
Received November 22, 2017, accepted December 28, 2017, date of publication January 15, 2018, date of current version March 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2790381

Weighted Greedy Dual Size Frequency Based
Caching Replacement Algorithm
TINGHUAI MA 1,2, (Member, IEEE), JINGJING QU1, WENHAI SHEN3, YUAN TIAN4,
ABDULLAH AL-DHELAAN3, AND MZNAH AL-RODHAAN4
1School of Computer Software, Nanjing University of Information Science and Technology, Nanjing 210-044, China
2CICAEET, Jiangsu Engineering Centre of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210-044, China
3National Meteorological Information Center, Beijing100-080, China
4Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia

Corresponding author: Tinghuai Ma (thma@nuist.edu.cn)

This work was supported in part by the Special Public Sector Research Program of China under Grant GYHY201506080, in part by the
National Science Foundation of China under Grant 61572259 and Grant U1736105, in part by PAPD, and in part by the Deanship of
Scientific Research at King Saud University for funding this work through research group under Grant RGP-VPP-264.

ABSTRACT Caches are used to improve the performance of the internet, and to reduce the latency of
data access time and the low speed of repeated computing processes. Cache replacement is one of the most
important issues in a caching system; therefore, it must be coordinated with the caching system to minimize
the access latency and maximize the hit rate or byte hit rate. In this paper, we presented a novel caching
replacement algorithm named Weighted Greedy Dual Size Frequency (WGDSF) algorithm, which is an
improvement on the Greedy Dual Size Frequency (GDSF) algorithm. The WGDSF algorithm mainly adds
weighted frequency-based time andweighted document type to GDSF. By increasing the above twoweighted
parameters, WGDSF performs fairly well at keeping popular objects in the cache and replacing rarely used
ones. Our experiment shows that this algorithm has a better hit rate, byte hit rate and access latency than
state-of-the-art algorithms, such least Recently Used, least Frequently Used, and GDSF.

INDEX TERMS Cache replacement, hit rate, weighted frequency.

I. INTRODUCTION
When two different-speed devices need collaboration work,
the high-speed device always waits for the low-speed device.
The collaboration performance of two devices is decided
by the low-speed device. As we all know, there is a huge
latency gap between processors and memory; this gap causes
a lot of inconvenience when using the processors, and the
system cannot make full use of the computing power of
processors. To resolve this problem, system designers used
to add last level cache (LLC) to hide the latency gap. Many
state-of-the-art cache replacement algorithms of LLC have
been proposed [1]–[5]. In the network environment, the logic
position of cache is generally located between the data
source and the data requester. The cache technique utilizes
a certain algorithm to copy some data from the data source
to another storage medium temporarily close to the data
requester [6]. The research on web caches mainly focuses on
the proxy server cache [7], [8], the wireless network [9]–[15]
and the content-centric networking [7], [16]–[21] at home
and abroad. By deploying the cache into the architecture,

the architecture efficiency is improved. Some papers address
the performance evaluation of the architecture with various
cache replacement algorithms [6], [22], [23].

Several factors have been used to decide on the data
that is to reside in cache memory, including include cache
coherence [24], admission and replacement policies [25].
Therefore, this technology can be used at various levels [26].
There are four classes classified by cache purpose (transac-
tion cache, processes cache, query cache, and cluster cache),
and they have different application scenarios. For example,
in the national meteorological big data environment, the long
distances of the physical communication links among mete-
orological data nodes results in a bit limit on the data query,
which adds a large amount of network missing packages [27].
Furthermore, it makes the transmission status quite complex
and makes it very difficult to achieve the requirement of real-
time data sharing. To resolve this issue, we mainly use the
query cache and propose a cache replacement algorithm in
our paper, with the aim of reducing the access frequency
of the physical data source. When the application software

7214
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2320-1692


T. Ma et al.: WGDSF Based Caching Replacement Algorithm

accesses the data in the database table, it goes to cache first.
If the data is found in cache, the accessing speed will be
greatly improved. Otherwise, it goes to the data sources and
copies the data into the cache in preparation for accessing it
later on. In summary, the performance of application software
will be improved through the assistance of query cache.

Existing replacement algorithms may not be ideal with
respect to cache hit rate and byte hit rate. The algorithms
are classified as recently based algorithms, frequency-based
algorithms, size-based algorithms or utility value-based
algorithms. The typical algorithms that are based on the
value model are LRV [28] and Greedy Dual Size algo-
rithms [29]. The variants of Greedy Dual Size cache replace-
ment algorithmsmaximize the different performancemetrics.
GDSF [28] is well known for its prominent hit rate. Therefore,
we made some improvements on the basis of GDSF.We stud-
ied all parameters that have an impact on cache performance
and designed a priority queue for objects in cache. Based on
the weighted frequency base time and weighted document
type, we utilized the priority queue to keep the popular objects
in cache and to improve the performance of the cache sys-
tem. More discussion about related work on caches will be
presented in Section 2. Section 3 focuses on describing the
variants of Greedy Dual algorithms. In Section 4, we will
describe the novel algorithm we have proposed. In Section 5,
we will present the experimental setup for comparing our
algorithm with the state-of-the-art algorithms, and carry out
the experiment plan.

II. RELATED WORK
Jeong and Dubois [30] gave an exhaustive survey of
cache replacement algorithms proposed for web caches
through the year 2003. They put forward a simple clas-
sification scheme that can used to describe and evaluate
the cache replacement algorithms. Furthermore, they listed
which fields of caching algorithms are worthy of research.
Podlipnig and Boszormenyi listed more than 50 cache poli-
cies and suggested policies for different environments [31].
Wong [32] mainly compared the performance of the recency
algorithm, frequency algorithm and the recency/frequency
algorithm running the same data sets [32]. Wong [32] gave
a comparison of different cache replacement policies in tra-
ditional systems as well as in web applications and proposed a
system that implements LRU and CERA caching algorithms.
Their contribution was to try to apply the traditional cache
replacement algorithms to the web. The C-Aware algorithm
is an example of an algorithm applied to the web; it was pro-
posed and devised by Khandekar and Maneet al [33]. As we
all know, there is a multitude of cache replacement policies,
which are suitable for different scenarios. We classify the
existing cache replacement policies into four groups, which
are recently based policies, frequency-based policies, size-
based policies and utility value-based policies.

A. RECENTLY-BASED POLICIES
Recently-based policies decide whether or not a docu-
ment is to be replaced based on whether it is a recently

referenced object. They perform well when many users
are interested in the same objects at about the same
time. The available replacement policies are LRU [34],
LH-MLRU [35], LLC [36], etc. Most of the time, the hit
rate and byte hit rate of the recently-based policies are good.
In addition, their complexity is fair.

LRU [34] is a representative policy of the recently-based
policies, and it replaces the object that was requested least
recently. This traditional policy is the most frequently used
in practice and has worked well for CPU caches and virtual
memory systems. However, it does not work as well for proxy
caches because the locality of time accesses for Web traffic
often exhibits very different patterns.

B. FREQUENCY-BASED POLICIES
Frequency-based policies decide whether or not a document
is to be replaced based onwhether it is a frequently referenced
object. They perform well when many users tend to access
objects with quite steady popularities. The available replace-
ment policies are LFU [34], LFU-DA [30], PLFU [37], etc.
The hit rate and byte hit rate of the frequency-based policies
are acceptable, and their complexity is also not high.

LFU [35] is a representative policy of the frequency-based
policies; it replaces the object which has been accessed the
fewest times. This algorithm tries to keep more popular
objects and replace rarely used ones. However, some docu-
ments can build a high frequency count and never be accessed
again. The traditional LFU algorithm does not provide any
mechanism for removing such documents, and this leads to
cache pollution.

C. SIZE-BASED POLICIES
Size-based policies decide whether or not a document is to
be replaced based on whether it is a small object. They per-
form well when many users tend to access information-based
objects. The available replacement policies are SIZE [28],
etc. The size-based policies’ hit rate and byte hit rate are fair,
and their complexity is adequate.

SIZE [28] is a representative policy of the size-based
policies; this algorithm tries to minimize the miss ratio by
replacing one large document rather than a bunch of small
ones. However, some of the small documents brought to a
cache may never be accessed again. The SIZE algorithm does
not provide any mechanism for replacing such documents,
which leads to pollution of the cache.

D. UTILITY VALUE-BASED POLICIES
Utility value-based policies decide whether or not a document
is to be replaced based on how much value the object has.
They perform well when the system has sufficient processing
and memory resources. The available replacement policies
are GD, GDS [29], LRV, GDSF [28], GDSF-AI [38], etc.
The variants of Greedy Dual Size algorithms are well known
for their abilities to maximize different performance metrics.
Example metrics include hit ratio and byte hit ratio. In sum-
mary, the hit rate and byte hit rate of the utility value-based

VOLUME 6, 2018 7215



T. Ma et al.: WGDSF Based Caching Replacement Algorithm

TABLE 1. Existing cache replacement algorithms.

policies are the best, whereas their complexity is slightly
higher.

We will introduce GD series algorithms of utility value-
based policies in Section 3.

E. RANDOM-BASED POLICIES
Random-based policies decide whether or not a document
is to be replaced based on whether it is a stochastic
document. They perform well when the system has lim-
ited performance. The available replacement policies are
Harmonic and Random [30]. The random-based policies have
the worst hit rate and byte hit rate, but their complexity is
the lowest. Harmonic [30] is a representative policy of the
random-based policies; this algorithm tries to select replace-
ment documents randomly from the cache. Therefore, its
complexity is fair, and its performance is stable. In summary,
Table 1 lists the replacement polices reported in the literature
according to their categories. There are three main aspects
to be considered. The first part is the replacement algorithm
design rationale behind the categories and which category
works particularly well in which scenarios. The second part
is the available replacement algorithms and representative
algorithm for each category. The last part is the overall per-
formance of different categories in terms of different metrics.

III. GREEDY DUAL ALGORITHM
A. THE ORIGINAL GREEDY DUAL ALGORITHM
The original Greedy Dual algorithm was introduced by
Young [30]. It addresses the case in which documents in a
cache (memory) have the same size but have different costs
to fetch them from the secondary storage. The algorithm
associates a value,H , with each cached document p. Initially,
when a document is brought to cache, H is defined as the
standard cost of taking the document into the cache. When a
replacement needs to be made, the document with the lowest
H value, minH , is replaced, and then all the documents in the
cache reduce their cost values H by minH . If a document p
is accessed again, its current cost value H is restored to the
original cost. In such a way, theH values of recently accessed
documents maintain a larger amount of the original cost than

the H values of documents that have not been accessed for
a long time. The algorithm selects the documents with the
lowest value minH to be replaced first.

B. GREEDY DUAL SIZE ALGORITHM
The Greedy Dual Size algorithm (GDS)is a generaliza-
tion of the Greedy Dual algorithm [30], which addresses
uniform-size variable-cost objects. Using a priority queue
and creative joined offset value L for future settings of H ,
Rizzo and Vicisano [38] proposed a new algorithm named
Greedy Dual Size (GDS). The priority queue key for a docu-
ment i is computed in the following way: H (i) = L+ Value(i)

Size(i) .
The parameter L is a running queue that starts at 0 and is

updatedwith the value of the lowest valueminH in the priority
queue. Therefore, the GDS algorithm need not have all the
documents in the cache reduce their cost values H by minH .
The parameter Size(i) is the size of document i. The parameter
Value(i) is the cost associated with bringing document i to a
cache; the author sets Value(i) = 2 + Size(i)/536, which is
the estimated number of network packets sent and received
to satisfy a cache miss for a requested number, where 536 is
the default maximum TCP segment size.

C. GREEDY DUAL SIZE FREQUENCY ALGORITHM
The Greedy Dual Size Frequency algorithm (GDSF) com-
bines the GDS algorithm with access frequency. The GDSF
algorithm performs well in most scenarios. GDSF also uses
the priority queue. The priority queue key for a document is
computed in the following way [29]:

H (i) = L + Fr(i) ∗
Value(i)
Size(i)

(1)

The parameters L, Value(i)and Size(i) are the same as those
in the GDS algorithm. The parameter Fr(i) is a document i
frequency count.

D. GREEDY DUAL SIZE FREQUENCY ACCESS INTEREST
ALGORITHM
The GDSF-AI [39] algorithm is based on the GDSF algo-
rithm and combines web users’ interest, content types

7216 VOLUME 6, 2018



T. Ma et al.: WGDSF Based Caching Replacement Algorithm

and the access characteristics of the target of the web.
Web usersínterest is an important factor for effective web
cache replacement policies. The array ki1, ki2, · · · , kin is
the keywords which represents ith web user’s interest. The
array wqi1,wqi2, · · · ,wqin is the list of weights corre-
sponding to ki1, ki2, · · · , kin. The GDS-AI algorithm rep-
resent the ith web user’ interest model as the vector
qi = {< ki1,wqi1 >,< ki2,wqi2 >, · · · , < kin,wqin >}.
Instead of considering the usersąŕ interest keywordsąŕ dis-
tinctness, they consider all web users to have the same
keywords; however, web users assign different keywords
different weights.

The documents in cache can be represented as the vector
D = {d1, d2, · · · , dm}. In this vector, dj can be represented
as:

dj =
{
< k1,wdj1 >,< k2,wdj2 >, · · · , < kn,wdjn >

}
(2)

The array k1, k2, · · · , kn is the list of keywords
that includes all web users’ interest. The array wdj1,
wdj2, · · · ,wdjn is the list of the keywords’ weights in the
jth document corresponding to one user. The number wdj1
is the weight of keyword k1 which is determined by the
number of times it appears in the jth document. Then, given
the interest vector qi of web user i and the vector dj of the jth
document, they obtain the two term approximation degree of
the documents by using the cosine formula as follows:

SIM (qi, dj) =

n∑
k=1

(wdk ∗ wqk)√
n∑

k=1

(
wdk2

)
∗

√
n∑

k=1

(
wqk2

) (3)

The function which represents the users interest has been
presented in the following way:

Score(qi, dj, fr(j)) = SIM (qi, dj) ∗ eα(fr(i)−1) (4)

The priority queue key for a document is computed as:

H (j) = L + Vtype ∗
(
P(j) ∗ Value(j)
log(Size(j))

)
∗ Score(qi, dj, fr(j))

(5)

The parameter L, Value (j), Size (j) and fr(j) are same as
GDSF algorithm. The parameter P(j) is the probability that
the document will be accessed again.

IV. PROPOSED ALGORITHM
It is impossible to hold all documents in the cache. When
a new document is to be put into the cache, a rule needs to
be applied to replace some documents. The design of replace
rules is what we need to do. In this paper, we proposes a new
replacement algorithm named Weighted Greedy-Dual-Size-
Frequency (WGDSF ), which is based on theGDSF algorithm
and joined the weighted frequency based time parameter and
weighted document type. Compare our algorithm with the
state-of-the-art algorithms, this algorithm has not only higher
document Hit Rate and Byte Hit Rate, but also lower access
latency than GDSF.

A. WEIGHTED FREQUENCY BASED TIME
Weighted frequency based time parameter is the key word
which represents content popularity, it also counts formuch in
the process of cache replacement. As the longer the document
is not used after the last visit, the probability of accessing the
document again is smaller. That is to say, the importance of
the document falls. What we want to do is finding out these
documents and removing these documents to the storage
place of low performance. The parameter of time we used
is Ti. The implication for Ti is as follows: we can define a time
array t1, t2, . . . , tn of the each visit or change time, starting
from the document generation. After that, we can calculate
the distances between these time points ti and the next time
ti+1, by the computational formula t2− t1, t3− t2, . . . , ti+1−
ti, . . . , t − tn. The parameter t is the current time. According
to the value Ti = ti+1 − ti, we can get corresponding time
interval Ti. For one document j, its first time stamp in cache
is t1, then, while time stamp is t2, we know Ti = t2 − t1.
If we consider time stamp as t1, while document j is the same
time locate in cache, so there is no hit count, it need not
to calculate Ti. During the time interval, a series of cache
hit behaviors may occur, and the corresponding hit counts
named Fi. Now, we can give the weighted frequency function
of the jth document in the following way:

WTF(j) =
fr(j)∑
i=1

Fi
Ti

(6)

The reason for this is to distinguish the hit counts happened
nearly a period of time or the hit counts not. For example,
two documents have the same hit count number during a
period of time, but one is less recently used and the other
one is more recently used. The weighted frequency based on
time parameter can use a weighted formula to represent the
difference.

For each time period, we divide the document access
frequency in ith time period Fi by the interval of time Ti.
Then, we can get WTF(j) by adding all the periods’ value
together.

B. WEIGHTED DOCUMENT TYPE
Meteorological data has some distinguishing features, like
complicated sources, various and diverse formats, different
forms, and substantial data. Due to the rare-updated feature
that meteorological data has, the parameter weighted doc-
ument type (WDT) is also rare-updated which represents
the proportion of meteorological data varieties. Documents
have a particularly large number of varieties, such as mete-
orological texts, meteorological images, and meteorological
videos, meteorological audios. Among the meteorological
texts, the documents take a greater proportion whose data
variety is nc and the grib.

We record each access time, and design a caching replace-
ment algorithm, which can keep the weightiest data in
the cache system. We can give the function which rep-
resents the document’s weighted type in the following

VOLUME 6, 2018 7217



T. Ma et al.: WGDSF Based Caching Replacement Algorithm

way:

WDT (j) =
Count(judge(j))
Counttotal

(7)

For jth document, we judge the document belongs to what
type according to the function judge(j). The judge(j) means
we classify the document j into text, image, videos, radar
data etc. types. We calculate the number of documents of
this type through Count(judge(j)). Dividing Count(judge(j))
by the whole number of documents , we can get a weight
value WDT of this type documents Counttotal . If the WDT
of document type is big, it shows that this type of documents
is more important and this document is more important than
other types of documents.

C. SIZE AND COST
We can give the function which represents the document’s
size and cost value in the following way:

SC(j) =
Cost(j)

log(Size(j))
(8)

The parameter Size(j) is the size of jth document. As the
meteorological data is vary from text to image. So the size(j)
can be varied from Kb to Gb. The SC(j) = Cost(j)/Size(j)
will result in a big domain field. To avoid the size numerical
value’s serious uneven distribution, we use log transformation
tomake it in accordance with our assumption, namely we take
log(Size(j)) as document size. The parameter Cost(j) is the
cost associated with document to cache it. Here, we set cost
function for each document toCost(j) = 2+Size(j)/536. The
parameterCost(j) is the estimated number of network packets
sent and received to satisfy a cache miss for requested num-
ber. Furthermore, 536 is the default maximum TCP segment
size.

D. PROCESS AND ALGORITHM
As described above, the high cache hit ratio of the data objects
with long access time from devices result to high performance
gain. We define a document value calculating function for
each object in cache as the following:

H (j) = L + SC(j) ∗WDT (j) ∗WTF(j) (9)

The parameter L is the expansion factor as same as the L
of GDSF algorithm. So WGDSF need not all the documents
in the cache to reduce their cost values H . The parame-
ter SC(j),WDT (j) and WTF(j) are as above described. The
caching process of WGDSF algorithm is illustrated in Fig.1.

When the system receives the request for j document,
the WGDSF algorithm will check whether the document j
exists in the cache. If the document is in the cache, cache
responses the document j to the request. If the document
is not in cache, WGDSF requests the original data source
firstly and responses the document j to the request. After that,
WGDSF calculates the value H (j) of the j document by using
the function H (j) = L + SC(j) ∗ WDT (j) ∗ WTF(j) check
whether the remaining cache has enough space to place the

FIGURE 1. The caching process.

document j. Then, the used space Used plus Size(j) equals
the updated used space. If the used space Used is less than
cache size, WGDSF puts the document into cache.

Next, we introduce the Insufficient space condition, which
is as the same meaning as formula Used ≤ Total. We recal-
culate the value of all cached documents and choose the
documents {m1,m2, · · · ,mk}, which have lowest minH . The
reason we recalculate all cached documents’ H value is that
weighted frequency and weighted document type need to be
updated. The documents satisfy the conditions that Used −
k∑
i=1

Size(mi) ≤ Total and H (m1) ≤ H (m2) ≤ . . . ≤ H (mk ).

The reason we choose a series of documents is that evicting
single document may not meet the cache space needs of
document j. It must be stressed that document j should be
included in {m1,m2, · · · ,mk} if document j has the lowest
minH .

Next, we check whether the document j exists in
{m1,m2, · · · ,mk}. If document j is in {m1,m2, · · · ,mk},
that is to say, the value of document is low and it is not
necessary to put document in the cache. Therefore, WGDSF
discards the document j directly. This step promises not to
put low value document in the cache. If document j is not
in {m1,m2, · · · ,mk}, WGDSF discards the document set
{m1,m2, · · · ,mk}and fetch document j physically. Last but
not least, WGDSF updates H for the lowest value H (mk ),
which is the highest value H (mk ) in {m1,m2, · · · ,mk}. This
step promises not to put documents whose value lower than
H (mk ) in the cache and keep high value documents in cache.
More replacement detail is introduced as following

Algorithm 1. The meanings of involving the parameters are
as the following Table 2.

V. EXPERIMENT
A. DATASET AND EXPERIMENT ENVIRONMENT
We collected 6000 records (approximately 500 M) of mete-
orological data from the China Meteorological Data Sharing
Service System (CMDSSS) [41]. Meteorological documents
have many kinds of types, such as meteorological texts,

7218 VOLUME 6, 2018



T. Ma et al.: WGDSF Based Caching Replacement Algorithm

Algorithm 1 The WGDSF Algorithm Process
Input: the request for j document;
Output: j document;
Parameter: L = 0,Used = 0;

1: if j is in cache then
2: fr(j) = fr(j)+ 1;
3: H (j) = L + SC(j) ∗WDT (j) ∗WTF(j);
4: return j.
5: else
6: Obtain j from data source;
7: fr(j) = 1;
8: H (j) = L + SC(j) ∗WDT (j) ∗WTF(j);
9: Used = Used + Size(j);
10: if Used < Total then
11: Fetch j.
12: else
13: We recalculate the H value of all cached doc-

uments and choose documents {m1,m2, · · · ,mk}, which
have lowest value,H ,and theymeet the conditions below:

14: Used −
k∑
i=1

Size(mi) ≤ Total;

15: H (m1) ≤ H (m2) ≤ . . . ≤ H (mk );
16: if j is in then
17: Discard j.
18: else
19: L = minH =

k
max
i=1

H (mi) = H (mk )

20: Used = Used −
k∑
i=1

Size(mi)

21: Evict the minimum {m1,m2, · · · ,mk},and
fetch j.

22: end if
23: end if
24: end if

TABLE 2. The meanings of involving the parameters.

meteorological images, and meteorological videos, mete-
orological audios. Among the meteorological documents,
the text files take a greater proportion whose size is about
several kb. This huge small size text documents are very
important for weather prediction, and be visited frequently
and also occupy small space. So, we cache the huge small
text files is effective for data transfer. We consider to
cache the while documents rather than documents indexes.
The experimental environment is based on a Lenovo server,
4G RAM, running Windows 7. Based on the open source

java project EHCache [40], which integrated the LRU, LFU
and FIFO algorithms, we added the GDSF algorithm and
WGDSF algorithm into the Ehcache project to make contrast
experiment. The GDSFAI algorithm needs a user interest
database and its scenario is a TV system, so we did not add
GDSFAI to Ehcache and the contrast experiment.

B. PERFORMANCE METRICS
We compare the performance of the algorithms LRU, LFU,
GDSF and WGDSF based on cache hit rate, byte cache hit
rate and average access latency.

1) CACHE HIT RATE
Cache hit rate is computed in the following way:

HR =

N∑
i=1

qi

N
(10)

Hit rate (HR) is a widely used performance evaluation cri-
terion. The parameter qi is a Boolean value of the document:
a zero value indicates a present miss, and a nonzero value
indicates a present hit. Then we can obtain the cumulative hit
count by adding all qi values. Now we can compute the cache
hit rate by dividing the cumulative hit count by the total count
of the request. The parameter N is the total hit count.

2) CACHE BYTE HIT RATE
Cache byte hit rate is computed in the following way:

BHR =

N∑
i=1

qisi

N∑
i=1

si

(11)

Byte hit rate (BHR) is the other widely used performance
evaluation criterion. The parameter qi is the same as described
in the discussion of Hit Rate. The parameter si is the size of
ith document. Then, we can obtain the cumulative byte hit
value by adding all values of qi multiplied by si. We can also
obtain the total value of the request by adding all object sizes.
Now we can compute the cache byte hit rate by dividing the
cumulative byte hit value by the total value of the request.

3) AVERAGE ACCESS LATENCY
Average Access Latency (AAL) is computed in the following
way:

Latency =

N∑
i=1

Ti

N
(12)

Average access latency can represent the cache systemąŕs
capacity for reducing the access latency, which is computed
by dividing the general request time by the request frequency.
The parameter Ti is the time interval of ith request. Because
low latency is the goal of adding a cache replacement algo-
rithm, AAL is another import performance metric except for
that of HR and BHR. The lower AAL value illustrates that the
cache replacement algorithm plays a better role.

VOLUME 6, 2018 7219



T. Ma et al.: WGDSF Based Caching Replacement Algorithm

FIGURE 2. (a) Algorithm HR performance of different cache size;
(b) Algorithm BHR performance of different cache size; (c) Algorithm
AAL performance of different cache size.

C. RESULT AND ANALYSIS
We choose three traditional cache replacement algorithms
(LRU, LFU and GDSF) to compare with the policy we pro-
posed. What we will do is compare the respective perfor-
mances of different algorithms with respect to different cache
size, time to live and user access pattern.

1) IMPACT OF CACHE SIZE
In this experiment set, we compare the performance results
of different algorithms across a wide range of cache sizes
(cache capacity percentage of data set size), from 1 percent
to 20 percent. Furthermore, the parameter time to live (TTL)
and the access pattern remain unchanged. The parameter TTL

FIGURE 3. (a) Algorithm HR performance of different Time To Live;
(b) Algorithm BHR performance of different Time To Live;(c) Algorithm
AAL performance of different Time To Live.

has a default value of 0, which means that cache document
can live indefinitely. The user access pattern keeps global
probabilistic accessmode (GPAM).All of this can be adjusted
by editing the configuration files, which are .xml files.

Figure 2 shows that WGDSF has higher percentages
of HR and BHR than those of GDSF and other tradi-
tional algorithms. For the performance metric AAL, we see
in Figure 2(c) thatWGDSF had the best possible performance
for the cache size of 5 percent. Further, we can reach the
preliminary conclusion that WGDSF performs better when
the cache size is smaller. Although, sometimes the AAL is
slightly higher than for other algorithms, WGDSF is approx-
imately 3 percent higher than conditions with no cache.

2) IMPACT OF CACHE TTL
In this experiment set, we compare the performance results of
different algorithms across a wide range of time to live (TTL),
from 200s to 1200s. Furthermore, the parameter cache size

7220 VOLUME 6, 2018



T. Ma et al.: WGDSF Based Caching Replacement Algorithm

FIGURE 4. (a) Algorithm HR performance of different user access pattern;
(b) Algorithm BHR performance of different user access pattern;
(c) Algorithm AAL performance of different user access pattern.

and access pattern remain unchanged. The cache size param-
eter remains at 5 percent. The user access pattern remains in
global probabilistic access mode. All of this can be adjusted
by editing the configuration files, which are .xml files.
Figure 3(b) shows that WGDSF has fairly good BHR per-
formance gain over GDSF for a wide range of TTL val-
ues. We can see in Figure 3(a) that for TTL values bigger
than 600, WGDSF has a higher percentage of HR than other
traditional algorithms. Because a short TTL time will affect
the document value definition of WGDSF and GDSF, we see
in Figure 3 that WGDSF has a poor performance when the
TTL value is smaller than 600. Although, sometimes the AAL
is slightly higher than for other algorithms, WGDSF is just
about three percent higher than conditions with no cache.

The experimental results and application background
explain why WGDSF has poor performance. The high value
documents whichWGDSF predicts will be removed from the
cache system if the TTL is too short, which seriously affects

the performance of WGDSF and results in the document
value descending and the document being replaced if the
document live time increases to more than 600s. We con-
sider that the condition described above can explain the poor
performance.

3) IMPACT OF USER ACCESS PATTERN
In this experiment set, we compare the performance results
of different algorithms across a wide range of user access
patterns, which includes continuous access mode (cam), loop
access mode (lam), global probabilistic access mode (gpam)
and regional access mode (ram). Furthermore, the parameters
of cache size and TTL remain unchanged. The cache size
parameter remains at 5 percent. The parameter TTL is set
to default 0, which means that cache document can live for
infinity. All of this can be adjusted by editing the configura-
tion files, which are .xml files.

Figure 4 shows that WGDSF has fairly good HR, BHR and
AAL performance gain over GDSF for global probabilistic
access mode (GPAM) and regional access mode (RAM).
In continuous access mode (CAM) and loop access mode
(LAM), LRU and LFU have a higher performance thanGDSF
and WGDSF. However, in real networks, global probabilistic
access mode is the most common, and regional access mode
is the second most common. Therefore, WGDSF can be put
into use in real networks and can perform well.

VI. CONCLUSIONS
Weighted frequency-based time, weighted document type,
document size and replacement cost are important factors
for effective cache document replacement policies. This arti-
cle proposes a new replacement algorithm named Weighted
Greedy-Dual-Size-Frequency (WGDSF), which is based on
the GDSF algorithm and joined with weighted frequency-
based time and weighted document type. The experiment
shows proposed algorithm especially performs better while
the cache size is smaller. For documents’ time to live, our
algorithm has a higher percentage of HR than other tradi-
tional algorithms while TTL more than 600 seconds, which
is suitable for caching. Future more, the proposed algorithm
performances well in global probabilistic access mode, which
is the most common in real network. So, WGDSF can be put
into use in real networks and can get well performance.

REFERENCES
[1] P. Abad, P. Prieto, V. Puente, and J.-A. Gregorio, ‘‘Improving last level

shared cache performance through mobile insertion policies (MIP),’’ Par-
allel Comput., vol. 49, pp. 13–27, Nov. 2015.

[2] V. V. Fedorov et al., ‘‘ARI: Adaptive LLC-memory traffic management,’’
ACM Trans. Archit. Code Optim., vol. 10, no. 4, p. 46, 2013.

[3] C. T. Do et al., ‘‘A new cache replacement algorithm for last-
level caches by exploiting tag-distance correlation of cache lines,’’
Microprocess. Microsyst., vol. 39, no. 4, pp. 286–295, 2015.

[4] T. S. Warrier, B. Anupama, and M. Mutyam, ‘‘An application-aware cache
replacement policy for last-level caches,’’ in Architecture of Computing
Systems CARCS. Prague, Czech Republic: Springer, 2013, pp. 207–219.

[5] N. Gast and B. van Houdt, ‘‘Transient and steady-state regime of a family
of list-based cache replacement algorithms,’’ Queueing Syst., vol. 83,
nos. 3–4, pp. 293–328, 2016.

VOLUME 6, 2018 7221



T. Ma et al.: WGDSF Based Caching Replacement Algorithm

[6] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy,
‘‘Performance evaluation of the random replacement policy for networks
of caches,’’ Perform. Eval., vol. 72, pp. 16–36, Feb. 2014.

[7] H. Elaarag, ‘‘Web proxy cache replacement scheme based on backpropa-
gation neural network,’’ J. Syst. Softw., vol. 81, no. 9, pp. 1539–1558, 2008.

[8] W. Ali, S. M. Shamsuddin, and A. S. Ismail, ‘‘Intelligent Web proxy
caching approaches based on machine learning techniques,’’ Decision
Support Syst., vol. 53, no. 3, pp. 565–579, 2012.

[9] L. Yaom J. Deng, J. Wang, and G. Wu, ‘‘CACHE: An anchor-based public
key caching scheme in large wireless networks,’’ Comput. Netw., vol. 87,
pp. 78–88, Jul. 2015.

[10] Y. Lv et al., ‘‘An efficient and scalable density-based clustering algorithm
for datasets with complex structures,’’Neurocomputing, vol. 171, pp. 9–22,
Jan. 2016.

[11] H. Chen, Y. Xiao, and S. V. Vrbsky, ‘‘An update-based step-wise optimal
cache replacement for wireless data access,’’ Comput. Netw., vol. 57, no. 1,
pp. 197–212, 2013.

[12] A. Karami andM. Guerrero-Zapata, ‘‘An ANFIS-based cache replacement
method for mitigating cache pollution attacks in named data networking,’’
Comput. Netw., vol. 80, pp. 51–65, Apr. 2015.

[13] S. Vobugari, D. Somayajulu, and B. Subaraya, ‘‘Dynamic replication algo-
rithm for data replication to improve system availability: A performance
engineering approach,’’ IETE J. Res., vol. 61, no. 2, pp. 132–141, 2015.

[14] T. H. Ma et al., ‘‘Detect structural-connected communities based on
BSCHEF in C-DBLP,’’ Concurrency Comput., Practice Experim., vol. 28,
no. 2, pp. 311–330, 2016.

[15] M. Akon et al., ‘‘OUR: Optimal update-based replacement policy for
cache in wireless data access networks with optimal effective hits and
bandwidth requirements,’’ Wireless Commun. Mobile Comput., vol. 13,
no. 15, pp. 1337–1352, 2013.

[16] I. Abdullahi, S. Arif, and S. Hassan, ‘‘Survey on caching approaches
in information centric networking,’’ J. Netw. Comput. Appl., vol. 56,
pp. 48–59, Oct. 2015.

[17] G. Gür, ‘‘Energy-aware cache management at the wireless network edge
for information-centric operation,’’ J. Netw. Comput. Appl., vol. 57,
pp. 33–42, Nov. 2015.

[18] S. Saha, A. Lukyanenko, and A. Ylä-Jääski, ‘‘Efficient cache availability
management in information-centric networks,’’ Comput. Netw., vol. 84,
pp. 32–45, Jun. 2015.

[19] T. H.Ma et al., ‘‘LED: A fast overlapping communities detection algorithm
based on structural clustering,’’ Neurocomputing, vol. 207, pp. 488–500,
Sep. 2016.

[20] T. H. Ma et al., ‘‘KDVEM: A k-degree anonymity with vertex and
edge modification algorithm,’’ Computing, vol. 70, no. 6, pp. 1336–1344,
Sep. 2015.

[21] H. Rong, T. H. Ma, M. L. Tang, and J. Cao, ‘‘A novel subgraph
K+-Isomorphism method in social network based on graph similar-
ity detection,’’ Soft Comput., to be published. [Online]. Available:
https://doi.org/10.1007/s00500-017-2513-y

[22] F. Chao et al., ‘‘Fast convergence caching replacement algorithm based on
dynamic classification for content-centric networks,’’ J. China Univ. Posts
Telecommun., vol. 20, no. 5, pp. 45–50, 2013.

[23] N. C. Fofack et al., ‘‘Performance evaluation of hierarchical ttl-based cache
networks,’’ Comput. Netw., vol. 65, pp. 212–231, Jun. 2014.

[24] T. Ma, C. Wu, W. Tian, and W. Shen, ‘‘The performance improvements
of highly-concurrent grid-based server,’’ Simul. Model. Pract. Theory,
vol. 42, pp. 129–146, Mar. 2014.

[25] E. H. Cruz et al., ‘‘Dynamic threadmapping of sharedmemory applications
by exploiting cache coherence protocols,’’ J. Parallel Distrib. Comput.,
vol. 74, no. 3, pp. 2215–2228, 2014.

[26] J. Chen, V. Lee, and K. Liu, ‘‘Efficient cache management for network-
coding-assisted data broadcast,’’ IEEE Trans. Veh. Technol., vol. 66, no. 4,
pp. 3361–3375, Apr. 2017.

[27] B. Wu and A. D. Kshemkalyani, ‘‘Objective-optimal algorithms for long-
term Web prefetching,’’ IEEE Trans. Comput., vol. 55, no. 1, pp. 2–17,
Jan. 2006.

[28] T. H. Ma, W. Tian, and B. Wang, ‘‘Weather data sharing system: An agent-
based distributed data management,’’ IET softw., vol. 5, no. 1, pp. 21–31,
2011.

[29] K. Li and H. Shen, ‘‘An improved GreedyDual cache document replace-
ment algorithm,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell.,
Sep. 2005, pp. 457–460.

[30] J. Jeong and M. Dubois, ‘‘Cache replacement algorithms with nonuniform
miss costs,’’ IEEE Trans. Comput., vol. 55, no. 4, pp. 353–365, Apr. 2006.

[31] S. Podlipnig and L. Boszormenyi, ‘‘A survey of Web cache replacement
strategies,’’ ACM Comput. Surveys (CSUR), vol. 35, no. 4, pp. 374–398,
2003.

[32] K.-Y. Wong, ‘‘Web cache replacement policies: A pragmatic approach,’’
IEEE Netw., vol. 20, no. 1, pp. 28–34, Jan. 2006.

[33] A. A. Khandekar and S. B. Mane, ‘‘Analyzing different cache replace-
ment policies on cloud,’’ in Proc. Int. Conf. Ind. Instrum. Control, 2015,
pp. 709–712.

[34] Z. Xudong et al., ‘‘C-Aware: A cache management algorithm considering
cache media access characteristic in cloud computing,’’ Math. Problems
Eng., vol. 6, pp. 1–13, Sep. 2013.

[35] D. Lee et al., ‘‘On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU) policies,’’
in Proc. ACM Sigmetrics Int. Conf. Meas. Modeling Comput. Syst., 1999,
pp. 134–143.

[36] J.-Q. Niu et al., ‘‘Limited history basedmulti-LRUWeb cache replacement
algorithm,’’ J. Chin. Comput. Syst., vol. 6, p. 6, Mar. 2008.

[37] J. Reineke and D. Grund, ‘‘Sensitivity of cache replacement policies,’’
ACM, vol. 12, no. 1s, pp. 1–18, 2013.

[38] L. Rizzo and L. Vicisano, ‘‘Replacement policies for a proxy cache,’’
IEEE/ACM Trans. Netw., vol. 8, no. 2, pp. 158–170, Apr. 2000.

[39] A. Sarhan, A. M. Elmogy, and S. M. Ali, ‘‘New Web cache replacement
approaches based on internal requests factor,’’ in Proc. 9th Int. Conf.
Comput. Eng. Syst. (ICCES), Cairo, Egypt, Dec. 2014, pp. 383–389.

[40] (Jul. 25, 2015). EHCache. [Online]. Available: http://ehcache.org/
[41] (May 25, 2015). CMDSSS. [Online]. Available: http://cdc.nmic.cn/

home.do

TINGHUAI MA received the bachelor’s and mas-
ter’s degrees from the Huazhong University of
Science and Technology, China, in 1997 and
2000, respectively, and the Ph.D. degree from the
Chinese Academy of Science, in 2003. He was
a Post-Doctoral Associate with AJOU University,
in 2004. From 2007 to 2008, he visited Chinese
Meteorology Administration. In 2009, he was a
Visiting Professor with the Ubiquitous Comput-
ing Laboratory, Kyung Hee University. He is cur-

rently a Professor in Computer Sciences with the Nanjing University
of Information Science and Technology, China. He has authored over
100 journal/conference papers. His research interests are data mining, cloud
computing, ubiquitous computing, and privacy preserving, and so on.

JINGJING QU received the bachelor’s degree
in computer science and engineering from the
Nanjing University of Information Science and
Technology, China, in 2012, where she is currently
pursuing the Ph.D. degree. Her research interests
include Grid Computing, Quantum Computing,
and so on.

WENHAI SHEN received the bachelor’s degree
in mathematics from Fudan University, China,
in 1982. He was with the National Climate Center,
Chinese Academy of Meteorological Science, and
the National Weather Center for over 30 years.
He is currently a Professor with the National
Meteorological Information Center. His research
focus on meteorological information design and
application.

7222 VOLUME 6, 2018



T. Ma et al.: WGDSF Based Caching Replacement Algorithm

YUAN TIAN received the master’s and Ph.D.
degrees from KyungHee University. She is cur-
rently an Assistant Professor with the College of
Computer and Information Sciences, King Saud
University, Saudi Arabia. Her research interests
are broadly divided into privacy and security,
which are related to cloud computing, bioinfor-
matics, multimedia, cryptograph, smart environ-
ment, and big data. She is currently a member
of technical committees of several international

conferences. In addition, she is an active reviewer of many international
journals.

ABDULLAH AL-DHELAAN received the B.S.
degree (Hons.) in statistics from King Saud Uni-
versity, in 1982, and the M.S. and Ph.D. degrees
in computer science fromOregon State University,
in 1986 and 1989, respectively. He is currently the
Vice Dean for Academic Affairs, the Deanship of
Graduate Studies, and a Professor of Computer
Science, King Saud University, Riyadh, Saudi
Arabia. His current research interest includes:
Mobile Ad Hoc Networks, Sensor Networks, Cog-

nitive Networks, Network Security, Image Processing, and High Perfor-
mance Computing. He is currently on the Editorial Boards of several journals
and the organizing committees for several reputable international confer-
ences. He has guest edited several special issues for the Telecommunication
Journal (Springer) and the International Journal for Computers and their
applications.

MZNAH AL-RODHAAN received the B.S. degree (Hons.) in computer
applications and the M.S. degree in computer science from King Saud
University, in 1999 and 2003, respectively, and the Ph.D. degree in computer
science from the University of Glasgow, Scotland, U.K., in 2009. She is
currently the Vice Chair with the Computer Science Department, College of
Computer and Information Sciences, King Saud University, Riyadh, Saudi
Arabia. Her current research interest includes: Mobile Ad Hoc Networks,
Wireless Sensor Networks, Multimedia Sensor networks, Cognitive Net-
works, andNetwork Security. She has served in the Editorial Boards for some
journals such as the Ad Hoc journal (Elsevier) and has participated in several
international conferences.

VOLUME 6, 2018 7223


	INTRODUCTION
	RELATED WORK
	RECENTLY-BASED POLICIES
	FREQUENCY-BASED POLICIES
	SIZE-BASED POLICIES
	UTILITY VALUE-BASED POLICIES
	RANDOM-BASED POLICIES

	GREEDY DUAL ALGORITHM
	THE ORIGINAL GREEDY DUAL ALGORITHM
	GREEDY DUAL SIZE ALGORITHM
	GREEDY DUAL SIZE FREQUENCY ALGORITHM
	GREEDY DUAL SIZE FREQUENCY ACCESS INTEREST ALGORITHM

	PROPOSED ALGORITHM
	WEIGHTED FREQUENCY BASED TIME
	WEIGHTED DOCUMENT TYPE
	SIZE AND COST
	PROCESS AND ALGORITHM

	EXPERIMENT
	DATASET AND EXPERIMENT ENVIRONMENT
	PERFORMANCE METRICS
	CACHE HIT RATE
	CACHE BYTE HIT RATE
	AVERAGE ACCESS LATENCY

	RESULT AND ANALYSIS
	IMPACT OF CACHE SIZE
	IMPACT OF CACHE TTL
	IMPACT OF USER ACCESS PATTERN


	CONCLUSIONS
	REFERENCES
	Biographies
	TINGHUAI MA
	JINGJING QU
	WENHAI SHEN
	YUAN TIAN
	ABDULLAH AL-DHELAAN
	MZNAH AL-RODHAAN


