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ABSTRACT Systems based on deep neural networks have made a breakthrough in many different
pattern recognition tasks. However, the use of these systems with traditional architectures seems not
to work properly when the amount of training data is scarce. This is the case of the on-line signa-
ture verification task. In this paper, we propose a novel writer-independent on-line signature verifica-
tion systems based on Recurrent Neural Networks (RNNs) with a Siamese architecture whose goal
is to learn a dissimilarity metric from the pairs of signatures. To the best of our knowledge, this
is the first time these recurrent Siamese networks are applied to the field of on-line signature ver-
ification, which provides our main motivation. We propose both Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) systems with a Siamese architecture. In addition, a bidirectional
scheme (which is able to access both past and future context) is considered for both LSTM- and
GRU-based systems. An exhaustive analysis of the system performance and also the time consumed during
the training process for each recurrent Siamese network is carried out in order to compare the advantages
and disadvantages for practical applications. For the experimental work, we use the BiosecurID database
comprised of 400 users who contributed a total of 11,200 signatures in four separated acquisition sessions.
Results achieved using our proposed recurrent Siamese networks have outperformed the state-of-the-art
on-line signature verification systems using the same database.

INDEX TERMS Biometrics, deep learning, on-line handwritten signature verification, recurrent neural
networks, LSTM, GRU, DTW, BiosecurID.

I. INTRODUCTION
Deep Learning (DL) has become a thriving topic in the
last years [1], allowing computers to learn from experience
and understand the world in terms of hierarchy of sim-
pler units. DL has enabled significant advances in complex
domains such as natural language processing [2] and com-
puter vision [3], among many others. The main reasons to
understand the high deployment of DL lie on the increasing
amount of available data and also the deeper size of the
models thanks to the increased computer resources. However,
there are still some tasks in which DL has not achieved state-
of-the-art results due to the scarcity of available data and
therefore, the inability to train and use those traditional deep
learning architectures.

New trends based on the use of Recurrent Neural Networks
(RNNs), which is a specific DL architecture, are becoming
more and more important nowadays for modelling sequential

data with arbitrary length [4]. The range of applications of
RNNs can be very varied, from speech recognition [5] to
biomedical problems [6]. RNNs are defined as a connection-
ist model containing a self-connected hidden layer. One ben-
efit of the recurrent connection is that a memory of previous
inputs remains in the network internal state, allowing it to
make use of past context. Additionally, bidirectional schemes
(i.e. BRNNs) have been studied in order to provide access
not only to the past context but also to the future [7]. One of
the fields in which RNNs has caused more impact in the last
years is in handwriting recognition due to the relationship that
exists between current inputs and past and future contexts.
However, the range of contextual information that standard
RNNs can access is very limited due to the well-known van-
ishing gradient problem [8], [9]. Long Short-Term Memory
(LSTM) [10] and Gated Recurrent Unit (GRU) [11]–[13] are
RNN architectures that arised with the aim of resolving the
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shortcomings of standard RNNs. These architectures have
been deployed with success in both on-line and off-line
handwriting [8], [14]. Whereas off-line scenarios consider
information only related to the image of the handwriting,
in on-line scenarios additional information such as X and Y
pen coordinates and pressure time functions are also consid-
ered providing therefore much better results. Graves et al. [8]
proposed a system based on the use of Bidirectional LSTM
(BLSTM) for recognizing unconstrained handwritten text for
both off- and on-line handwriting approaches. The results
obtained applying this new approach outperformed a state-of-
the-art HMM-based system and also proved the new approach
to be more robust to changes in dictionary size. These new
approaches have been considered not only for recognizing
unconstrained handwriting but also for writer identification.
Zhang et al. [15] considered a system based on BLSTM
for on-line text-independent writer identification. The experi-
ments carried out over both English (133writers) and Chinese
(186 writers) outperformed state-of-the-art systems as well.

Despite the good results obtained in the field of handwrit-
ing recognition, very few studies have successfully applied
these new RNN architectures to handwritten signature veri-
fication. Tiflin and Omlin [16] proposed the use of a system
based on LSTM for on-line signature verification. Different
configurations based on the use of forget gates and peephole
connections were studied considering in the experimental
work a small database with only 51 users. The LSTM RNNs
proposed in that work seemed to authenticate genuine and
impostor cases very well. However, as it was pointed out in
[17], the method proposed for training the LSTM RNNs was
not feasible for real applications for various reasons. First,
the authors considered the same users for both development
and evaluation of the system. Moreover, the system should be
trained every time a new user was enrolled in the application.
In addition, forgeries were required in that approach for
training, which may not be feasible to obtain as well. Besides,
the results obtained in [16] cannot be compared to any state-
of-the-art signature verification system as the traditional mea-
sures such as the Equal Error Rate (EER) or calibrated like-
lihood ratios were not considered. Instead, they just reported
the errors of the LSTM-outputs. In order to find some light on
the feasibility of LSTM RNNs for signature verification pur-
poses, Otte et al. [17] performed in an analysis considering
three different real scenarios: 1) training a general network
to distinguish forgeries from genuine signatures on a large
training set, 2) training a different network for eachwriter that
works perfectly on the training set, and 3) training the net-
work on genuine signatures only. However, all experiments
failed obtaining a 23.75% EER for the best configuration, far
away from the best state-of-the-art results and concluding that
LSTMRNN systems trained with standard mechanisms were
not appropriate for the task of signature verification as the
amount of available data for this task is scarce compared to
other tasks such as handwriting recognition.

The main contributions of the present work are as follows:
1) we propose the use of different RNNs with a Siamese

architecture for the task of on-line handwritten signature veri-
fication. This Siamese architecture [18] allows getting a close
approximation to the verification task learning a dissimilarity
metric from pairs of signatures (pairs of signatures from the
same user and pairs of genuine-forgery signatures). To the
best of our knowledge, to date, recurrent Siamese networks
have never been used to model an on-line signature verifier,
which provides our main motivation. 2) We propose on-line
signature verification systems for a writer-independent sce-
nario. This scenario is preferable over the writer-dependent
scenario, as for a real consumer based system, e.g. in banking,
the system would not need to be updated (retrained) with
every new client who opens an account, avoiding therefore
a waste of resources. 3) We propose a strict experimental
protocol, in which different users and number of available
signatures are considered for the development and evalua-
tion of the systems in order to analyse the true potential of
recurrent Siamese networks for signature verification. 4) This
work constitutes, to the best of our knowledge, the first
analysis of RNNs (i.e. LSTM and GRU) for the two types
of forgeries considered in on-line signature verification (i.e.
skilled and random or zero-effort forgeries). 5) We perform
an exhaustive analysis of the system performance and also the
time consumed during the training process for each recurrent
Siamese approach in order to compare the advantages and
disadvantages of each of them for practical applications. 6)
We finally analyse the advantages of considering recurrent
Siamese networks with a bidirectional scheme, which is able
to access both past and future contexts.

The remainder of the paper is organized as follows.
In Sec. II, our proposed approach based on the use of
LSTM and GRU RNNs for signature verification with a
Siamese architecture is described together with the bidirec-
tional scheme in order to access to future context as well.
Sec. III describes the BiosecurID on-line signature database
considered in the experimental work. Sec. IV describes the
information used for feeding the LSTM and GRU RNNs.
Sec. V describes the experimental protocol and the results
achieved with our proposed approach. Finally, Sec. VI draws
the final conclusions and points out some lines for future
work.

II. PROPOSED METHODS
The methods proposed in this work for improving the per-
formance of on-line signature verification are based on the
combination of LSTM and GRURNNs with a Siamese archi-
tecture. A bidirectional scheme is also studied.

A. SIAMESE ARCHITECTURE
The Siamese architecture has been used for recogni-
tion or verification applications where the number of cat-
egories is very large and not known during training, and
where the number of training samples for a single category
is small. In our case the main goal of this architecture is to
learn a similarity metric from data minimizing a discrimi-
native cost function that drives the dissimilarity metric to be

VOLUME 6, 2018 5129



R. Tolosana et al.: Exploring RNNs for On-Line Handwritten Signature Biometrics

FIGURE 1. Examples of our proposed LSTM and GRU RNN systems based on a Siamese architecture for minimizing a discriminative cost
function. (a) Genuine case. (b) Impostor case.

small for pairs of genuine signatures from the same subject,
and longer for pairs of signatures coming from different
subjects. Fig. 1 shows that idea visually. In previous studies
such as [18], the authors proposed the use of Convolutional
Neural Networks (CNNs) with a Siamese architecture for
face verification. Experiments were performed with several
databases obtaining very good results where the number
of training samples for a single category was very small.
Siamese architectures have also been used in early works for
on-line signature verification [19] although not considering
RNNs. Bromley et al. [19] proposed an on-line signature
verification system comprised of two separated sub-networks
based on Time Delay Neural Networks (TDNNs) which
are one-dimensional convolutional networks applied to time
series. Different architectures regarding the number and size
of layers were studied. A total of 8 time functions fixed to
the same length of 200 points were extracted for X and Y
pen coordinates using an old-fashion NCR 5990 Signature
Capture Device. The best performance was obtained using
two convolutional layers with 12 by 64 units in the first layer
and 16 by 19 units in the second one. The threshold was set
to detect 80.0% of forgeries and 95.5% of genuine signatures,
far away from the results that can be achieved nowadays with
state-of-the-art systems [20]–[23].

B. LONG SHORT-TERM MEMORY RNNs
LSTM RNNs [10] have been successfully applied to many
different tasks such as language identification considering
short utterances [24] or biomedical problems [6] for example.
However, the analysis and design of LSTM RNN architec-
tures for new tasks are not straightforward [25].

LSTM RNNs [10] are comprised of memory blocks usu-
ally containing one memory cell each of them, a forget gate f ,

an input gate i, and an output gate o. For a time step t:

ft = σ (Wf xt + Uf ht−1 + bf ) (1)

it = σ (Wixt + Uiht−1 + bi) (2)

ot = σ (Woxt + Uoht−1 + bo) (3)

C̃t = tanh(WCxt + UCht−1 + bC ) (4)

Ct = ft � Ct−1 + it � C̃t (5)

ht = ot � tanh(Ct ) (6)

where W∗ and U∗ are weight matrices and b∗ is the bias
vector. The symbol� represents a pointwise product whereas
σ is a sigmoid layer which outputs values between 0 and 1.
The LSTM does have the ability to remove old information
from t − 1 time or add new one from t time. The key is
the cell state Ct which is carefully regulated by the gates.
The f gate decides the amount of previous information (i.e.
ht−1) that passes to the new state of the cell Ct . The i gate
indicates the amount of new information (i.e. C̃t ) to update
in the cell state Ct . Finally, the output of the memory block
ht is a filtered version of the cell state Ct , being the o gate in
charge of it. Fig. 2 shows a single LSTM memory block at
different time steps (i.e. Xt−1, Xt and Xt+1) for clarification.

C. GATED RECURRENT UNIT RNNs
GRU [11], [12] is a relatively new type of RNNs which
has been inspired by the LSTM unit but is much simpler
to compute and implement. In addition, the results obtained
using this novel RNN system seems to be very similar to
the LSTM RNN system [26]. The main difference between
GRU and LSTM RNNs resides in the number of gates used
to control the flow of information. Whereas the LSTM unit
contains three different gates (i.e. forget f , input i and output
o gate), the GRU unit only owns two gates (i.e. reset gate r
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FIGURE 2. Scheme of a single LSTM memory block at different time steps (i.e. Xt−1, Xt and Xt+1).

FIGURE 3. Scheme of a single GRU memory block at different time steps (i.e. Xt−1, Xt and Xt+1).

and update gate z). For a time step t:

rt = σ (Wrxt + Urht−1 + br ) (7)

zt = σ (Wzxt + Uzht−1 + bz) (8)

h̃t = tanh(Whxt + Uh(ht−1 � rt )+ bh) (9)

ht = zt � ht−1 + (1− zt )� h̃t (10)

where W∗ and U∗ are the weight matrices and b∗ is the bias
vector. The symbol� represents a pointwise product whereas
σ is a sigmoid layer which outputs values between 0 and 1.
The GRU does have the ability to remove old information
from t − 1 time or add new one from t time. The reset gate
rt is in charge of keeping in the current cell state (i.e. h̃t )
the information of the previous time step (i.e. ht−1) or reset
it with the information of only the current input (i.e. xt ).
Finally, the update gate zt filters how much information from
the previous time step and current cell state will flow to the
current output of the memory block (i.e. ht ). Fig. 3 shows a
single GRU memory block at different time steps (i.e. Xt−1,
Xt and Xt+1) for clarification.

D. BIDIRECTIONAL RNNs
The RNN schemes explained before in Sec. II-B and II-C
are the original ones. These schemes have access only to
the past and present contexts. However, for some applica-
tions such as handwriting or speech recognition the chance
of having access to the future context can further improve
the system performance [5], [8]. Schemes which also allow
access to the future context are known as Bidirectional RNNs
(BRNNs) [7]. BRNNs combine a RNN that moves forward
through time beginning from the start of the sequence with
another RNN that moves backward through time beginning
from the end of the sequence [1]. Fig. 4 shows a typi-
cal scheme of a BRNN system at different time steps (i.e.
Xt−1, Xt and Xt+1) for clarification. The bottom part of the
scheme propagates the information forward in time (towards
the right) while the top part of the scheme propagates the
information backward in time (towards the left). Thus at each
point t , the output units Ot can benefit from a relevant sum-
mary of the past in its hft input and from a relevant summary
of the future in its hbt input [1].
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FIGURE 4. Scheme of a typical Bidirectional RNN system at different time steps (i.e. Xt−1, Xt and Xt+1). The bottom part of the scheme propagates the
information forward in time (towards the right) while the top part of the scheme propagates the information backward in time (towards the left). Thus at
each point t , the output units Ot can benefit from a relevant summary of the past in its hf

t input and from a relevant summary of the future in its hb
t

input. Adapted from [1].

III. ON-LINE SIGNATURE DATABASE
The BiosecurID database [27] is considered in the exper-
imental work of this paper. This database is comprised
of 16 original signatures and 12 skilled forgeries per user,
captured in 4 separate acquisition sessions leaving a two-
month interval between them. There are a total of 400 users
and signatures were acquired considering a controlled and
supervised office-like scenario. Users were asked to sign
on a piece of paper, inside a grid that marked the valid
signing space, using an inking pen. The paper was placed
on a Wacom Intuos 3 pen tablet that captured the following
time signals of each signature: X and Y pen coordinates (res-
olution of 0.25 mm), pressure (1024 levels) and timestamp
(100 Hz). In addition, pen-ups trajectories are available. All
the dynamic information is stored in separate text files follow-
ing the format used in the first Signature Verification Compe-
tition (SVC) [28], [29], where one of our previous signature
verification systems was ranked first against skilled forgeries.
The acquisition process was supervised by a human operator
whose task was to ensure that the collection protocol was
strictly followed and that the captured samples were of suffi-
cient quality (e.g. no part of the signature outside the desig-
nated space), otherwise the subjects were asked to repeat the
signature.

IV. TIME FUNCTIONS REPRESENTATION
The on-line signature verification system proposed in
this work is based on time functions (a.k.a. local
system) [30], [31]. For each signature acquired, signals
related to X and Y pen coordinates and pressure are used to
extract a set of 23 time functions, similar to [32]. All time
functions are included in Table 1.

TABLE 1. Set of time functions considered in this work.

V. EXPERIMENTAL WORK
A. EXPERIMENTAL PROTOCOL
The experimental protocol considered in this work has been
designed in order to analyse and prove the feasibility of both
LSTM and GRU RNNs for on-line signature verification in
practical scenarios. Therefore, different users and signatures
are considered for the two main stages, i.e., development
of the RNNs system (Sec. V-B1) and the final evaluation
(Sec. V-B2). Additionally, the two most common types of
forgeries are considered here: skilled, the case when a forger
tries to imitate the signature of another user of the sys-
tem, and random or zero-effort, the case when a forger
uses his own signature claiming to be another user of the
system.
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FIGURE 5. End-to-end on-line signature verification system proposed in this work and based on the use of LSTM and
GRU RNNs with a Siamese architecture.

The first 300 users of the BiosecurID database are used for
the development of the system, while the remaining 100 users
are considered for the evaluation. For both stages, the 4 gen-
uine signatures of the first session are used as training
signatures, whereas the 12 genuine signatures of the remain-
ing sessions are left for testing. Therefore, inter-session
variability is considered in our experiments. Skilled forgery
scores are obtained by comparing training signatures against
the 12 available skilled forgery signatures for each user
whereas random forgery scores are obtained by comparing
the training signatures with one genuine signature of 12 other
random users.

Finally, three different scenarios are analysed regarding the
type of forgery considered for training the RNN systems:
1) ‘‘skilled’’, the case which considers only pairs of gen-
uine and skilled forgery signatures, 2) ‘‘random’’, the case
which considers only pairs of genuine and random forgery
signatures, and 3) ‘‘skilled+ random’’, the case which con-
siders pairs of both genuine/skilled and also genuine/random
signatures in order to train just one system for both types of
forgeries.

B. RESULTS
1) DEVELOPMENT RESULTS
This section describes the development and training of our
proposed LSTM and GRU RNN systems with a Siamese
architecture considering the 300 users of the development
dataset. Three kinds of pairs of signatures can be used as
inputs of the RNN systems: 1) two genuine signatures per-
formed by the same user, 2) one genuine signature from the

claimed user and one skilled forgery signature performed by
an impostor, and 3) one genuine signature from the claimed
user and one random forgery signature. For each of these three
cases there are a total of 4 × 12 × 300 = 14, 400 com-
parisons, having the same number of genuine and impostor
signatures for testing. Our RNN systems are implemented
under Theano [33] with a NVIDIAGeForce GTX 1080 GPU.

In order to find the most suitable RNN system architecture
we explored different configurations regarding the number
of time functions used as inputs and the complexity level of
the RNN system (i.e. number of hidden layers and memory
blocks per hidden layer). In all cases, we considered our
proposed Siamese architecture in order to learn a dissimilarity
from pair of signatures. Our first attempt was based on the
use of some of the 11 most commonly used time functions
from a total of 23 (i.e., xn, yn, zn, θn, vn, ρn, an, ẋn, ẏn, ẍn,
ÿn from Sec. IV) and a RNN system based on two RNN
hidden layers (with 22 and 11 memory blocks, respectively)
and finally, a feed-forward neural network layer. Both input-
to-hidden and hidden-to-hidden layers are fully-connected.
The system performance obtained over the evaluation dataset
was 8.25%EER. Then, we decided to increase the complexity
of the RNN system in order to achieve better results over the
evaluation dataset. First, we added a new RNN layer com-
prised of 6 memory blocks on top of the second RNN layer
providing a 20.00% EER over the evaluation dataset, so this
configuration was discarded. Another approach was based
on the use of the original configuration based on two RNN
hidden layers but increasing the number of memory blocks
(44 and 22 per RNN hidden layer, respectively) achieving
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FIGURE 6. Considered RNNs cost during training for the ‘‘skilled’’ scenario. A small green vertical line indicates for each proposed RNN system the
training iteration which provides the best system performance over the evaluation dataset.

a 10.00% EER, being this result worse compared to the
8.25% EER of the original configuration. We concluded that
increasing the complexity of the RNN system always ended
upwith aworse generalization over the evaluation dataset (i.e.
overfitting). Then we decided to feed the RNN system with
as much information as possible, i.e., all 23 time functions.

After repeating the same previous exploration, the best
topology obtained for both LSTM and GRU proposed RNNs
is based on the use of two RNN hidden layers and finally,
a feed-forward neural network layer. Fig. 5 shows our pro-
posed end-to-end on-line signature verification system. The
first layer is composed of two LSTM/GRU hidden layers with
46 memory blocks each and sharing the weights between
them. The outputs provided for each LSTM/GRU hidden
layer of the first layer are then concatenated and serve as
input to the second layer which corresponds to a LSTM/GRU
hidden layer with 23 memory blocks. Finally, a feed-forward
neural network layer with a sigmoid activation is considered,
providing an output score for each pair of signatures.

Fig. 6 shows the training cost of the considered RNNs
with the number of training iterations for the ‘‘skilled’’
scenario. Four different RNN-based systems are consid-
ered, i.e., LSTM, GRU and their bidirectional schemes (i.e.
BLSTM and BGRU). A small green vertical line is included
in the figure for each proposed RNN system indicating the
training iteration which provides the best system perfor-
mance over the evaluation dataset, with a training cost value
very close to zero. Similar results were obtained for both
‘‘random’’ and ‘‘skilled + random’’ scenarios as well. It is
important to remark two different aspects of the figure. First,
the difference in the number of training iterations needed
between normal (i.e. LSTM and GRU) and bidirectional
schemes (i.e. BLSTM and BGRU). For example, the best
LSTM configuration is obtained after 140 training iterations
whereas only around 50 iterations are needed for the BLSTM
RNN system. This shows the importance of considering both

past and future contexts in order to train RNNs faster and
also with a lower value of training cost. Additionally, it is
important to highlight the difference in the number of train-
ing iterations between both LSTM and GRU RNN systems.
As the GRU memory block is a simplified version of the
LSTM memory block (see Sec. II-C) the number of param-
eters to train are lower and therefore, we are able to get
similar and even better values of training cost with fewer
number of training iterations compared to the LSTM RNN
system.

2) EVALUATION RESULTS
This section analyses the performance of the proposed RNN
systems trained in the previous section for the three differ-
ent training scenarios considered (i.e. ‘‘skilled’’, ‘‘random’’
and ‘‘skilled + random’’). The remaining 100 users (not
used for development) are used here. Regarding the sys-
tem performance, two different cases are considered. First,
the evaluation of the system performance considering scores
directly from all pairs of signatures (i.e. 1vs1) and second,
the case of performing the average score of the four one-
to-one comparisons (i.e. 4vs1) as there are four genuine
training signatures per user. In order to make comparable
our approach to related works, we have considered a highly
competitive system based on the popular DTW approach [23]
with a total of 9 out of 27 different time functions selected
using the Sequential Forward Feature Selection (SFFS)
algorithm.

Tables 2 and 3 show the system performance in terms
of EER(%) for our Proposed RNN-based Systems for both
1vs1 and 4vs1 cases, respectively. In addition, Table 4 shows
the system performance in terms of EER(%) for the DTW-
based System [23] for both 1vs1 and 4vs1 cases, over the
same evaluation set of Tables 2 and 3. We now analyse
the results obtained for each of the three different training
scenarios considered.
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TABLE 2. 1vs1 Evaluation Results: System performance in terms of EER(%) for the three different training scenarios considered, i.e., ‘‘skilled’’, ‘‘random’’
and ‘‘skilled + random’’.

TABLE 3. 4vs1 Evaluation Results: System performance in terms of EER(%) for the three different training scenarios considered, i.e., ‘‘skilled’’, ‘‘random’’
and ‘‘skilled + random’’.

TABLE 4. 1vs1 and 4vs1 DTW-based Evaluation Results: System
performance in terms of EER(%).

a: SKILLED TRAINING SCENARIO
First, we analyse in Tables 2 and 3 the case in which only
pairs of genuine and skilled forgery signatures are used for
developing the systems (i.e. ‘‘skilled’’). Overall, very good
results have been obtained for all Proposed Systems when
skilled forgeries are considered. Bidirectional schemes (i.e.
BLSTM and BGRU) have outperformed normal schemes,
highlighting the importance of considering both past and
future contexts. In addition, both LSTM and GRU RNN
systems have achieved very similar results proving their fea-
sibility for handwritten signature verification. Analysing the
results obtained in Tables 2 and 4 for the 1vs1 case, our
Proposed BLSTMSystem has achieved the best results with a
5.60% EER, which corresponds to an absolute improvement
of 4.57% EER compared to the 10.17% EER achieved for
the DTW-based System. This result (i.e. 5.60% EER) outper-
forms related state-of-the-art results for the case of consider-
ing just one signature for training [20]. Analysing the results
obtained in Tables 3 and 4 for the 4vs1 case, our Proposed
BLSTM System achieves a 4.75% EER, which corresponds
to an absolute improvement of 3.00% EER compared to the
7.75% EER achieved for the DTW-based System. Moreover,
it is important to highlight that the result obtained with our
Proposed BLSTM System for the case of using just one
training signature (1vs1) outperforms the result obtained with
the DTW-based System (i.e. 5.60% vs 7.75% EER) for the
4vs1 case. Additionally, our Proposed BLSTM system out-
performs other state-of-the-art signature verification systems
such as the one proposed in [34] and based on fusion of a
function-based system based on DTW and a feature-based
system based on Mahalanobis distance (i.e. 4.75% vs 4.91%

EER) for the case of considering 4 training signatures. These
results show the high ability of our proposed approach for
learning even with small amounts of signatures. However,
the results obtained in Tables 2 and 3 for our Proposed RNN
Systems when random forgeries are considered are far away
from the state-of-the-art results. The best result has been
obtained using our Proposed BGRU System with a value
of 19.14% EER whereas a 0.50% EER is obtained in Table 4
for the DTW-based System. These bad results obtained for
random forgeries make sense in this case as only skilled and
not random forgeries were used for training the RNNs.

b: RANDOM TRAINING SCENARIO
In order to see the ability of the RNN systems to detect
different types of forgeries, Tables 2 and 3 also show the
system performance in terms of EER(%) for the scenario in
which our Proposed RNN Systems are trained using only
pairs of genuine and random forgery signatures (i.e. ‘‘ran-
dom’’). Overall, a high improvement of the system perfor-
mance is achieved for the case of random forgeries compared
to the results previously analysed in the ‘‘skilled’’ train sce-
nario. The best result corresponds to our Proposed BGRU
System with a 3.25% EER. However, as happened for the
‘‘skilled’’ train scenario previously commented, bad results
are achieved for the task in which the RNN system is not
trained (i.e. skilled forgeries in this ‘‘random’’ train scenario).

c: SKILLED+RANDOM TRAINING SCENARIO
Finally, Tables 2 and 3 show the system performance in
terms of EER(%) for the case in which our Proposed RNN
Systems are trained using pairs of genuine and skilled forgery
signatures and also pairs of genuine and random forgery
signatures (i.e. ‘‘skilled + random’’). Analysing the results
obtained for skilled forgeries, the best system performance
has been obtained using our Proposed BLSTM System with
a value of 5.50% EER. Moreover, the result obtained with
our Proposed BLTM System for the case of using just one
training signature (1vs1) still outperforms the result obtained
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FIGURE 7. System performance results obtained using our Proposed
BLSTM System for the 4vs1 case and ‘‘skilled + random’’ train scenario
over the BiosecurID evaluation dataset.

with the DTW-based System for the 4vs1 case (i.e. 6.83%
vs 7.75% EER), showing the high ability of our proposed
approach for learning even with small amounts of signa-
tures. Analysing the results obtained for random forgeries,
our Proposed BLSTM System has achieved a 3.00% EER.
These results prove the ability of RNN-based systems to
detect two different types of forgeries using just one sys-
tem. Despite of the high improvements achieved when both
skilled and random forgeries are used for training the RNNs,
the 3.00% EER obtained using our Proposed BLSTM Sys-
tem can not outperform the 0.5% EER obtained using the
DTW-based System against random forgeries. Fig. 7 shows
the DET curve of both Proposed BLSTM and DTW-based
Systems for the 4vs1 case and ‘‘skilled + random’’ train
scenario for completeness. In order to achieve state-of-the-
art results for both skilled and random forgeries, a possible
solution is to perform two consecutive stages similar to [23]:
1) first stage based on DTW optimized for rejecting random
forgeries, and 2) our Proposed RNNs Systems in order to
reject the remaining skilled forgeries. Another recent example
of multiple classifier contribution for signature is [35].

VI. CONCLUSIONS
The main contribution of this work is to assess the feasibility
of different RNNs systems in combination with a Siamese
architecture [18] for the task of on-line handwritten signature
verification. As far as we know, this work provides the first
complete and successful framework on the use of multiple
RNN systems (i.e. LSTM and GRU) for on-line handwrit-
ten signature verification considering both skilled and ran-
dom types of forgeries. The BiosecurID database comprised
of 400 users and 4 separated acquisition sessions has been
considered in the experimental work, using the first 300 users
for development and the remaining 100 users for evalua-

tion. Three different scenarios regarding the type of forgery
considered for training the RNN system is proposed (i.e.
‘‘skilled’’, ‘‘random’’, ‘‘skilled + random’’). Additionally,
two different cases have been considered. First, the evaluation
of the system performance considering scores directly from
all pairs of signatures (i.e. 1vs1) and second, the case of
performing the average of scores of the four one-to-one com-
parisons (i.e. 4vs1) as there are 4 genuine training signatures
per user (from the first session).

Regarding the development of our Proposed RNN Sys-
tems, it is important to remark the difference in the number
of training iterations needed between normal (i.e. LSTM and
GRU) and bidirectional schemes (i.e. BLSTM and BGRU).
This shows the importance of considering both past and future
contexts in order to train RNNs faster and also with a lower
value of training cost. Additionally, it is important to highlight
the difference in the number of training iterations between
both LSTM and GRU RNNs as the GRU memory block is
a simplified version of the LSTM memory block with fewer
parameters to train.

Analysing the results obtained using the 100 users of
the evaluation dataset, our Proposed BLSTM System has
achieved for the ‘‘skilled + random’’ train scenario and
4vs1 case values of 5.50% and 3.00% EER for skilled and
random forgeries, respectively. Moreover, the result obtained
with our Proposed BLSTM System for the case of using
just one training signature (1vs1) still outperforms the result
obtained with the highly competitive system based on the
popular DTW approach for the 4vs1 case (i.e. 6.83% vs
7.75% EER), showing the high ability of our proposed
approach for learning even with small amounts of signatures.
Finally, it is important to highlight the results obtained in
this work compared to the ones obtained by Otte et al.
in [17] where all experiments failed obtaining for the best
case a 23.75% EER. In that work, standard LSTM archi-
tectures seemed not to be appropriate for the task of sig-
nature verification. For future work we will address two
important current challenges in on-line signature verification:
1) input device interoperability, i.e., signatures for training
and testing the system are acquired using different devices,
and 2) mixed writing-tool, i.e., signatures for training and
testing the system are acquired using different writing tools
(stylus or finger). For this we will make use of larger and
novel databases [36] in combination to the recurrent Siamese
networks described in this work.
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