the conferencing service providers, for instance,

9792
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-9080-5846
https://orcid.org/0000-0001-9756-642X
https://orcid.org/0000-0002-5431-3278


A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

is to master low-level details of conferencing technologies,
protocols and their dependencies. Another challenge is scal-
ing the size of the provisioned conferences with respect to
the number of participants. The size of a conference needs to
scale on-the-fly to accommodate a fluctuating number of par-
ticipants while the conference quality of service requirements
(e.g., latency) are met. The existing PaaS and IaaS solutions
do not address these challenges.

This paper proposes a holistic conferencing cloud architec-
ture to tackle those challenges. The new architecture provides
novel application programming interfaces (APIs) to simplify
the provisioning of the conferencing services for a wide range
of service providers (experts vs. non-experts) and describes
the process of substrate-as-a-service (SubaaS) composition.
The SubaaSs are provided as RESTFul web services, a design
style that reuses Web technologies. The architecture also
allows the application providers to utilize the offered confer-
encing services without having to deal with the complexities
of conferences. For scalability, the architecture relies on cloud
computing. It covers both the PaaS and IaaS layers and it
is an extension to our previous cloud-based conferencing
architecture that only covers PaaS [4].

The architecture is based on the business model in [2],
which introduces six roles: connectivity provider, broker,
conferencing substrate provider, conferencing infrastructure
provider, conferencing platform provider and conferencing
service provider. This paper reuses and extends this busi-
ness model by adding a new role, entitled the conferencing
application provider. It also assumes that the conferencing
infrastructure provider plays the role of the substrate provider
too. In this architecture, the infrastructure provider exposes
the conferencing substrates as services (SubaaS) to the plat-
form (i.e., PaaS) provider. The PaaS provider offers high-
level APIs to create innovative conferencing services and
it enables the on-the-fly composition of SubaaS into full-
fledged conference services. The conferencing application
providers reuse the conferencing services offered as SaaS
in building new applications. They also use PaaS to update
the running conferences in their applications at runtime
(e.g., switching from audio conference to audio/video con-
ference) without stopping the ongoing conferences.

The rest of the paper is organized as follows: Section II
gives required background information. Section III intro-
duces a motivating scenario, derives requirements, and
reviews related works. Section IV describes the proposed
overall architecture. Section V presents the implementation
architecture, prototype, and experimental results. Section VI
concludes the paper.

II. BACKGROUND INFORMATION
This section gives background information on multime-
dia conferencing, cloud platforms and infrastructures, and
RESTful service composition.

A. MULTIMEDIA CONFERENCING
Multimedia conferencing has three main architectural com-
ponents, namely signaling, media handling, and conference

control [2]. Signaling is in charge of the establishment,
modification and tear down of multimedia sessions. Session
establishment can be done in three different ways: dial-in,
dial-out and ad-hoc. In dial-in conferences, the participants
should call the signaling server to join the conference while
in dial-out conferences, the server calls all the participants.
An ad-hoc conference starts when two participants are in a
call and more participants are invited to join, by those already
in the conference. Media handling is about media functional-
ities such as audio mixing, video mixing, and transcoding.
Conference control encompasses control functions such as
floor control, allowing the management of shared resources
(e.g., audio channel) in the conference.

B. CLOUD PLATFORMS
Many cloud platforms are available for the development and
management of the applications offered as SaaS. Examples of
the existing PaaSs are Google Cloud Platform, Aneka, and
Cloud Foundry. There are also some reference models for the
PaaS architecture, such as the one introduced by IBM [5].
This PaaS layered architecture consists of four layers:
(1) Front-end – with a set of user and developer APIs and
tools. Development APIs allow developers to allocate and
manage the PaaS resources. The user APIs and GUIs allow
the end-users to invoke and execute the running applications
in the PaaS. (2) Core – with necessary frameworks (e.g., con-
tainers and storage services) required for application hosting
and execution. (3)Management and Governance – consisting
of entities for managing the PaaS and the hosted applications
(e.g., monitoring, scalability). Moreover, it has the required
entities to support the PaaS business model (e.g., billing,
membership). (4) Abstraction Interface – with a set of APIs
that enable interactions with the underlying IaaS.

C. CLOUD INFRASTRUCTURE
There are several existing cloud IaaS providers today, such
as Amazon EC2 and Microsoft Azure. Similar to the PaaS
architecture, IaaS also has some reference architectures such
as the one introduced in [6]. It consists of three main layers:
(1) Cloud Management – in charge of managing the over-
all IaaS. It also acts as an interface with IaaS consumers
(e.g., PaaS, another IaaS, and the Clouds). (2) Virtual Infras-
tructure Management – providing uniform and homogenous
view of virtual resources. It provides primitives to schedule
and manage VMs across multiple physical hosts. (3) Virtual
Machine Management – providing simple primitives (e.g.,
start, stop, suspend) to manage VMs on a single host.

D. RESTful SERVICE COMPOSITION
Representational State Transfer (REST) is an architectural
style based on the resources associated with unique identi-
fiers (e.g., URI) [7]. The interactions with these resources
are based on a standardized communication protocol (e.g.,
HTTP) and operations (i.e., GET, POST, PUT and DELETE).
The web services that are implemented following REST
guidelines are referred to as RESTful services.

VOLUME 6, 2018 9793



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

There are different approaches to RESTful service compo-
sition, including orchestration and choreography [8]. Based
on the World Wide Web Consortium (W3C) definition,
the choreography defines the sequences and conditions
where different independent services exchange data while
orchestration defines the sequences and conditions where
one service invokes other services [9]. In other words,
orchestration allows a central entity to control different
services and their interactions while choreography allows
the individual services to collaborate in a decentralized
manner.

Service selection is critical for service composition. For
instance, to create a new conferencing application, ade-
quate conferencing services (i.e., offered as SaaSs) should
be selected with the appropriate characteristics. The same
applies for creating a conferencing service from the exist-
ing conferencing substrates (i.e., offered by the conferenc-
ing IaaS). Various selection algorithms exist. Examples are
presented in [10] and [11]. These algorithms decide about
the costs and the gains, which can refer to different param-
eters such as price and response time. Based on the Service
Oriented Architecture (SOA) [12], each service provider can
publish the information of the services in a service broker.
The service broker acts as a directory for the published
services. Then, the service selection algorithm can discover
the suitable services from the broker.

FIGURE 1. Scenario for conferencing service provisioning in the cloud.

III. MOTIVATION, REQUIREMENTS AND
RELATED WORK
A. MOTIVATING SCENARIO
Fig. 1 depicts the motivating scenario. There are confer-
encing application providers that use conferencing services
offered as SaaS, to develop their applications. Three
conferencing applications are provisioned: (1) an online game
that allows dial-in audio conferencing between the game
players, (2) a distance learning application that enables dial-
out audio conferencing between students and teachers, and
(3) an online meeting application that offers dial-out video
conferencing with floor control. The conferencing service
providers in the scenario use the conferencing PaaS to pro-
vision the conferencing services these applications are based
on. One service provider offers Conferencing Service ‘‘A’’

that supports both dial-in and dial-out audio conferences.
The distance learning and the game applications utilize
Service A. Another conferencing service provider offers a
dial-out video conference service with floor control, i.e.,
Service B. This second service is used by the online meeting
application.

The conferencing SaaSs create new conferences when they
receive corresponding requests from the conferencing appli-
cations. For example, Service A creates a dial-in audio con-
ference when it receives a request from the game application.
To run the conference, PaaS finds the appropriate SubaaSs
(i.e., dial-in signaling and audio mixer in this example), com-
poses them, and requests the relevant IaaS(s) to create and
activate an adequate instance of each substrate (e.g., the audio
mixer with the capability of supporting 500 users). The Sub-
aaSs involved in a given composed conference application
may belong to different substrate/IaaS providers. As the
players join and leave a conference, PaaS scales the confer-
ence up and down in terms of the number of participants.
Then, the conferencing IaaS should scale the corresponding
instances up and down in terms of the virtualized hard-
ware (e.g., CPU, RAM, and Storage) and software (e.g., the
number of running instances of each substrate). Scaling in
both layers is done in an elastic manner.

B. REQUIREMENTS
The following five sets of requirements are derived from the
motivating scenario:

1) HIGH-LEVEL NORTHBOUND PAAS INTERFACES
FOR SERVICE PROVIDERS
The conferencing PaaS northbound interfaces should enable
the service providers to provision new services without hav-
ing to deal with the complexities of conferencing components
and their interactions. The interfaces should also be flexible
enough for creating complex and novel conferencing services
(e.g., a dial-in audio conference with five minutes of chat per
hour).

2) COMPOSITION OF CONFERENCE SERVICES
FROM SubaaSs
This feature enables and simplifies creating complex confer-
encing services based on the basic substrates that are offered
as services. For example, the dial-in audio conference service
(Conferencing Service A in the scenario) is composed of a
dial-in and audio mixer SubaaSs.

3) ELASTIC SCALABILITY
The conferencing PaaS, in collaboration with the confer-
encing IaaSs, should be scalable in terms of different con-
ferencing concepts such as the number of conferences,
sub-conferences, floors, and conference participants. Scaling
in an elastic manner allows the pay-as-you-go [13] principle
of the Cloud.

9794 VOLUME 6, 2018



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

4) MEETING QUALITY OF SERVICE
Meeting the Quality of Service (QoS) requirements, such
as latency, jitter, and throughput, is critical as conferencing
services are real-time.

5) PUBLISH-AND-DISCOVERY MECHANISM
This feature allows the conferencing application providers
to find the appropriate conferencing services that can fulfill
their requirements. It also enables the conferencing PaaS
to discover a conferencing IaaS and a conferencing IaaS,
to discover other conferencing IaaSs for excess workload
distribution.

C. RELATED WORK
The cloud-based conferencing architectures and the existing
PaaS and IaaS related solutions are reviewed below. Service
composition and discovery solutions are also discussed.

1) CLOUD-BASED CONFERENCING ARCHITECTURES
The existing architectures can be categorized with focus
on the SaaS or IaaS layers. Examples of the first category
are presented in [12] and [14]. The two solutions focus on
developing cloud conferencing services at the application
layer, without addressing the challenges related to the PaaS
and IaaS layers (e.g., scalability, QoS, publication, and dis-
covery of conferencing services). Reference [12] offers con-
ferencing services as SaaS, while using a conventional PaaS
for deployment and execution. No high-level interfaces are
provided to ease the development and management of such
services. Reference [14] presents an approach for providing
video conferencing as a web service, defines the interfaces to
be used by the conferencing application providers. This work
tries to transform the existing telecommunication services
into a reusable resource for the third parties. However, it does
not address how this service is provisioned.

Reference [15] is an example of relevant works with a
focus on the IaaS layer. The proposed architecture relies
on conferencing substrates and enables elastic scalability.
It also proposes PaaS/IaaS interfaces rooted in substrates
and proposes a broker between IaaS and PaaS that allows
finding suitable substrates. However, it does not consider the
PaaS and SaaS layers and their relevant issues. Neither does
it include high-level PaaS interfaces for service providers,
address substrates’ composition or provide a support for QoS.

Other works in the relevant literature, such as [16]–[18],
address specific problems of cloud-based conferencing, such
as inter-datacenter network utilization, media mixing, and
transcoding. While they focus on how conferencing compo-
nents can efficiently utilize the cloud, they do not address
conferencing service provisioning. In addition, as theseworks
only offer one service, they do not tackle the service publica-
tion, discovery, and composition.

2) EXISTING PaaS SOLUTIONS
Aneka [19] and Cloud Foundry [20], the two PaaS represen-
tatives, are evaluated. Aneka provides high-level interfaces
and supports elastic scalability, specifically for distributed
application provisioning. Nonetheless, it does not offer any
conferencing APIs. Cloud Foundry provides no interfaces for
conferencing service provisioning. It supports the scaling of
application instances but does not address scaling in terms
of conference concepts. Neither does it address composition
and QoS.

3) EXISTING IaaS SOLUTIONS
Some relevant literature propose a conceptual architecture
of open-source IaaSs. Reference [21], for example, pro-
poses the OpenStack architecture that consists of five layers:
Compute (Nova), Storage (Swift), Image (Glance), Identity
(Keystone) and Dashboard (Horizon). Nova is the computing
fabric controller for OpenStack and it is all about access
to the computing resources. Swift, as the storage infrastruc-
ture in OpenStack, offers APIs to store and retrieve lots
of data. Glance builds a discovery and retrieval system for
VM images. Keystone is responsible for authentication and
authorization. Horizon provides a web-based user interface to
all above OpenStack services. In [22], instead of having one
layer for Storage, it is broken down into two layers: Block
Storage and Object Storage. Block Storage offers storage
volume for Compute layer while Object Storage stores the
actual virtual disc files. Their architecture also has a Network
layer to provide virtual networking for the Compute layer.
All components in both architectures are following a shared-
nothing policy, meaning each component can be installed on
any server.

TheOpenNebula architecture proposed in [21] and [23] has
three layers: Drivers, Core, and Tools. Drivers do the com-
munication with the underlying operating system. VM cre-
ation, startup and shutting down are parts of this layer’s
functionality. The core is a centralized layer that manages
the VM life cycle. To manage VMs, Tools offers different
interfaces for communication with users. Sotomayor et al. [6]
keep the Core and Drivers layers and propose Scheduler to
replace Tools. Scheduler decides about VM placement. This
layer keeps track of all the incoming requests in order to
send an appropriate deployment command to the Core layer,
based on those requests. They also have an Interface layer to
communicate with users.

All above IaaS solutions are VM-based, thus, their inter-
faces should change to support the communication rooted
in conferencing concepts (e.g., start, stop and modify the
conferencing substrates). Moreover, they support scalability
in terms of computing resources, storage, and networking.
However, as a conferencing IaaS, there is a need to scale
resources in terms of conferencing concepts (e.g., the number
of participants) to collaborate with the conferencing PaaS.

VOLUME 6, 2018 9795



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

4) SERVICE COMPOSITION AND DISCOVERY
RESTful web service composition is a well-researched topic
as several solutions and alternatives have been proposed to
cater to different situations [24]–[26].

Service composition can be done in a static or dynamic
way [8]. In a static composition, the basic services as part of
the composition are selected in advance and their aggregation
takes place at the design time. In contrast, dynamic compo-
sition allows to select and replace the basic services during
the runtime. The composition can also be done manually,
semi-automated or automatically [8]. In manual composition,
the service provider should define and create an abstract
composite process and manually bind the services to the
abstract process. Some web service standard languages such
as BPEL [27] or OWL-S [28] can be used to create the
abstract process. In automatic composition, the new com-
posite service specification can be generated by selecting
adequate services based on the specified requirements [8].
Semi-automatic composition leverages both manual and
automatic approaches. Workflow-based and template-
based compositions are other composition planning tech-
niques [29]. In the workflow-based composition, the process
is depicted as an acyclic directed graph with control and
dataflow. This technique requires the developers’ extensive
domain knowledge and is time-consuming. In the template-
based composition, templates describe the outline of
activities required to solve the problem. Templates are param-
eterized and use variables that allow customization based on
the users’ needs and preferences. In fact, the templates lead
to creating an executable workflow.

Reference [30] proposes a cloud service broker to facilitate
the deployment of Cloud application topologies from multi-
ple Cloud providers. The authors also propose a multi-criteria
optimization algorithm to select the basic services to be com-
posed. The algorithm sets cost efficiency as the main objec-
tive. Yangui et al. [31] consider a wide range of objectives
to design their cloud broker selection mechanism, such as
user constraints, financial, energetic, geographic or operator
contractual preferences. Reference [32] considersmultimedia
conferencing requirements for designing the service broker.
The authors here propose an architecture for substrate service
publication and discovery. Their service broker acts between
the substrate providers and the conferencing IaaSs and offers
some REST APIs as the interfaces between them.

IV. PROPOSED CONFERENCING ARCHITECTURE
In this section, the architectural principles are presented.
Then, the architectural components and service development
APIs are discussed in detail, followed by an illustrative
scenario.

A. ARCHITECTURAL PRINCIPLES
The first principle is to adopt the orchestration approach
for the SubaaS composition because it provides PaaS with
a greater control on the substrates and their interactions.

FIGURE 2. Overall cloud-based conferencing architecture.

The second principle is to use high-level PaaS/IaaS interfaces
rooted in the conferencing substrates. This principle enables
PaaS to request IaaSs for scaling conferences in terms of
conference concepts (e.g., the number of participants) rather
than VM or the container resources. The third principle is to
leverage the existing PaaSs and IaaSs. This allows reusing
the existing solutions for the conferencing PaaS and IaaS
implementation. The last principle is that the conferencing
IaaSs expose substrates as RESTful web services. Therefore,
existing approaches and techniques for RESTful web service
orchestration, such as [33], can be reused in the conferencing
PaaS for substrates composition.

B. GENERAL ARCHITECTURE
The proposed cloud-based conferencing architecture,
as shown in Fig. 2, includes two main layers (i.e., PaaS and
IaaSs) and a broker. The figure also shows the conferencing
service providers, the conferencing applications, and the
conferencing application users referred to as the conference
participants. Note that PaaS may need to communicate with
multiple IaaSs to provision a given conferencing service.

1) PaaS COMPONENTS
The PaaS layer consists of six components, which deal with
two key facets: (a) conferencing service provisioning and
utilizing, and (b) conference management.

a: CONFERENCING SERVICES PROVISIONING
AND UTILIZING
This facet covers conferencing SaaSs development, deploy-
ment, and management in addition to conferencing SaaSs
utilizing. It includes four components. The Conferencing
Service Provisioning APIs component offers high-level APIs

9796 VOLUME 6, 2018



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

to the conferencing service providers, for easy provisioning
of new conferencing SaaSs. It also allows the SaaSs providers
to make their services available to the application developers
via publishing them into a PaaS local service repository.

The Conferencing Service Utilizing APIs provides high-
level APIs for conferencing application providers, to discover
(from the local service repository), reuse, and control the
existing conferencing SaaSs.

The Management and Governance component manages
the conferencing services and monitors their QoS and SLAs
during service execution. It deploys and executes new ser-
vices in the Service Hosting and Execution component, upon
receiving the requests from the conferencing Service Provi-
sioning APIs.
The Service Hosting and Execution component hosts the

conferencing services. It allocates necessary PaaS resources
(e.g., server runtime and database drivers) and prepares the
execution environment before hosting.

Note that the Conferencing Service Provisioning and
Utilizing APIs are the extensions of the application provi-
sioning front-end available in regular PaaS architectures. The
Management and Governance, as well as the Service Hosting
and Execution components are reused from the conventional
PaaS architectures.

b: CONFERENCE MANAGEMENT
This facet concerns the management of the actual confer-
ences (i.e., the virtual rooms where people can meet and
communicate). It encompasses conference creation as well as
the management of the created conferences (e.g., scaling the
size of a conference to support more participants). The main
component of this facet is Conference Orchestration with
the following five tasks: First, it determines the necessary
substrate types and their associated requirements by using, for
instance, syntactic matching with the categorized API param-
eters. This task starts upon receiving the execution or mod-
ification request for a specific conferencing SaaS. Second,
based on the determined types and requirements, it discovers
the most suitable conferencing SubaaSs from the broker. The
existing algorithms for cloud service selection, such as [10],
can be reused in this context. Third, it orchestrates confer-
ences from the selected SubaaSs and executes them. Note
that conferences are executed in this component. In contrast,
the conferencing SaaSs that create conferences are executed
in the Service Hosting and Execution component. Fourth,
it manages the composed conferences. For example, it can
add the video mixing ability to a conference or remove it
from it. Fifth, it monitors the running conferences to make
decisions if any scaling is required. For instance, if the num-
ber of participants in a conference increases, it decides to
scale the conference size. Thus, it requests the conferencing
IaaSs to scale the corresponding substrates to cope with the
new workloads.

Another component under this facet isthe Conferenc-
ing IaaS Handler, which is in charge of communications
between the conferencing PaaS and the conferencing IaaSs.

For instance, a scaling request initiated by the Conference
Orchestration component is sent to the corresponding confer-
encing IaaSs through the Conferencing IaaS Handler. Note
that Conference Orchestration is a novel component while
Conferencing IaaS Handler is an extension of IaaS commu-
nication component in conventional PaaS architectures.

2) IaaS COMPONENTS
The IaaS layer consists of five components, dealing with
two key facets: (a) resource management and (b) SubaaS
management.

a: RESOURCE MANAGEMENT
This facet is in charge of providing required resources in
order to run a substrate. The Virtualized Hardware is one of
the components in this facet. It has a pool of typical virtu-
alized IaaS resources such as CPU, Network, and Storage.
The second component of this facet is Substrate Manager
with three main tasks: First, it creates and hosts resources
in order to run the substrates. These resources can be a
VM or a container [34] that uses virtualized hardware to host
a substrate. Each substrate can be hosted on one or many
VMs or containers (e.g., two instances of the same substrate
may be activated in two different machines). In addition,
each VM or container may host more than one substrate.
The second task is modifying the allocated resources upon
receiving the scaling request for a substrate. For instance,
to scale up a running substrate, it can add some virtualized
hardware to the VM that hosts the target substrate. The third
task is inserting and updating the information of all running
substrates in a repository called Active SubaaS Info.

b: SubaaS MANAGEMENT
This facet includes the managing functionalities to offer
substrates as services. The first component of this facet is
the Active SubaaS Info. It is a repository that keeps infor-
mation about all running SubaaSs. For instance, for each
running SubaaS, it keeps the related conference ID, IP of the
VM(s) or container(s) hosting that substrate, etc.

Another component of this facet is SubaaS Controller. This
component has two main tasks. First, it decides how and
when to scale a running substrate, based on the Service Level
Agreements (SLAs) between the PaaS and IaaS (e.g., end-
to-end delay should be less than 400 msec). Upon receiving
the scaling request from the PaaS and its required QoS, it uses
the stored information in the Active SubaaS Info repository to
make the scaling decisions. The resource allocation algorithm
and video mixing procedure we proposed earlier in [35] is
used for this purpose. Second, it maintains a repository of
all available substrates in the IaaS. It selects the suitable
substrate from this repository when it receives a request to
create and start a substrate. It then instructs the Substrate
Manager to create the actual resource. Moreover, it publishes
the information of SubaaSs in the broker.

The third component of this facet is Conferencing PaaS
Handler, which is in charge of all communications between

VOLUME 6, 2018 9797



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

TABLE 1. Examples of conferencing service development APIs.

the PaaS and IaaS layers. This component has two main
tasks: First, it receives and dispatches the PaaS requests (e.g.,
to create a substrate and scale up a substrate) to the appro-
priate IaaS components and forwards the IaaS replies to the
PaaS. Second, it handles the conference participants’ requests
(e.g., joining a conference). The participants’ requests are
sent from the conferencing applications to the PaaS, which
forwards them to the conferencing IaaS. The Conferencing
PaaS Handler, in collaboration with the Active SubaaS Info
repository, identifies the appropriate substrates and forwards
the requests to them. This feature increases the level of
abstraction for the substrates working in a single conference.
Moreover, there is no need to update the participants on any
changes in the substrates’ hosting resources.

3) BROKER
The Broker lists the SubaaSs offered by different IaaSs.
The SubaaSs description is semantic-based to allow for rich
descriptions and queries. It includes high-level information
such as the type of service, QoS parameters, and cost. In this
paper, we reuse the description model and the broker publi-
cation and discovery interfaces from [32].

C. CONFERENCING SERVICE DEVELOPMENT APIs
Three principles are followed to design the proposed APIs.
The first principle is leveraging basic conferencing concepts
(e.g., conference, participant, media, and floor) in the API
design. This helps in achieving an abstraction level higher
than conferencing components (e.g., signaling, media mixer
and media transcoder) and their complex interactions. The
second principle is categorizing API parameters, which helps
service providers to easily understand conference mandatory
and optional aspects, required API parameters for each aspect
and dependencies among parameters. The third principle is
the use of RESTful design. It is standard-based, lightweight
and flexible for data representation, which allows describing
the APIs in a generic way.

Table 1 delineates four API examples. It shows some of
the REST resources along with an example operation for
each. The request parameters and the response contents are
also listed. Showing the categorization of API parameters,
table 2 highlights that a service provider has to specify one
conference model, at least one media and the conferenc-
ing technology. It also shows the conditional dependencies

of parameters. For example, for WebRTC-based conferenc-
ing [36], signaling protocol must be specified. In this table,
the parameters that the service providers can change during
the runtime are italicized.

D. SERVICE COMPOSITION
As per our first design principle, the conferencing services are
composed of SubaaSs using the orchestration approach. The
Conference Orchestration component of the PaaS plays the
role of the central entity that invokes and controls the com-
posing SubaaSs.

In addition to the composition approach, two other com-
position aspects are considered: binding dynamicity and
automation level [8]. Since the PaaS discovers, selects, and
activates the composing SubaaSs on the fly, dynamic bind-
ing to IaaSs (i.e., SubaaS providers) is required. As for the
automation level, the semi-automated approach is adopted to
take advantage of more mature and widely used techniques,
such as workflow.

In this work, the conferencing PaaS provider develops a
generic workflow template for the composite conference,
considering the various substrate types that may be required.
It uses a workflow automation tool (e.g., Activiti [37]) to ease
and speed up the process. When the Conference Orchestra-
tion component selects the SubaaSs to be composed (i.e.,
at runtime), it creates an instance of the workflow tem-
plate and then configures the instance with the selected
and activated substrate instances. Thus, the conference is
dynamically bound to its composing substrate services. This
dynamic binding makes it possible and easy to change the
substrates used by an ongoing conference at runtime if
needed. Note that a PaaS provider may define multiple work-
flow templates and then select the most suitable one based
on the required substrate types and the rest of the users’
requirements.

E. ILLUSTRATIVE SCENARIO
The illustrative scenario consists of (i) an online game appli-
cation where players can talk for unlimited time but can have
private text chat for only 5 minutes per hour, (ii) a service
provider that offers dial-in audio conferencing as SaaS with
text chat for a limited time and (iii) a conferencing PaaS
that subscribes to three conferencing IaaSs: A, B and C,
which offer dial-in signaling, audio mixing and instant

9798 VOLUME 6, 2018



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

TABLE 2. Categorization of API parameters.

messaging SubaaSs respectively. The scenario illustrates how
the conferencing PaaS creates a conference when the game
application sends a request to the conferencing SaaS and how
the conferencing IaaSs allocate the resources.

Fig. 3 shows the interactions. For brevity, the game appli-
cation is omitted in the figure. Using the Conferencing
Service Utilizing APIs, the game application developer finds
the offered conferencing services and requests for conferenc-
ing SaaS A. When conferencing SaaS A receives the game
application request for creating a conference, it invokes the
create conferenceAPI (step 1). The API handling is delegated
to the Conference Orchestration component, which deter-
mines necessary substrate types (step 2) and finds appropriate
SubaaSs through the broker (step 3). In this scenario, the dial-
in signaling and the audio mixing SubaaSs are selected from
IaaSs A and B respectively (step 4).

Next, the PaaS requests the IaaSs, via the Conferencing
IaaS Handler, to activate the substrates (steps 5 to 12). For
activation, the Conferencing PaaS Handler component in
the IaaS receives the request and forwards it to the SubaaS
Controller. The latter selects the requested substrate’s code
from its repository and sends the required information to
the Substrate Resource Manager to allocate the required
resources (e.g., it selects the audio mixer code that can handle
200 participants and asks the Substrate Resource Manger
to create and run a new VM to accommodate 200 par-
ticipants, install the substrate code on the VM, and run
the code to initialize and activate the audio mixer as a
substrate).

After activating the substrates, the Conference Orchestra-
tion binds the SubaaSs in the composing template (selected
in step 2) and then executes the new dial-in audio con-
ference (step 13). The orchestrated conference represents a
full-fledged conference. Finally, the ID of the full-fledged
conference is returned to the game (step 14).

It is assumed that the conferencing service enables private
text chat after 30 minutes. When the timer expires, the service
invokes the addMedia API to add instant messaging to the
conference for 5 minutes (step 15). Thus, the Conference
Orchestration discovers the appropriate SubaaS from the

broker (step 16). It selects IaaS C, activates the instant mes-
saging substrate and modifies the conference workflow to
add instant messaging (step 17 to 22). On the new substrate,
an individual conference is created for 5 minutes and the
existing participants are added to it (step 23 to 26). A notifi-
cation is sent to the game application (step 27) and the partic-
ipants can start exchanging text messages. For optimization
purposes, the messaging SubaaS can be added to the confer-
ence when created and it can be enabled and disabled when
needed. Meanwhile, the messaging SaaS can be discovered
and added at runtime if, for instance, the original one is no
more available. The scenario is showing the latter case.

V. IMPLEMENTATION AND MEASUREMENTS
An implementation architecture is first presented. Next, the
developed prototype is described and its validation and per-
formance measurements are discussed.

A. IMPLEMENTATION ARCHITECTURE
Fig. 4 shows the implementation architecture including Con-
ferencing PaaS, Conferencing IaaS, and the SubaaS Broker.

1) CONFERENCING PaaS
In the Conferencing Service Provisioning APIs component,
two sets of REST APIs are developed: Conferencing SaaS
Development APIs andConferencing SaaS Deployment APIs.
These are used for service creation and deployment respec-
tively. The Conferencing Service Utilizing APIs have been
also implemented as REST APIs. Management and Gover-
nance and Service Hosting and Execution components are not
discussed here as they are reused from the conventional PaaS
architectures.

TheConference Orchestration component uses a reposi-
tory to store theworkflows of composing templates. TheCon-
ference Manager in this component receives the northbound
requests for running conferences, selects an appropriate tem-
plate from the repository, and determines the required
substrates for the conference. It then sends that informa-
tion to the SubaaS Selector and the Substrate Orchestration
Engine.

VOLUME 6, 2018 9799



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

FIGURE 3. Conference creation and modification steps.

FIGURE 4. Implementation architecture.

The SubaaS Selector chooses the most suitable confer-
encing SubaaS from the SubaaS Broker, given the substrate
requirements. The discovery mechanism and the interfaces
between these two are reused from the existing work [32].
The Substrate Orchestration Engine uses the chosen

template to compose the selected substrates and deploy it
in the Conference Execution Engine that hosts the running
conferences. The Conference Scaling Decision Maker mon-
itors the running conferences and requests scaling when
needed.

9800 VOLUME 6, 2018



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

2) CONFERENCING IaaS
The Conferencing PaaS Handler includes two components:
Conferencing PaaS Requests Handler and Conferencing
Participants Request Handler. These are used to process
the requests initiated by the PaaS and by the Conference
Participants (i.e., the users of conferencing applications),
respectively. These requests are of three types: (1) to create
and activate a conference; (2) to scale a specific conference
(e.g., change the conference size); and (3) to join and leave
a conference. The first two are initiated by the PaaS while
the third is used by the participants. Both handlers are imple-
mented using REST APIs.

The conference creation and activation requests are sent to
the SubaaS Manager in the SubaaS Controller component.
The SubaaS Manager uses the Substrate Selector to choose
the appropriate substrates for creating the new conference.
Also, it uses the SubaaS Publisher to publish the existing
SubaaSs to the Broker.

The conference scaling requests are forwarded to the
Scaling Manager in the SubaaS Controller component.
It relies on a Scale Decision Maker to decide how to scale the
conference. The decision maker first fetches the information
about the conference-related SubaaSs from theActive SubaaS
Info (e.g., the IP of the hosting VM(s)/container(s) and the
information of the server(s) hosting those substrates, such
as available RAM, CPU, etc). Then, based on this informa-
tion and the new scaling requirements, the decision maker
determines which substrate(s) should be changed and how
(i.e., scale up/out/down). It then instructs the appropriate
component to do it (i.e., Up-Scaler,Out-Scaler, and Down-
Scaler). For instance, if the requirement is to update an
audio conference with 50 users to support 100 users and the
current server hosting the audio mixing substrate does not
have enough resources, the decision is to scale out the audio
mixing substrate on another server. Thus, a new VM or con-
tainer will create on another server to host the audio mixer
substrate.

For the Substrate Manager, we use the OpenStack Com-
pute (Nova) layer. It creates and updates VMs/Containers
to host the running substrates. It allocates or deallocates
resources based on the incoming requests from the SubaaS
Manager and the Scaling Manager. It also keeps the Active
SubaaS Info up-to-date after each operation.

B. PROTOTYPE
The prototype scenario includes a service provider offering
dial-in audio conferencing service and a game application
utilizing that service. It also includes the conferencing PaaS
and two conferencing IaaSs – both providing dial-in signaling
and audio mixer substrates.

In this prototype, the Cloud Foundry PaaS is used to pro-
vide the implementation of typical PaaS components.We also
extend it to implement our novel component (i.e., Conference
Orchestration). For Substrate Orchestration Engine andCon-
ference Execution Engine, we use Activiti [38], a light-weight

FIGURE 5. Dial-in audio conference creation and activation workflow.

workflow and Business Process Management (BPM) plat-
form. Conference Manager and Conferencing IaaS Handler
are implemented using Express.js framework [39]. Advanced
REST Client [40] is also used to simulate SaaS APIs invoca-
tion by the game.

For the conferencing IaaS, OpenStack [41] is used.
Conferencing PaaS Handler is implemented as a Java appli-
cation with REST-based APIs to communicate with the PaaS.
The open source framework Asterisk [42] is used for signal-
ing, media handling, and floor control substrates. To publish
a SubaaS information, we implement a subset of the model
proposed in [32]. Our published SubaaS information is shown
in table 3. For the Scaling Manager, we use the existing
resource allocation mechanism proposed in [35].

C. VALIDATION AND MEASUREMENTS
To validate our architecture, we run the implementation
according to the steps in Fig. 3. Fig. 5 shows the Activiti
orchestration process to create a dial-in audio conference.
The workflow execution corresponds to steps 5 to 14 in
Fig. 3. Implementing the dial-in audio conference service
using Activiti proved the simplicity of service creation, which
is very useful for non-expert developers. Indeed, while expert
conferencing service providers can use offered APIs to create
their provisioned services, non-expert providers can use an
orchestration tool to provision their services. Fig. 6 shows
the parameters sent back to the game application after the
workflow execution.

Three experimental environments are considered for per-
formance measurements: 1) A Non-Cloud Conferencing
(NCC) environment, where resources are allocated before-
hand. 2) A Monolithic IaaS Provider (MIP) environment,
where an IaaS offers multiple substrates in a single SubaaS
(i.e., the SubaaS is composed of multiple coupled substrates).
Thus, the IaaS hosts all substrate instances on the same VM.
This is the same if several SubaaSs from the same IaaS run on
the same VM. 3) A Non-Monolithic IaaS Provider (NMIP)

VOLUME 6, 2018 9801



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

TABLE 3. Published information of a SubaaS into the broker in our impementation.

FIGURE 6. Conference information which passed to the game application.

environment, where IaaS offers every single substrate as a
separate service. In NMIP, the IaaS hosts substrate instances
on separate VMs.

The following four metrics are used: (1) Resource Allo-
cation – the total amount of allocated resources, such as
memory and CPU, to accommodate all participants, (2) Scale
Time – the time to add resources to scale the conference,
(3) Conference Start Time – the time to get a conference
ready upon the receipt of a request and (4) Participant Joining
Time – the time to add a participant to a running conference.

To analyze the allocated resources, we consider a con-
ferencing application with considerable fluctuation. A good
example of such application is a massively multiplayer online
game (MMOG) which offers the audio/video conferencing.
This kind of application may include thousands or even mil-
lions of players who share their audio and video in the logic
of the game. For example, the study in [43] reported that
the number of users in World of Warcraft (a famous online
game) fluctuates between 1.5 and 2.5 million over 10 hours.
Fig. 7 shows the allocated amount of memory (i.e., RAM)
for a conference, when the number of participants fluctuates
between 1 and 3000. To simulate this fluctuation, we increase
the conference size by 200 participants every 10 minutes.
The results are based on the observed resource usage per
participant. The Scale Decision Maker in IaaSs scales the
VMs up and out while maintaining the QoS requirements.
Two QoS requirements are considered: 1) the end-to-end
delay which includes the audio and video mixing time should

FIGURE 7. Resource allocation evaluation.

not take more than 400 msec and 2) the amount of allo-
cated resources should be minimized. The resource allocation
algorithm in [35] is designed for this purpose and reused for
the prototype. The reference also discusses audio and video
mixer placement and the placement effects on the QoS. This
discussion is therefore not repeated here.

In NCC, there are always some idle and non-utilized
resources because of upfront resource provisioning. Hence,
we do not show the NCC allocated resources in Fig. 7.
As it is depicted in this figure, MIP scales better than NMIP
(i.e., it allocates fewer resources) for smaller conferences
whereas NMIP wins for bigger conferences. In NMIP,
the substrates are hosted on separate VMs. Thus, for smaller
conferences, it leads to more VMs and more non-utilizable
resources (e.g., the resources consumed by the operating
system) than in MIP. The bigger the size of a conference,
the more resources the substrates required to perform well.
However, they do not require the same thing; e.g., a signal-
ing substrate may need less extra resources than the mixer
because it is only used in the first phase of the conference.
In MIP, because of having monolithic SubaaS, the rate of
adding resources is the same for all substrates. This results in
more scaling out decisions and therefore more VMs. Indeed,
by applying the allocation algorithm in [35], the resources
exceed its maximum extra amount for scaling up, which
makes scaling out a better decision. By contrast, in NMIP,
the resources are allocated to each substrate based on their

9802 VOLUME 6, 2018



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

need, resulting in less scaling out decisions. This makes
NMIP achieve better scalability because of the fewer number
of VMs and better resource utilization than in MIP.

Regarding CPU usage, we used a 2.6 GHz single core
CPU for each VM. The CPU utilization per VM fluctuated
between 20% and 80% for each VM in both scenarios. This
fluctuation is based on the number of users that are connected
to the VM. This shows that VMs’ resources are not fully used,
in both MIP and NMIP. Therefore, CPU utilization for small
conferences is better in MIP, since it has a fewer number
of VMs to accommodate users in comparison with NMIP.
Similarly, when the size of the conference is big, NMIP has
better results because of its fewer VMs usage.

FIGURE 8. Total time for scaling the size of a conference with single
participant to a conference with 2 up to 3000 participants.

For the Scale Time metric, we observe the scaling per-
formance of the system under two conditions. The first
condition demonstrates the behavior of the system when
the conference starts with the minimum required amount of
resources, i.e., the least possible substrate instances (Fig. 8).
The second condition demonstrates the behavior of the sys-
tem under resource over-provisioning situation, i.e., the con-
ference starts with more substrate instances than required
(Fig. 9). Note that the second experiment is exclusively aimed
for demonstrating the impact of the number of substrates
on the scaling time. Therefore, in that experiment, the SLA
violations are not taken into account; i.e., the amount of
allocated resources is not minimized. The provided set of
experiments helps the conference service providers to evalu-
ate the tradeoff between over-provisioning and (sub)optimal
substrate allocation.

The scaling time under the first condition for both MIP and
NMIP scenarios are depicted in Fig. 8. In this experiment,
we first run a conference with one participant. This confer-
ence starts with the minimum required resources (i.e., one
VM inMIP and two VMs in NMIP). By increasing the size of

FIGURE 9. Conference scaling time by having different number of VMs for
(a) MIP and (b) NMIP.

the conference, the required resources are added to the exist-
ing VMs (i.e., those hosting the substrates). If the required
QoSs cannot be satisfied by adding resources to the existing
VMs, (e.g., the end-to-end delay is more than 400 msec),
the Scaling Manager in the IaaS starts new VMs for hosting
another instance of required substrates [35]. We scale the
size of the conference between 1 and 3000 participants in
this experiment. The scaling time accounts for several param-
eters, including the time for creating a new VM, the time
for adding resources (i.e., RAM in this experiment) to the
existing VMs and reconfiguring the system (e.g., updating
the list of available audio mixers), and the time for adding
all the participants. Basically, the scaling time from 10 to
100 participants, for instance, is the total time for moving
from a running conference with 10 participants to a running
conference with 100 participants.

As shown in Fig. 8, for adding a large number of partic-
ipants, the scaling time in MIP is lower than that of NMIP.
The main reason is, as discussed earlier, MIP creates more
instances/VMs than NMIP when the number of participants
is large. This makes MIP able to add participants in parallel
to several substrate instances/VMs. Besides, although recon-
figuring the system with more instances has some overhead,
the gain from load balancing makes the scaling time in MIP
lower than in NMIP.

Also, MIP gives better results when a limited number of
participants is added (scaling between 1 through ∼825 in this
graph). Adding resources to the existing VMs in both sce-
narios takes the same time, i.e., it is the exact same process.
However, the overhead time of reconfiguring the system with
more VMs in NMIP leads to having a longer scaling time.
Once MIP starts to create new VMs, the time for creating
these VM leads to an increase in the scaling time in MIP
(in the middle part of the figure). Based on the results, no
matter how many VMs are created, it does not noticeably
affect the scaling time inMIP andNMIP because several VMs
can be created in parallel.

The case of overprovisioning (Fig. 9) shows that, in both
MIP and NMIP, the scaling time for a limited number of
participants (up to∼800 participants) is less when the number
of VMs is less. In contrast, when the number of participants to
be added is large, having a conference that is hosted on more
VMs results in less scaling time because the participants can

VOLUME 6, 2018 9803



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

join multiple instances/VMs in parallel. Therefore, we can
conclude that having more resources does not always lead to
having less scaling time in the conferencing domain. In fact,
in conferencing, the collaboration between different substrate
instances hosted on different VMs causes some overhead.
Although increasing the number of substrate instances and
balancing the loads between them leads to some saving in
scaling time, the overhead of reconfiguring the system might
be more than the gain.

FIGURE 10. Average (a) conference start time (b) participant joining time.

Fig. 10(a) compares the conference start time in the three
studied environments (i.e., NCC, MIP, and NMIP). It shows
that NCC takes the least time to start a new conference, which
is obvious due to the absence of virtualization overhead.
And, since in NMIP the substrate instances are hosted on
separate VMs and they need to connect to each other over
the network, it takes more time than it does in MIP. However,
since starting a conference happens just once, this time is
endurable in the Cloud scenarios. Participant joining time is
also the least in the NCC as shown in Fig. 10(b). Cloud-based
scenarios take more time because of the notification overhead
between IaaSs, PaaS and the game server. However, this
time length remains acceptable (can be seen as the waiting
time to join the conference) and is not noticeable by end
users. In addition, the participant joining time of the two
cloud-based scenarios are close as IaaSs can notify PaaS in
parallel.

In conclusion, although in cloud-based scenarios, the
conference start time and the participant joining time are
more than those in NCC, the cloud-based conferencing
architecture helps to scale the system easily and avoid the
over-provisioning or under-provisioning of resources. The
results of scaling the time and allocated resources help
the conferencing service providers with better provision-
ing of their services. For instance, MIP is a better choice
for provisioning small conferencing services (e.g., to sup-
port 300 users) as it results in less resource usage and less
scaling time than in NMIP. However, for a conferencing
service with 1200 users, NMIP gives better scaling time
and lower resource consumption. In the case of big scenar-
ios (e.g., 3000 users or more), there is a tradeoff between
using less resources (i.e., NMIP) and having less scaling
time (i.e., MIP).

VI. CONCLUSION
A novel holistic architecture for multimedia conferencing
is proposed in this paper. This architecture simplifies the
provisioning of the conferencing services for expert and non-
expert service providers. It also supports scaling the running
conferences in an elastic manner. The implemented prototype
and the run experiments show the feasibility and validation
of the proposed architecture. The measurement analysis pro-
vides important findings, together with valuable recommen-
dations to the conferencing service providers, to suggest them
the most appropriate alternative for the deployment of their
service.

REFERENCES
[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, ‘‘A break

in the clouds: Towards a cloud definition,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, pp. 50–55, 2008.

[2] R. H. Glitho, ‘‘Cloud-based multimedia conferencing: Business model,
research agenda, state-of-the-art,’’ in Proc. IEEE 13th Conf. Commerce
Enterprise Comput. (CEC), Sep. 2011, pp. 226–230.

[3] M. Jacobs and P. Leydekkers, ‘‘Specification of synchronization in mul-
timedia conferencing services using the TINA lifecycle model,’’ Distrib.
Syst. Eng., vol. 3, no. 3, p. 185, 1996.

[4] A. F. B. Alam, A. Soltanian, S. Yangui, M. A. Salahuddin, R. Glitho, and
H. Elbiaze, ‘‘A cloud platform-as-a-service for multimedia conferencing
service provisioning,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jun. 2016, pp. 289–294.

[5] L. Coyne, T. Hajas, M. Hallback, M. Lindström, and C. Vollmar, IBM
Private, Public, and Hybrid Cloud Storage Solutions. Armonk, NY, USA:
IBM Redbooks, 2016.

[6] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, ‘‘Virtual
infrastructure management in private and hybrid clouds,’’ IEEE Internet
Comput., vol. 13, no. 5, pp. 14–22, Oct. 2009.

[7] R. T. Fielding, ‘‘Architectural styles and the design of network-based
software architectures,’’ Univ. California, Irvine, Irvine, CA, USA, 2000,
vol. 7.

[8] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
‘‘Web services composition: A decade’s overview,’’ Inf. Sci., vol. 280,
pp. 218–238, Oct. 2014.

[9] ‘‘Web service glossary,’’WorldWideWebConsortium (W3C), Cambridge,
MA, USA, Tech. Rep. W3C, 2004.

[10] T. Yu and K.-J. Lin, ‘‘Service selection algorithms for composing complex
services with multiple QoS constraints,’’ in Service-Oriented Computing,
B. Benatallah, F. Casati, and P. Traverso, Eds. Berlin, Germany: Springer,
2005, pp. 130–143.

[11] W. Zeng, Y. Zhao, and J. Zeng, ‘‘Cloud service and service selection algo-
rithm research,’’ in Proc. 1st ACM/SIGEVO Summit Genet. Evol. Comput.,
2009, pp. 1045–1048.

[12] J. Li, R. Guo, and X. Zhang, ‘‘Study on service-oriented cloud conferenc-
ing,’’ in Proc. 3rd IEEE Int. Conf. Comput. Sci. Inf. Technol. (ICCSIT),
Jul. 2010, pp. 21–25.

[13] R. L. Grossman, ‘‘The case for cloud computing,’’ IT Prof., vol. 11, no. 2,
pp. 23–27, Mar. 2009.

[14] P. Rodríguez, D. Gallego, J. Cerviño, F. Escribano, J. Quemada, and
J. Salvachúa, ‘‘VaaS: Videoconference as a service,’’ in Proc. 5th
Int. Conf. Collaborative Comput., Netw., Appl. Worksharing, 2009,
pp. 1–11.

[15] F. Taheri, J. George, F. Belqasmi, N. Kara, and R. Glitho, ‘‘A cloud
infrastructure for scalable and elastic multimedia conferencing applica-
tions,’’ in Proc. 10th Int. Conf. Netw. Service Manage. (CNSM), 2014,
pp. 292–295.

[16] Y. Feng, B. Li, and B. Li, ‘‘Airlift: Video conferencing as a cloud service
using inter-datacenter networks,’’ in Proc. 20th IEEE Int. Conf. Netw.
Protocols (ICNP), Nov. 2012, pp. 1–11.

[17] R. Cheng, W. Wu, Y. Lou, and Y. Chen, ‘‘A cloud-based transcoding
framework for real-time mobile video conferencing system,’’ in Proc. 2nd
IEEE Int. Conf. Mobile Cloud Comput., Services, Eng. (MobileCloud),
Apr. 2014, pp. 236–245.

9804 VOLUME 6, 2018



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

[18] J. Liao, C. Yuan, W. Zhu, and P. A. Chou, ‘‘Virtual mixer: Real-time audio
mixing across clients and the cloud for multiparty conferencing,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2012,
pp. 2321–2324.

[19] C. Vecchiola, X. Chu, and R. Buyya, ‘‘Aneka: A software platform
for.NET-based cloud computing,’’ High Speed Large Scale Sci. Comput.,
vol. 18, no. 3, pp. 267–295, 2009.

[20] Cloud Foundry Overview. Accessed: Nov. 4, 2015. [Online]. Available:
http://docs.cloudfoundry.org/concepts/overview.html

[21] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, ‘‘Comparison of open-
source cloud management platforms: OpenStack and OpenNebula,’’
in Proc. 9th Int. Conf. Fuzzy Syst. Knowl. Discovery (FSKD), 2012,
pp. 2457–2461.

[22] O. Litvinski and A. Gherbi, ‘‘Openstack scheduler evaluation using
design of experiment approach,’’ in Proc. 16th IEEE Int. Symp.
Object/Compon./Service-Oriented Real-Time Distrib. Comput. (ISORC),
Jun. 2013, pp. 1–7.

[23] S. U. R. Malik, S. U. Khan, and S. K. Srinivasan, ‘‘Modeling and analysis
of state-of-the-art VM-based cloud management platforms,’’ IEEE Trans.
Cloud Comput., vol. 1, no. 1, p. 1, Aug. 2013.

[24] N. Milanovic and M. Malek, ‘‘Current solutions for Web service composi-
tion,’’ IEEE Internet Comput., vol. 8, no. 6, pp. 51–59, Dec. 2004.

[25] A. Urbieta, G. Barrutieta, J. Parra, and A. Uribarren, ‘‘A survey of
dynamic service composition approaches for ambient systems,’’ in Proc.
Ambi-Syst. Workshop Softw. Organisation Monitor. Ambient Syst., 2008,
p. 1.

[26] C. Peltz, ‘‘Web services orchestration and choreography,’’ Computer,
vol. 36, no. 10, pp. 46–52, Oct. 2003.

[27] W. Chareonsuk andW. Vatanawood, ‘‘Formal verification of cloud orches-
tration design with TOSCA and BPEL,’’ in Proc. ECTI-CON, Jun. 2016,
pp. 1–5.

[28] D.Martin et al.,OWL-S: SemanticMarkup forWeb Services, document 04–
2007, 2004, vol. 22.

[29] A. Kim, M. Kang, C. Meadows, E. Ioup, and J. Sample, A Framework for
Automatic Web Service Composition, DTIC document ADA499917, 2009.

[30] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski, ‘‘Introduc-
ing STRATOS: A cloud broker service,’’ in Proc. IEEE CLOUD, vol. 12.
Jun. 2012, pp. 891–898.

[31] S. Yangui, I.-J. Marshall, J.-P. Laisne, and S. Tata, ‘‘CompatibleOne: The
open source cloud broker,’’ J. Grid Comput., vol. 12, no. 1, pp. 93–109,
2014.

[32] J. George, F. Belqasmi, R. H. Glitho, and N. Kara, ‘‘A substrate description
framework and semantic repository for publication and discovery in cloud
based conferencing,’’ in Proc. CSWS, 2013, pp. 41–44.

[33] M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino, ‘‘RESTful
service composition at a glance: A survey,’’ J. Netw. Comput. Appl., vol. 60,
pp. 32–53, Jan. 2016.

[34] S. Fu, J. Liu, X. Chu, and Y. Hu, ‘‘Toward a standard interface for cloud
providers: The container as the narrow waist,’’ IEEE Internet Comput.,
vol. 20, no. 2, pp. 66–71, Apr. 2016.

[35] A. Soltanian, M. A. Salahuddin, H. Elbiaze, and R. Glitho, ‘‘A resource
allocation mechanism for video mixing as a cloud computing service in
multimedia conferencing applications,’’ in Proc. 11th Int. Conf. Netw.
Service Manage. (CNSM), 2015, pp. 43–49.

[36] A. B. Johnston and D. C. Burnett,WebRTC: APIs and RTCWEB Protocols
of the HTML5 Real-Time Web. St. Louis, MO, USA: Digital Codex LLC,
2012.

[37] Activiti. Accessed: Nov. 7, 2016. [Online]. Available: http://activiti.org/
[38] M. Geiger, S. Harrer, J. Lenhard, M. Casar, A. Vorndran, and G. Wirtz,

‘‘BPMN conformance in open source engines,’’ in Proc. IEEE Symp.
Service-Oriented Syst. Eng. (SOSE), Mar. 2015, pp. 21–30.

[39] Express—Node.js Web Application Framework. Accessed: Mar. 25, 2017.
[Online]. Available: https://expressjs.com/

[40] Advanced REST Client. Accessed: Feb. 27, 2016. [Online]. Available:
https://chrome.google.com/webstore/detail/advanced-rest-client/
hgmloofddffdnphfgcellkdfbfbjeloo

[41] OpenStack Open Source Cloud Computing Software. Accessed:
Feb. 26, 2016. [Online]. Available: https://www.openstack.org/

[42] Asterisk. Accessed: Sep. 11, 2016. [Online]. Available: http://www.
asterisk.org/

[43] V. Nae, R. Prodan, and T. Fahringer, ‘‘Cost-efficient hosting and load bal-
ancing of massively multiplayer online games,’’ in Proc. 11th IEEE/ACM
Int. Conf. Grid Comput. (GRID), Oct. 2010, pp. 9–16.

ABBAS SOLTANIAN received the M.Sc. degree
in information technology from the Sharif Univer-
sity of Technology, Iran. He is currently pursu-
ing the Ph.D. degree in information and systems
engineering with Concordia University, Montreal,
QC, Canada. His current research interests include
cloud computing, multimedia conferencing, and
cloud resource optimization.

FATNA BELQASMI received the M.Sc. and
Ph.D. degrees in electrical and computer engi-
neering fromConcordia University, Montreal, QC,
Canada. She was a Research Associate with Con-
cordia University and a Researcher with Ericsson
Canada. She was a part of the IST Ambient Net-
work Project (a research project sponsored by the
European Commission within the Sixth Frame-
work Programme—FP6). She was a Research
and Development Engineer with Maroc Telecom,

Morocco. She is currently anAssociate Professor with ZayedUniversity, Abu
Dhabi, United Arab Emirates. Her research interests include next-generation
networks, service engineering, distributed systems, and networking tech-
nologies for emerging economies.

SAMI YANGUI received theM.Sc. degree in com-
puter science from the University of Tunis El-
Manar, Tunisia, in 2010, and the Ph.D. degree
in computer science from the Telecom SudParis,
Institut Mines-Telecom, France, in 2014.

He is an Associate Professor with the Insti-
tut National des Sciences Appliquées, Toulouse,
France. He is a member of the CNRS LAAS
research team. He is involved in different aspects
related to these topics, such as cloud/fog com-

puting, network functions virtualization, and content delivery networks.
He is also involved in different European and international projects, and
standardization efforts. He published several scientific papers in high-ranked
conferences and journals in his field of research. His research interests
include distributed systems and architectures, service-oriented computing
and Internet of Things. He also served on many program and organization
committees of international conferences and workshops.

MOHAMMAD A. SALAHUDDIN (S’09–M’15)
received the Ph.D. degree in computer science
from Western Michigan University, Kalamazoo,
MI, USA, in 2014. He was a Post-Doctoral Fel-
low with the Université du Québec à Montréal
and a Visiting Scientist with Concordia Univer-
sity, Montréal, QC, Canada. He is currently a
Post-Doctoral Fellow with the David R. Cheriton
School of Computer Science, University of Water-
loo, Waterloo, ON, Canada. His research inter-

ests include wireless sensor networks, QoS and QoE in vehicular ad hoc
networks (WAVE, IEEE 802.11p, and IEEE 1609.4), Internet of Things,
content delivery networks, software-defined networking, network functions
virtualization, and cloud computing. He serves as a Technical Program
Committee Member of international conferences and a reviewer of various
peer-reviewed journals, magazines, and conferences.

VOLUME 6, 2018 9805



A. Soltanian et al.: Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

ROCH GLITHO received the M.Sc. degrees
in business economics from the University of
Grenoble, France, and in pure mathematics and
computer science from the University of Geneva,
Switzerland, and the Ph.D. (Tekn. Dr.) degree in
tele-informatics from the Royal Institute of
Technology, Stockholm, Sweden. He was with
industry and has held several senior technical posi-
tions (e.g., senior specialist, principal engineer,
and expert) at Ericsson in Sweden and Canada.

His industrial experience includes research, international standards set-
ting, product management, project management, systems engineering, and
software/firmware design. He is currently an Associate Professor and the
Canada Research Chair with Concordia University. He is also an Adjunct
Professor at several other universities, including Telecom Sud Paris, France,
and the University of Western Cape, South Africa. He served as an IEEE
Distinguished Lecturer, the Editor-In-Chief of the IEEE Communications
Magazine, and the Editor-In-Chief of the IEEE COMMUNICATIONS SURVEYS

AND TUTORIALS JOURNAL.

HALIMA ELBIAZE received the B.S. degree in
applied mathematics from the University of MV,
Morocco, in 1996, theM.Sc. degree in telecommu-
nication systems from the Université de Versailles
in 1998, and the Ph.D. degree in computer science
from the Institut National des Télécommunica-
tions, Paris, France, in 2002. In 2003, she joined
the Department of Computer Science, Université
du Québec à Montréal, Montreal, QC, Canada,
where she is currently an Associate Professor. She

is the author or co-author of many journals and conference papers. Her
research interests include network performance evaluation, traffic engineer-
ing, and quality of service management in optical and wireless networks.

9806 VOLUME 6, 2018


	INTRODUCTION
	BACKGROUND INFORMATION
	MULTIMEDIA CONFERENCING
	CLOUD PLATFORMS
	CLOUD INFRASTRUCTURE
	RESTful SERVICE COMPOSITION

	MOTIVATION, REQUIREMENTS AND RELATED WORK
	MOTIVATING SCENARIO
	REQUIREMENTS
	HIGH-LEVEL NORTHBOUND PAAS INTERFACES FOR SERVICE PROVIDERS
	COMPOSITION OF CONFERENCE SERVICES FROM SubaaSs
	ELASTIC SCALABILITY
	MEETING QUALITY OF SERVICE
	PUBLISH-AND-DISCOVERY MECHANISM

	RELATED WORK
	CLOUD-BASED CONFERENCING ARCHITECTURES
	EXISTING PaaS SOLUTIONS
	EXISTING IaaS SOLUTIONS
	SERVICE COMPOSITION AND DISCOVERY


	PROPOSED CONFERENCING ARCHITECTURE
	ARCHITECTURAL PRINCIPLES
	GENERAL ARCHITECTURE
	PaaS COMPONENTS
	IaaS COMPONENTS
	BROKER

	CONFERENCING SERVICE DEVELOPMENT APIs
	SERVICE COMPOSITION
	ILLUSTRATIVE SCENARIO

	IMPLEMENTATION AND MEASUREMENTS
	IMPLEMENTATION ARCHITECTURE
	CONFERENCING PaaS
	CONFERENCING IaaS

	PROTOTYPE
	VALIDATION AND MEASUREMENTS

	CONCLUSION
	REFERENCES
	Biographies
	ABBAS SOLTANIAN
	FATNA BELQASMI
	SAMI YANGUI
	MOHAMMAD A. SALAHUDDIN
	ROCH GLITHO
	HALIMA ELBIAZE


