
Received December 16, 2017, accepted January 10, 2018, date of publication January 15, 2018, date of current version February 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2793304

Privacy-Preserving Search Over Encrypted
Personal Health Record In Multi-Source Cloud
XIN YAO 1,2, (Student Member, IEEE), YAPING LIN1,2, (Member, IEEE), QIN LIU1,
AND JUNWEI ZHANG3, (Member, IEEE)
1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410006, China
2Hunan Provincial Key Laboratory of Dependable Systems and Networks, Changsha 410082, China
3School of Cyber Engineering, Xidian University, Xi’an 710126, China

Corresponding author: Yaping Lin (yplin@hnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472125, Grant 61402161,
Grant 61632009, and Grant 61472310, and in part by the China Scholarship Council.

ABSTRACT Cloud-based Personal Health Record systems (CB-PHR) have great potential in facilitating the
management of individual health records. Security and privacy concerns are among the main obstacles for
the wide adoption of CB-PHR systems. In this paper, we consider a multi-source CB-PHR system in which
multiple data providers, such as hospitals and physicians are authorized by individual data owners to upload
their personal health data to an untrusted public cloud. The health data are submitted in an encrypted form
to ensure data security, and each data provider also submits encrypted data indexes to enable queries over
the encrypted data. We propose a novel Multi-Source Order-Preserving Symmetric Encryption (MOPSE)
scheme whereby the cloud can merge the encrypted data indexes from multiple data providers without
knowing the index content. MOPSE enables efficient and privacy-preserving query processing in that a
data user can submit a single data query, the cloud can process over the encrypted data from all related data
providers without knowing the query content. We also propose an enhanced scheme, MOPSE+, to more
efficiently support the data queries by hierarchical data providers. Extensive analysis and experiments over
real data sets demonstrate the efficacy and efficiency of MOPSE and MOPSE+.

INDEX TERMS Authorization query, cloud computing, personal health record, privacy-preserving query.

I. INTRODUCTION
Cloud-based Personal Health Record systems (CB-PHR)
such as Microsoft HealthVault1 and ZebraHealth2 are rising.
A typical CB-PHR system consists of three entities: data own-
ers, data providers and a cloud server. In CB-PHR system,
data owners and data providers are defined as patients them-
selves and hospitals, respectively. Data owners can directly
authorize data providers to upload their PHRs to the cloud.
The CB-PHR system allows data owners to access their
PHRs anytime and anywhere, be better prepared for medical
appointments and unexpected emergencies, maintain a more
complete picture about personal health, and even achieve
fitness goals. Data providers can explore the CB-PHR system
to provide better medical services by sharing, collaborating,
and engaging with the patients in new ways.

Privacy concerns are among themain obstacles for thewide
adoption of CB-PHR systems. In particular, many people

1http://www.healthvault.com
2https://www.zebrahealth.com

have deep concerns that there can be unauthorized access
to their sensitive PHRs. For example, the cloud may have
business interest in analyzing the PHRs, and it may also
have malicious employees or even be hacked. A natural way
to alleviate the privacy concerns is to let data owners and
providers upload encrypted PHRs to the cloud which does not
possess the decryption keys [1]–[5], [8]. Since PHRs can be in
huge volume, it is very inefficient for data owners or providers
to retrieve all the encrypted PHRs from the cloud when only a
small portion of them are needed. To enable efficient queries
over encrypted PHRs, the B+-tree technique [2]–[5], [9] is
proposed to build an index for each patient’s PHRs. The
data index allows the cloud server to quickly find all the
PHRs matching a particular data query. To further resolve
the privacy concerns about data indexes and queries, search-
able encryption schemes [10]–[20] are proposed to encrypt
data indexes and queries as well. These schemes allow the
cloud server to perform efficient queries over encrypted PHRs
directly based on the encrypted indexes and queries while
blind to the index and query content.

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3809

https://orcid.org/0000-0001-7165-937X

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

Traditional searchable encryption schemes [10]–[20] are
designed for generic cloud platforms and not optimized for
CB-PHR systems. In particular, the PHRs of different data
providers for the same data owner may be highly corre-
lated and associated with the same attributes (e.g., symp-
toms). If a traditional search encryption scheme is used, each
data provider needs to independently generate the encrypted
data index for submission to the cloud server. Therefore,
the data owner needs to manage the keys with different data
providers and also submit a dedicated data query for each
data provider even if query conditions are exactly the same.
A plausible solution to this issue is to let all the data providers
use a common key assigned by the data owner to encrypt
the data indexes associated with him.3 This method, however,
is vulnerable to the compromise of a single data provider.

In this paper, we propose a very efficient PHR system with
strong privacy guarantees. In our system, each data owner
authorizes multiple data providers to submit encrypted health
records and data indexes to the cloud server. Our system
differs from prior work in two desirable features. First, each
data provider of the same data owner uses a unique symmetric
key for encrypting data indexes, thus resisting single point of
compromise. Second, each data owner needs not manage the
keys with individual health providers and can submit a single
encrypted query to the cloud server for searching over the
encrypted health data from all his data providers. The second
feature enables very efficient query processing.

Our system is built upon Multi-source Encrypted Indexes
Merge (MEIM), a novel technique we propose in this paper.
MEIM allows the cloud server to merge multiple encrypted
data indexes from different health providers of the same
patient without violating the patient’s privacy. It also per-
mits the patient to generate a single encrypted query over
all his health providers’ encrypted data stored at the cloud
server. The fundamental building block of MEIM is a
novel Multi-source Order-Preserving Symmetric Encryption
(MOPSE) primitive we develop. MOPSE preserves the order
of multiple data indexes encrypted by different symmetric
keys.

We also propose an MOPSE+ primitive to support hier-
archical authorization queries whereby the health providers
with higher privileges can query the cloud server for the
encrypted data from those with lower privileges. Such hierar-
chical access patterns are quite common in practice.

We confirm the security and efficiency of our system
by comprehensive theoretical analysis and extensive exper-
iments with a real dataset [21]. Our results show that (1). the
query performance for data users in MOPSE and MOPSE+

is faster n×4 than that in tradition OPSE; (2). the query
performance for data providers in MOPSE and OPSE are
almost the same and less than that in MOPSE+.

The rest of this paper is organized as follows: Section II
presents models and problem statement. Section III gives the

3No gender implication.
4Here, n denotes the number of data providers

details for MOPSE scheme. The construction of MOPSE+

scheme is shown in Section IV. Section V and VI present
the performance and security analysis. Section VII presents
the experiment evaluation. Finally, we conclude this paper in
Section IX, after presenting related work in Section VIII.

FIGURE 1. System model.

II. SYSTEM AND THREAT MODELS
A. SYSTEM MODEL AND WORKFLOW
We consider a generic CB-PHR system shown in Fig. 1. There
are three kinds of entities: the cloud server, data owners, and
data providers. A data owner refers to a patient who own the
PHRs. In contrast, a data provider can refer to a patient him-
self, any of his health providers such as a physician or hospi-
tal, and even his personal health monitoring device. The cloud
server stores and provides anytime, anywhere access to the
PHRs submitted by the data providers of each data owner.

Each data owner has strong privacy concerns for
his PHRs. His data providers thus must encrypt the PHRs
before outsourcing them to the cloud server. To ensure
efficient search for the encrypted PHRs, each data provider
additionally uploads a data index to the cloud server. The data
owner or any of his authorized data providers can submit data
queries to the cloud server. Both data indexes and queries
should be encrypted aswell to prevent information disclosure.
The cloud server explores the data indexes to locate the
PHRs satisfying each query without the capability or need
to decrypt the PHRs, data indexes, or data queries. Finally,
the cloud server returns the corresponding encrypted PHRs
to the requesting data user who can decrypt them with the
right decryption key.

B. THREAT MODEL
We assume a conventional threat model as follows. The cloud
server is honest-but-curious by faithfully running the system
but having strong interest in the content of the PHRs, data
indexes, and queries. We also assume that data providers

3810 VOLUME 6, 2018

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

TABLE 1. Notation.

are untrusted and may try to acquire the PHRs generated
by other providers. Besides, we assume that the communica-
tions within our system are secured using traditional mecha-
nisms such as TLS (Transport Layer Security) [22]. Finally,
we assume that the cloud server does not collude with data
providers to compromise data owners’ privacy.

The privacy of data owners can be classified into PHR
privacy, index privacy, and query privacy. Since our system
stores encrypted PHRs at the cloud server which has no
decryption keys, PHR privacy is easily achieved as long as
the underlying encryption primitive is unbreakable. We thus
focus on index privacy and query privacy hereafter. Index
privacy is considered compromised if the content of any
encrypted index is known to the cloud server or any data
provider other than the source data provider. In contrast,
query privacy is said to be breached in either scenario below.
First, the content of any encrypted query is disclosed to
anyone other than the data user (i.e., the data owner or any
of his authorized data providers). Second, a data provider
generates a valid query without obtaining the authorization
of the data owner.

III. MULTI-SOURCE ENCRYPTED INDEX MERGING
Our system features a novel Multi-source Encrypted Index
Merging (MEIM) technique whereby the cloud server can
merge the encrypted data indexes from different data
providers of the same data owner without decrypting indi-
vidual indexes. MEIM allows a data user to submit a single
data query for the PHRs from all the data providers of the data
owner. In what follows, we introduce the basics of indexing
and querying PHRs, followed by the MEIM design.

A. INDEXING AND QUERYING PHRs
We explore the classic multi-dimensional B-tree (MDBT) [9]
to index PHRs. In particular, we assume that each PHR has
the same set of queryable attributes such as name, year,
disease, and blood pressure. The values of each attribute
can be naturally numerical (e.g., year) or non-numerical
(e.g., disease), and we convert non-numerical attribute val-
ues into numerical ones with the coding technique in [23].
Each attribute corresponds to one layer on the MDBT, and
each node (the root, non-leaf nodes, and leaf nodes) has

one or multiple attribute values depending on the particular
PHRs. In addition, each leaf node has a pointer to the corre-
sponding encrypted PHR. Fig. 2 shows an exemplary MDBT
index for PHRs with three attributes: year, disease, and blood
pressure.

FIGURE 2. An MDBT index example with three attributes, year, case
history and blood pressure. The nodes satisfying the query are marked
with black circles, and the arrows show the matching processing.

The MDBT index supports multi-attribute equality, subset,
and range queries. For example, a query related to Fig. 2 can
be (2012 ≤ year ≤ 2013) ∧ (disease ∈ {Cold,Fever}) ∧
(bloodpressure = 108/85), where ∧ denotes the conjunc-
tion operator. The sub-queries for the year, disease, and
bloodpressure attributes correspond to range, subset, and
equality queries, respectively. The nodes matching this query
in each layer are marked with black circles in Fig. 2. The
leaf node with value 108/85 points to the PHR that should
be returned to the data user. Equality queries are specific
range queries, and subset queries can be easily transformed
into range or equality queries. So we focus on range queries
hereafter.

FIGURE 3. This figure shows the MEIM workflow. The details are
represented in Section III-B.

B. OVERVIEW OF MEIM
Fig. 3 depicts the work flow of MEIM with the following
function modules for each involved entity.
Data Owner: (1) PreProcessing generates a group

key KDP, a secret key K kept to itself, and a secret key KCS
shared with the cloud server; (2) QueryGenU generates his

VOLUME 6, 2018 3811

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

data queries; and (3) FilesDecU decrypts the encrypted PHRs
returned by the cloud server.
Data Provider: (1) FilesEnc encrypts the PHRs with a

symmetric-key algorithm and then encrypts the symmetric
key with a public-key algorithm; (2) IndexEnc creates the
MDBT index and then encrypts it with our Multi-source
Order-Preserving symmetric encryption (MOPSE) scheme;
(3) QueryGenP generates its data queries; and (4) FilesDec
decrypts the encrypted PHRs returned by the cloud server.
Cloud Server: (1) IndexTrans merges multiple encrypted

MDBT indexes and then segments the merged index into
two indexes: a S-index and an H-index; (2) PrivacyQuery
explores the S-index and H-index to process the encrypted
queries and then returns the corresponding PHRs to data
users or data providers.

C. MULTI-SOURCE ORDER-PRESERVING SYMMETRIC
ENCRYPTION
We propose a novel MOPSE scheme for each data provider to
encrypt the MDBT index to enable later merging at the cloud
server. MOPSE is adapted from Order-Preserving Symmetric
Encryption (OPSE) [24]. To introduce OPSE and MOPSE,
we first introduce the following definition.
Definition 1: For D1,D2 ⊂ N with |D1| ≤ |D2|, a func-

tion f: D1→ D2 is order-preserving (aka. strictly increasing)
if ∀i, j ∈ D1, f (i) > f (j) iff i > j.
Consider a deterministic encryption scheme {K,Enc(K , •),

Dec(K , •)} with the key space K, the plaintext space D,
the ciphertext space R, the encryption function Enc(K , •),
and the decryption function Dec(K , •). We call this scheme
an OPSE scheme iff Enc(K , •) is an order-preserving func-
tion from D to R for ∀K ∈ K. OPSE assumes a single data
source with the same key K , so it is not applicable to our
multi-source scenario in which different data providers use
different keys to encrypt theMDBT indexes for the same data
owner. More specifically, assume that two data providers use
keys K1 and K2, respectively. We then have Enc(K1, d1)<
Enc(K1, d2) and Enc(K2, d1)< Enc(K2, d2) for ∀d1 < d2.
But Enc(K2, d2)-Enc(K1, d1) can be zero, positive or neg-
ative. We thus propose MOPSE to preserve the order of
ciphertexts encrypted with various symmetric keys. For the
above example, Enc(K2, d2) is larger than Enc(K1, d1) in
MOPSE. More formally, we define the property of MOPSE
as follows.
Definition 2: Given a set of OPSE schemes {Enc(K1, •),
· · · , Enc(Kn, •)} with the common plaintext space D and
ciphertext spaceR. This set is called an MOPSE set iff

Enc(K , di) < Enc(K ′, dj), ∀K ,K ′ ∈ {Ki}ni=1,
∀di < dj ∈ D. (1)

We further introduce attribute-specific data ranges for
the MOPSE design. Consider a data owner with n data
providers and an arbitrary attribute with an integer value
in [min,max]. In the PreProcessing phase, the data owner
generates a data-range set Ri of size max−min+1 for his
ith data provider, where Ri = {[li,d , ui,d]}max

d=min with

[li,d , ui,d] as a continuous set of non-negative integers. The n
data-range sets satisfy three conditions. First, the data range
of any provider i for any attribute value is always to the
left of that for any higher attribute value: ui,d1 < li,d2 ,
∀d1 < d2 ∈ [min,max],∀i ∈ [1, n]. Second, the data
providers have no overlapping data ranges for any attribute
value: [li,d , ui,d] ∩ [lj,d , uj,d] = φ,∀i 6= j ∈ [1, n],∀d ∈
[min,max]. Last, the data ranges of all the n providers for the
same attribute value are to the left of those for any higher
attribute value: ui,d1 < lj,d2 ,∀d1 < d2 ∈ [min,max],
∀i, j ∈ [1, n]. Fig. 4 shows an example with two data
providers and two attributes (1 and 2). Based on the data
ranges, the data owner further generates a mapping function fi
for each data provider i as follows.

FIGURE 4. An example of data range R={R1, · · · , Rn}. All ciphertexts
for 1 locate at the left of that for 2.

Definition 3: Given any integer d ∈ [min,max], the cor-
responding ciphertext Cd , and a data-range set Ri =
{[li,d , ui,d]}max

d=min, the mapping function fi(·) for data provider
i ∈ [1, n] is defined as

fi(d) = li,d + (Cd mod (ui,d − li,d)). (2)
Our construction also explores the PrefixMembership Ver-

ification (PMV) technique in [25] which is defined as follows.
Definition 4: For an integer d with a w-bit binary repre-

sentation, b1b2 . . . bw (bi=0,1), the function F(d)={b1b2 . . .
bw, b1b2 . . . bw−1∗, . . . , b1 ∗ · · · ∗, ∗ ∗ · · · ∗} is defined as the
prefix family of d, where ∗ is the wildcard character, and
|F(d)| = w+ 1.
For example, the prefix family of 9 is F(9)=F(1001) =
{1001, 100∗, 10 ∗ ∗, 1 ∗ ∗∗, ∗ ∗ ∗∗}.
Definition 5: S([d1, d2]) denotes the minimum set of pre-

fixes for the integer range [d1, d2] for any d1 ≤ d2.
For instance, S([12, 15]) = {11 ∗ ∗}, S(11) = {1011}, and

S([11, 15]) = {1011, 11 ∗ ∗}.
Definition 6: N (·) is called a prefix numericalization

function if it satisfies two properties: (1) for any prefix d,
N (d) is a binary string; (2) for any two prefixes d1 and d2,
N (d1)=N (d2) iff d1=d2.
We adopt the prefix numericalization scheme in [26]

defined as follows. For a w-bit prefix d = b1b2 · · · bk ∗ · · · ∗
with w− k wildcard characters, we computeN (d) by insert-
ing 1 after bk and then replacing all ∗’s to 0s. For example,
if d = 10 ∗ ∗, N (d)=10100; if d = 1001, N (d)=10011.
Another building block we use is an order-preserving

minimal perfect hashing (OPMPH) function defined as
follows [27].

3812 VOLUME 6, 2018

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

FIGURE 5. An example of MEIM. The dashed part is processed by two different data providers, who generate indexes A and B, and encrypt
indexes to Enc(K1,A) and Enc(K2,B). The cloud server runs the other part, e.g., merging indexes Enc(K1,A) and Enc(K2,B) to Z and segmenting Z
into two indexes S and H. Here Ii,d = {Mi,d ||Pi,d } denotes the ciphertext of the value d for index i .

Definition 7: Given a data set D with a total (numerical)
order, an OPMPH function for ∀d1, d2 ∈ D such that if d1 =
d2→ Hc(d1) = Hc(d2) and d1 < d2→ Hc(d1) < Hc(d2).
Nowwe are ready to present MOPSE which consists of the

following four sub-algorithms.
(1) Setup. Given the group key KDP and the security key

K , the data owner outputs an OPMPH function Hc(·),
a mapping function fi(·) as in Eq. (2), a secret key Ki,
and a data-range set Ri for each data provider i ∈ [1, n].
Note that Hc(·) is the same for all the data providers.

(2) CiphertextGen. Data provider i runs a symmetric
encryption algorithm (e.g., AES [28]) with the key Ki
to produce the ciphertext Ci,d of an attribute value d .

(3) LabelGen. Upon generating Ci,d , data provider i
deploys the mapping function fi and the OPMPH func-
tionHc to output a ciphertext Pi,d . Here, we define Pi,d
by the value Hc(fi(Ci,d)) ∈ Hc(ri,d). Where Hc(ri,d)
denotes an range (Hc(li,d), Hc(ui,d));

(4) Labelblind. Given a ciphertext Pi,d , it runs the pre-
fix family function F to output the prefixes F(Pi,d).
The numericalization function N numericalizes each
prefix independently. We abuse the notation by let-
tingN (F(Pi,d)) denote the outputs. Subsequently, data
provider i computes the keyed-Hash Message Authen-
tication Code (HMAC) of each numericalized prefix
using the secret key Ki, which is denoted by Mi,d =

HMACKi (N (F(Pi,d))). Note that HMAC can be either
HMAC-MD5 or HMAC-SHA1, and it satisfies the fol-
lowing properties: the one-wayness and the collision
resistance. Finally, it concatenates Mi,d and Pi,d as the
final label Ii,d = {Mi,d ||Pi,d }, where || denotes the
concatenation.

Correctness: The label Ii,d of the value d for data provider
i consists of Mi,d and Pi,d . Given two arbitrary value d1,
d2 ∈ N with d1 < d2, two MOPSE schemes MOPSE(K1, •)
and MOPSE(K2, •) are utilized to encrypt them. The val-
ues P1,d1 and P2,d1 for d1 belong to (Hc(l1,d1),Hc(u1,d1))
and (Hc(l2,d1),Hc(u2,d1)), while the values P1,d2 and P2,d2
for d2 locate in the ranges (Hc(l1,d2),Hc(u1,d2)) and
(Hc(l2,d2),Hc(u2,d2)), respectively. Since d1 is less than d2,
the maximum value Max{P1,d1 , P2,d1} is less than the mini-
mum value Min{P1,d2 , P2,d2}. Hence, the construction of the
MOPSE satisfies Def. 2.

D. GENERATING ENCRYPTED INDEX
In the following subsections, we depict how theMEIMmech-
anism runs by an example in Fig. 5. First, data providers
generate platintext indexes with a specific strucutre MDBT,
e.g., indexes A and B in Fig. 5. Subsequently, data providers
utilize MOPSE to generate encrypted indexes Enc(K1,A)
and Enc(K2,B). Here, each label Ii,d is represented by
{Mi,d ||Pi,d }. For instance, the label IB,1 of the value 1 for data
provider B is {MB,1||30}, whereMB,1 is a prefix family (each
prefix is a 128-bit hash key) and PB,1 is 30. Finally, all these
encrypted indexes are outsourced to the cloud server.

E. TRANSFORMING ENCRYPTED INDEXES
Upon receiving encrypted indexes, the cloud server recursive
merges encrypted indexes from the root to leaf nodes. Here,
MEIM compares Pi,d values to determine the orders of nodes
in the merged index. In our example, the index Z in Fig. 5 is a
merged index from Enc(K1,A) and Enc(K2,B). PA,1 (15) in
Enc(K1,A) index is less than PB,3 (70) in Enc(K2,B), so IA,1
priors to IB,3 in Z. Subsequently, the cloud server segments

VOLUME 6, 2018 3813

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

the merged index to two indexes: S index and H index.
As shown in Fig. 5, the Mi,d in S index is equivalent to that
in Z, while hi,d in H index is generated by encoding Pi,d in Z
with the OPMPH function Hs, which satisfies Def. 7 and is
generated by the shared key KCS. As illustrated by the previ-
ous example, the labels IA,3 and IB,3 in Z are {MA,3||75} and
{MB,3||70}, respectively. Hence, the order of MA,3 and MB,3
in S index follows that in Z. Meanwhile, if let Hs(70) be 78,
hB,3 in H is 78.

F. TRAPDOOR GENERATION
In the trapdoor generation, it is divided into two cate-
gories: for data owners (QueryGenU) and for data providers
(QueryGenP). For brevity, we first consider single attribute
trapdoor generation, and then describe how to extend it to
multi-attribute trapdoor generation.

Given a query condition q, data owners first determine
the upper bound supq and the lower bound infq in R.
Namely, supq and infq are Max{u∗,q} and Min{l∗,q}, respec-
tively. To generate a trapdoor securely, data owners should
generate different trapdoor each time. Thus, we introduce
two disturbing parameters ι1 and ι2 to a query pair q̂ =
{infq+ι1, supq+ι2}. Finally, data owners calculate the final
hash value q̃ = Hs(Hc(q̂)) with the functions Hc and Hs,
successively. Without loss of generality, we also consider
range query, and define q as a range. In this case, we first find
the qmin and qmax in the range q, and then replace Max{u∗,q}
and Min{l∗,q} with Max{u∗,qmax} and Min{l∗,qmin}. While
for the trapdoor generation of the subset, we can transform
it to its corresponding equality or range, as described in
Section III-A. Note that, to generate multi-attribute trap-
door Q = {q1, · · · , qψ }, we generate the final trapdoor
q̃j for each qj (j ∈ [1, ψ]), and output the final trapdoor
Q̃ = {q̃1, · · · , q̃ψ }.
Next, we discuss how to set the disturbing parameters

ι1 and ι2. Since infq > supq−1 and supq < infq+1,
the disturbing parameters ι1 and ι2 can be random chosen
in the range [0, | infq− supq−1 |] and [0, | infq+1− supq |],
respectively.

For a query condition q, data provider ifirst encrypts it with
the secret key Ki to obtain Ĉi,q, and computes the hash value
P̂i,q = Hc(Ĉi,q). Then, data provider outputs the trapdoor
t̃ = HMACKi (N (S (̂Pi,q))). If q is a range, we only need
to transform P̂i,q to a range. Likewise, we can also utilize
T̃ = {t̃1, · · · , t̃ψ } to address the case of the multi-attribute.

G. PRIVACY-PRESERVING QUERY
After receiving the trapdoor Q̃ issued by data owners,
the cloud server iterative processes the query on H index from
the root to the leaf nodes as shown in Alg. 1. If the query fails,
the algorithm returns Null; Otherwise, the encrypted files.
Likewise, for the trapdoor T̃ from data provider, the matching
is also an iterative as depicted in Alg. 1. Only the matching
condition in Line 4 of Alg. 1 follows the Theorem 1, which
is proof in [29].

Algorithm 1 PrivacyQuery

Input: (H, Q̃) or (S, T̃)
Output: Encrypted files

1 Extract 1st query attribute value in Q̃ or T̃ as q̃ or t̃;
2 Remove 1st query attribute value in Q̃ or T̃ ;
3 for Traverse each element χ in H or S index from left to
right do

4 if χ.P ∈ q̃ or χ.M ∩ t̃ 6= φ then
5 if χ belongs to a Leaf node then
6 return Encrypted file;

7 else
8 PrivacyQuery(H.childnode, Q̃)

or PrivacyQuery(S.childnode, T̃);

Theorem 1: Given a query range [a,b] and the attribute
value d, d∈[a,b] if and only if the following formula is
true.

HMACKi (N (F(d))) ∩ HMACKi (N (S([a, b]))) 6= φ (3)

IV. ENHANCED SCHEME
In previous model, data providers (e.g., the hospitals and
personal health monitors) can only access the patient’s data
issued by themselves. However, in reality, data providers may
access health data generated by other data providers. For
instance, research-oriented hospitals utilize patients’ data to
prevent the incidence of common diseases; the doctors may
access the data recorded by personal health devices. Thus,
considering a hierarchical systemmodel will make our model
more practical. In our hierarchical model, data providers have
various privileges according to the actual requirements. For
example, personal health devices are mostly with the lowest
privileges, because of being accessed in common; research-
oriented hospitals are with higher privileges than community
hospitals, since the formers need amount of patients’ data to
do research, while community hospitals only access specific
patients’ data.

With the basic solution MOPSE, we can implement hier-
archical structure for data providers, i.e., issuing all keys
of data providers with lower privileges to those with higher
privileges. However, the solution is inefficient, such as the
overhead of the management of keys increases linearly with
the number of data providers with lower privileges, and data
providers need to generate amount of queries (the num-
ber is positively related to providers’ number). To thwart
these inefficient problems, we proposed an enhanced
scheme (named MOPSE+) based on our previous scheme
HPBPE [30].

A. PRELIMINARIES
In this subsection, we depict some cryptographic definitions
and assumptions, which follow our previous paper [30].

3814 VOLUME 6, 2018

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

Assume that G1, G2, GT are three cyclic groups
with identical prime order ϕ. Let gj be the generator of
Gj (j ∈ [1, 2]). We define a non-degenerate bilinear pairing
operation e as G1 × G2 → GT , and e(g1, g2) = gT 6= 1.
Notice that the multiplication operations are in three cyclic
groups G1, G2, GT , which bear symmetric pairing groups
(G1 = G2). In what follows, we describe some definitions as
follows:
Definition 8 (Vector Spaces V and V∗): LetG1 andG2 be

two N-dimensional vectors. V = G1 × · · · ×G1︸ ︷︷ ︸
N

and V∗ =

G2 × · · · ×G2︸ ︷︷ ︸
N

be two vector spaces. Two vectors x and y

in V and V∗ are represented by as (gx11 , · · · , g
xN
1) and

(gy12 , · · · , g
yN
2), respectively. Notice that xj, yj ∈ Fϕ for

j ∈ [1,N].
Definition 9 (Canonical Bases A and A∗): Let A =

(a1, · · · , aN) and A∗ = (a∗1, · · · , a
∗
N) be the canonical bases

of V and V∗, respectively. Therein, a1 = (g1, 1, · · · , 1),
a2 = (1, g1, · · · , 1), · · · , aN = (1, · · · , 1, g1), while
a∗1 = (g2, 1, · · · , 1), a∗2 = (1, g2, · · · , 1), · · · , a∗N =

(1, · · · , 1, g2).
Definition 10 (Pairing Operation): For x ∈ V and

y ∈ V∗, let the pairing operation e(x, y) =
∏N

j=1 e(g
xj
1 , g

yj
2)

be e(g1, g2)
∑N

j=1 xj·yj = gEx·EyT ∈ GT .
Definition 11 (Dual Pairing Vector Spaces (DPVS)): Let

the prime orders of elements in (ϕ,V,V∗,GT ,A,A∗) be ϕ.
The dimensional of vector spaces for V and V∗ over Fϕ are
identical and equivalent to N . These elements and canonical
bases A and A∗ meet the following conditions:
1) Non-degenerate bilinear pairing: The non-degenerate

bilinear pairing e: V × V∗ → GT is a polynomial-
time computation. Namely, e(ax,by)= e(x,y)ab and if
e(x,y)=1 for all x ∈ V, then y=0.

2) Dual orthonormal bases: For aj ∈ A and a∗j′ ∈ A∗, let

the non-degenerate bilinear pairing e(aj, a∗j′) be g
δj,j′

T
for ∀j, j′ ∈ [1, n]. If j=j’, δj,j′=1, otherwise 0, and
gT 6= 1 ∈ GT .

3) Distortion maps: Let ϑj,j′ ∈ V and ϑ∗j,j′ ∈ V∗
be two polynomial-time computable endomorphisms.
Therein, ϑj,j′ (aj′) = aj, ϑj,j′ (ak)=0 and ϑj,j′ (a∗j′) = a∗j ,

ϑj,j′ (a∗k)=0 if k 6=j’. ϑj,j′ and ϑ∗j,j′ are denoted by

‘‘distortion maps’’.
Definition 12 (Hierarchical Privilege-Based Predicate

(HPBP)): For a positive integers tuple Eα = (z, `;α1, · · · , α`)
(α0 = 0 < α1 < α2 < · · · < α` = z), let∑

t = Fα`−α`−1ϕ \ {E0}(j = 1, · · · , `) be the set of priv-
ileges. We define

∑
= ∪

`
j=1(

∑
1× · · · ×

∑
j) as the

hierarchical privileges (
∑

j ∩
∑

j′ 6= φ, iff j=j’). For a
hierarchical privilege (Ex1, · · · , Exh) ∈

∑
, let f(Ev1,··· ,Evl)

be the hierarchical privilege-based predicate. Therein,
f(Ev1,··· ,Evh)(Ex1, · · · , Ex`) = 1 iff h ≤ ` and Exj · Evj = 0 for
1 ≤ j ≤ `.

B. MAIN DESIGN OF MOPSE+

1) ENHANCED SYSTEM FRAMEWORK
MOPSE+ consists of the following sub-algorithms.
(1) Setup+. Given the group key KDP and the security

key K , the data owner generates an OPMPH func-
tion Hc, a symmetric key Ks, a mapping function
fi, and a data-range set Ri for each data provider
i ∈ [1, n]. Notice that Hc and Ks are shared by
all data providers. Subsequently, data owner gen-
erates the master key pair (pk, sk) with a security
parameter 1λ and a format of hierarchy Eµ as inputs.
Finally, given the master key pair and predicate vectors
EV = (Ev1, · · · , Evh), data owner issues a specific private
key sk (Ev1,··· ,Evh).

(2) Delegate+. To reduce the overhead of issuing
keys of data owner, the MOPSE+ scheme enables
data providers with higher privileges to issue pri-
vate key to their subordinates. The Delegate+

algorithm takes the public key pk , the private
key sk(Ev1,··· ,Evh) and the (h+1)th predicate vec-
tor Evh+1 as inputs to issue the (h+1)th private
key sk(Ev1,··· ,Evh,Evh+1).

(3) CiphertextGen+ and LabelGen+. Given an value d ,
CiphertextGen+ generates two ciphertext Ci,d =

AES(Ki, d) and Cd = AES(Ks, d). Then, LabelGen+

generates Pi,d = Hc(fi(Ci,d)) with the mapping func-
tion fi and the OPMPH function Hc.

(4) Labelblind+. Data provider i with hth privilege,
takes the master public key pk , identification vectors
EXh = (Ex1, · · · , Exh, Ex

+

h+1, · · · , Ex
+

`) (Ex+j
U
←− Fϕ and

h+1≤ j ≤ `) and Cd as inputs, and returns the
ciphertext Ch,d . Finally, Ch,d is concatenated with Pi,d
as its label Ii,d = {Ch,d ||Pi,d }, where || denotes the
concatenation.

2) SCHEME DETAILS
Here, we detail the construction of the MOPSE+ scheme
using dual pairing vector spaces (DPVS) [30]. Let B =
(b1, · · · , bz+3) and B∗ = (b∗1, · · · , b

∗

z+3) be two vector
spaces in DPVS, where B and B∗ are both z+3 dimen-
sional spaces. The public parameters for DPVS are
(b1, · · · , bz, bz+1 + bz+2, bz+3)
(1) Setup+. Taking 1λ and z+3 as the input of

Gob, it randomly selects the parameters param,B
and B∗ ((param,B,B∗) R

←− Gob(1λ, z + 3)).
Notice that (EX ,B∗) represents the master security
key sk and (param, B̂) denotes the master pub-
lic key pk . Therein, B̂ and EX are expressed by
(b1, · · · , bz, bz+1 + bz+2, bz+3) and (Ex1, · · · , Ex`) =
((x1, · · · , xµ1), · · · , (xµ`−1+1, · · · , xµ`)), respectively.
To generate the security key sk(Ev1,··· ,Evh) = k∗h for the
hth privilege level, it takes the following parameters
((v1, · · · , vµ1), · · · , (vµh−1+1, · · · , vµh)), pk and sk as
inputs, and uniformly selects σj and η from Fϕ for

VOLUME 6, 2018 3815

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

∀j ∈ (1, · · · , h), and runs the following formula:

k∗h =
h∑
j=1

σj(
µj∑

j′=µj−1+1

vj′b
∗

j′)+η · b
∗

z+1+(1− η)·b
∗

z+2

(4)

(2) Delegate+. The MOPSE+-Delegate is the same as
HPE-delegate in [31]. For more detail, please refer
to [31].

(3) CiphertextGen+ and LabelGen+. As described in
the Section IV-B.1, the finally outputs of the two
sub-algorithms are Pi,d = Hc(fi(Ci,d)) and Cd ,
respectively.

(4) Labelblind+. Given Pi,d and Cd , data provider i with
hth privilege chooses a random ζ from Fϕ , and gener-
ates the ciphertext Ch,d = (C1,C2) according to the
following formula.

C1 = (
∑̀
j=1

δj(
µj∑

j′=µj−1+1

xj′bj′)+ ζ · (bz+1 + bz+2)

+ δz+3 · bz+3) · Cd
C2 = gζT (5)

Note that, EX` is formed by concatenating `− h random
vectors (Ex+h+1, · · · , Ex

+

`) and EXh, i.e., EX` is expressed
as (Ex1, · · · , Exh, Ex

+

h+1, · · · , Ex
+

`). Finally, data provider
concatenates the ciphertext Ch,d = (C1,C2) and Pi,d ,
and returns the result (C1,C2)||Pi,d .

C. TRANSFORMING ENCRYPTED INDEXES
UNDER MOPSE+

As well as MOPSE, the cloud server also merges multiple
encrypted indexes by comparing Pi,d in MOPSE+, and then
separates the merged index into two indexes: S+ index and H
index. Besides, the cloud server utilizes the hash functionHs
to obtain the final H index.

D. TRAPDOOR GENERATION UNDER MOPSE+

In view of MOPSE+ scheme, we conclude that data owner
generates the trapdoor Q̃ with identical method described in
Sec. III-F.

To generate trapdoors, data provider first encrypts the
query condition q with the symmetric key Ks to obtain Ĉq =
AES(Ks, q). Then, data provider takes Ĉq and the secret key
sk(Ev1,··· ,Evh′) as inputs, and returns the trapdoor t̃h′,q through
the Eq. (6).

t̃h′,q = (k∗h′ + ε · b
∗

z+1 + (−ε) · b∗z+2) · (
1

Ĉq
)

= (
h′∑
j=1

σj · (
µj∑

j′=µj−1+1

vj′b
∗

j′)+ (η + ε) · b∗z+1

+ (1− η − ε)b∗z+2) · (
1

Ĉq
), (6)

where ε is random chosen fromFϕ , and h’ means the privilege
level. Likewise, if q denotes a range, we need to generate Ĉq
for each data in the range. To support multi-attribute query,
we generate trapdoors for each attribute, and output the final
trapdoor T̃ = {t̃1, · · · , t̃ψ } as well as that in MOPSE.

E. PRIVACY-PRESERVING QUERY UNDER MOPSE+

Without loss of generality, we assume the cloud server
receives a multi-attribute trapdoor, such as Q̃ or T̃ . Then,
the cloud server runs Algorithm 2, and returns the matched
encrypted files to data owner or data providers.

e(C1, t̃h′,q) = C2 (7)

Algorithm 2 PrivacyQuery+

Input: (H, Q̃) or (S+, T̃)
Output: Encrypted files

1 Extract 1st query attribute value in Q̃ or T̃ as q̃ or t̃;
2 Remove 1st query attribute value in Q̃ or T̃ ;
3 for Traverse each element χ in H/S+ index from left to
right do

4 if χ.P ∈ q̃ or χ.C satisfies with Eq. (7) then
5 if χ belongs to a leaf node then
6 return Encrypted file;

7 else
8 PrivacyQuery+(H.childnode, Q̃)

or PrivacyQuery+(S+.childnode, T̃);

Next, we proof the correctness of Equation (7). Let the
ciphertext Ch,d and the trapdoor t̃h′,q be the inputs. Since

C1 = (
∑̀
j=1

δj · (
µj∑

j′=µj−1

xj′ · bj′)+ ζ · (bz+1 + bz+2)
+ δz+3 · bz+3) · Cd

and

t̃h′,q = (
h′∑
j=1

σj(
µj∑

j′=µj−1+1

vj′b
∗

j′)+ (η + ε) · b∗z+1

+ (1− η − ε) · b∗z+2) · (
1

Ĉq
).

The proof is described as follows:
Proof:

1) If h′ > h:

e(C1, t̃h′,q) = g

∑
1≤j≤h δj·σj·Exj·Evj·(

Cd
Ĉq

)

T · g
ζ ·(Cd

Ĉq
)

T

· g

∑
h+1≤j≤h′ δj·σj·Ex

+

j ·Evj·(
Cd
Ĉq

)

T (8)

∵ ∀j ∈ (h+ 1, h′), Ex+j · Evj 6= 0
∴ Either Ĉq = Cd or Ĉq 6= Cd

e(C1, t̃h′,q) = g
(
∑

h+1≤j≤h′ Ex
+

j ·Evj+ζ)·(
Cd
Ĉq

)

T 6= gζT = C2

(9)

3816 VOLUME 6, 2018

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

2) If h′ ≤ h:

e(C1, t̃h′,q) = g

∑
1≤j≤h′ δj·σj·Exj·Evj·(

Cd
Ĉq

)

T (10)

∵ ∀j ∈ (1, h′), Exj · Evj = 0
∴ If Ĉq = Cd ,

e(C1, t̃h′,q) = g
(
∑

1≤j≤h′ Ex
+

j ·Evj+ζ)·(
Cd
Ĉq

)

T = gζT = C2

(11)

If Ĉq 6= Cd ,

e(C1, t̃h′,q) = g
(
∑

1≤j≤h′ Ex
+

j ·Evj+ζ)·(
Cd
Ĉq

)

T 6= gζT = C2

(12)

�

V. PERFORMANCE ANALYSIS
A. INDEX GENERATION
Assume that there are ψ attributes and γ entities for each
index. The arbitrary attribute value belongs to the range
[min,max], and we define τ as max−min+1. Namely,
τ denotes the max number of elements of an attribute.
For an MDBT, the height is equivalent to the attributes num-
ber ψ , and the overhead of inserting a entity to a MDBT is
O(ψ ·τ). Hence, generating a index with γ entities consumes
O(ψ · τ · γ). In the case of index generation, MOPSE and
MOPSE+ only need to build plaintext MDBT, so the time
complexity of MOPSE and MOPSE+ are both O(ψ · τ · γ).

B. INDEX ENCRYPTION
In MOPSE and MOPSE+, we utilize AES-128 as the sym-
metric encryptionmethod, but it is not our focus point. Hence,
we here not discuss and list the complexity of AES-128
(for more information, please refer to [28]). During indexes
encryption, each label consists of two categories: Mi,d/Ch,d
and Pi,d . For each Pi,d , MOPSE and MOPSE+ are both
taking O(1) to compute the mapping function f . For Mi,d ,
MOPSE needs O(w) hash and O(1) encryption. While,
in MOPSE+, the ciphertext C1 is the result of the point
multiplication between pk and the Cd , and the ciphertext C2
is also a point multiplication result. Thus, the encryption time
is O(z+ 3).

C. INDEXES TRANSFORMING
In indexes transforming, it consists of two phases: indexes
merging and index segmenting. For the former, it can be
viewed as merging multiple MDBTs. For simplify, we con-
sider the index merging of two MDBTs. Since the Pi,d val-
ues of the same plaintext for different data providers are
distinguish with a high possibility, the indexes merging can
be considered as their roots merging. The maximum num-
ber of elements for a root is τ , thus the computation over-
head of merging two roots is O(τ 2). Hence, merging two
indexes takesO(τ 2). For the index segmenting, the time com-
plexity is equivalent to that of traversing an merged MDBT,
and the number of MDBTs is n. Thus, it takesO(n ·ψ · τ ·γ).

TABLE 2. Time overhead analysis.

D. QUERY
In MEIM scheme, the query consists of two categories:
queries from data providers and queries from data owner. The
time complexity of a query on anMDBT isO(ψ ·τ ·γ). Thus,
the query time complexity for data providers with OPSE is
O(n · ψ · τ · γ). However, with MOPSE, multiple indexes
are merged into one indexes. Besides, Chen and Liu [25]
pointed that the number of prefixes in a query is at most 2w-2.
Thus, the time complexity for data providers’ query under
MOPSE is O(n · ψ · τ · γ · (2w − 2)). In MOPSE+, each
matching takes z+3 pairing operations, so the computation
overhead of a query is O(n · ψ · τ · γ · (z + 3)). For
data owner’s query, it only needs to match Pi,d . With either
MOPSE or MOPSE+, the Pi,d query on an merged H index
are both O(ψ · τ · γ). Nevertheless, with OPSE, data owners
need to generate multiple queries, so the query for data owner
is O(n · ψ · τ · γ).

VI. SECURITY ANALYSIS
A. INDEX PRIVACY
In MEIM mechanism, the index privacy contains two cate-
gories: the privacy for S/S+ index and the privacy for H index.

In MOPSE, the indexes consist of S index and H index.
For S index, in view of Section III-C, the cloud server
only receives the secure hash values of Mi,d converted from
data items in the outsourcing phase. Without knowing the
secure hashing and the keys, it is computationally infeasi-
ble to compute the actual values of the corresponding Mi,d
for the attacker. For the analysis of information leaking of
HMACKi (•), Chen and Liu [29] pointed that the cloud server
need large steps to reveal data (for more details, please refer
to [29]). Note that if the cloud server and data providers are
both compromised, the cloud server may reveal encrypted
data issued by data providers through brute-force attacks.
In that case, the cloud server knows the secret key Ki for
the HMACKi function. Since the function has one-wayness
property of HMACKi , the cloud server cannot reveal d
directly using HMACKi (d) and Ki. But the attacker may
compute the HMACKi results of the numericalized prefixes
for all possible values in the data domain with a brute-force

VOLUME 6, 2018 3817

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

manner, and compare the results with the collected data.
By the comparison, the cloud server can reveal data
providers’ outsourced data. However, in practice, the cloud
server need to take prohibitive computational cost for a large
data domain. For H index, the cloud server obtains the Pi,d
for a value d . Without knowing the security key Ki, fi and Ri,
the cloud server cannot infer the actual value d according
to Pi,d even if it knows Hc. Besides, due to without know-
ing Ri, the cloud server cannot directly infer the actual value
according to Pi,d . Furthermore, we assume that the cloud
server will not collude with data providers, thus data provider
cannot infer the actual value d without knowing the hash
functionHs.

In MOPSE+, the indexes includes S+ and H index,
respectively. For H index, due to identical generation with
that in MOPSE, we can follow the security analysis in
MOPSE. For S+ index, we propose Theorem 2 to demon-
strate our proposed method is selectively identification-
hiding against CPA.
Proof: The proof is elaborated in Appendix X.
Theorem 2: Our proposed scheme is selectively

identification-hiding against CPA under the RDSP and IDSP
assumptions [30]. For any adversary A, there exist prob-
abilistic machines B1 and B2, whose running times are
essentially the same as that of A, such that for any security
parameter λ,

AdvIHA (λ) ≤ AdvRDSPB1
(λ)+ AdvIDSPB2

(λ)+ 3ν/ϕ, (13)

where ν is the number of adversary’s queries.

B. QUERY PRIVACY
In MEIM mechanism, the query privacy is divided into two
cases: the privacy for data providers and the privacy for data
owner.

In MOPSE, the query of data providers is based on
HMACKi . Hence, we conclude that the security analysis of
the query of data providers can follow that of the S index.
The query of data owner is based on the range R, the hash
functions Hc and Hs. Without knowing the Hc and the
range R, the cloud server cannot infer the actual query value
q according to Hs and the encrypted query. Likewise, data
providers cannot know the query value q due to without
knowing the Hs.

In MOPSE+, the query of data providers is based on our
proposed scheme and we prove the security in the security
analysis of the index. Thus, we canmake sure that the attacker
cannot infer the actual value q of query and the hierarchical
identification of data providers through encrypted data. For
the query of data owner, since we utilize the same method
like in MOPSE, and the security proof has been proved in
the above paragraph. The attacker cannot infer the value q
through the encrypted query of data owner.

C. AUTHORIZED SEARCH
In MOPSE, the attacker, without knowing the secret key of
data providers, cannot generate fake queries of data providers.

In common, the attacker can only obtain either the hash
function Hc or Hs, thus the attacker cannot directly gener-
ate a fake query of data owner. In MOPSE+, the attacker,
without knowing the identification secret of data providers,
cannot generate fake queries of data providers. Likewise,
the attacker also cannot generate a fake query of data owner.
Thus, we conclude thatMEIM achieves the goal of authorized
search.

VII. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the MEIM
mechanism by three schemes: OPSE,MOPSE andMOPSE+.
We both implement schemes in C++, and MOPSE+ is
with the Pairing-Based Cryptography (PBC) Library [32].
Note that the type A elliptic curve parameter is adopted,
where the group order is 160-bits, providing 80-bit security
strength equivalently. For experiment dataset, since no real
PHR datasets are publicly available for academic purposes,
we apply MEIM to Nursery Dataset obtained from the UCI
Machine Learning Repository [21]. The dataset is used in the
previous research on searchable encryption [3], [12]. Briefly,
the dataset comprises 12,960 instances, which contain eight
categories reaching up to five values each. These experi-
ments are carried out on an IBM workstation running Red-
Hat Linux with a Intel(R) Xeon(R) CPU E5606 (with four
cores)@2.13GHzwith 12GB of random access memory. The
experimental results show that these algorithms on MEIM
perform well.

In MOPSE, categories and values are deemed to be
attributes and attribute values, respectively. Each value in
Nursery Dataset will be coded into integers by Unicode [23].
However, in MOPSE+, we follow the experimental setup
in [30] to set privileges. Namely, each instance is randomly
defined as a hth privilege, where the front h categories are
utilized to generate the vectors of the secret/public keys for
the corresponding h privilege, and the rest categories are
viewed as the random vectors. Here, the category values
are converted into elements in Fϕ using SHA-1 hash algo-
rithm. To evaluate the efficiency of our schemes for various
instances’ number, we divide the data set into ten subsets,
and each contains 1296 instances. In the evaluation of the
encryption and query efficiency, we utilize multiple subsets,
from one to ten, to test the encryption and query time. Note
that our dataset are organized by MDBT, and stored in-
memory. The following experimental results are based on this
premise.

A. INDEX GENERATION
To evaluate the performance of index generation, we utilize
n subsets to generate n indexes with MDBT. Each MDBT
contains eight layers corresponding to eight attributes,
respectively.

According to the performance analysis of index gen-
eration, we obtains two conclusions: (1) the time com-
plexity of MOPSE is equal to that of MOPSE+; (2) the
time complexity of generating a index is O(ψ · τ · γ).

3818 VOLUME 6, 2018

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

FIGURE 6. Fig. 6a and 6b show the index generation time and memory overhead, respectively. The memory overhead of encrypted indexes is
represented in Fig. 6c. Fig. 6d and 6e depict the encrypting overhead under MOPSE and MOPSE+. (a) Index generation time. (b) Index memory
overhead. (c) En-index memory overhead. (d) Encryption under MOPSE. (e) Encryption under MOPSE+.

FIGURE 7. Fig. 7a shows the time of setup, key generation and delegation generating in MOPSE+. The transforming overhead includes indexes merging
time (Fig. 7b) and index segmenting time (Fig. 7c). Figure 7d and 7e depict the query consumption for data providers/owners under OPSE, MOPSE and
MOPSE+, respectively. (a) Time overhead in MOPSE+. (b) Indexes merging time. (c) Index segmenting time. (d) Query of data providers. (e) Query of
data owner.

Fig. 6a and 6b present the average running time and memory
consumption for generating n indexes (1≤ n ≤10). In our
experiment, we setψ as 8, thus the generation time of indexes
increases with the multiple of τ and γ . As shown in Fig. 6a,
when the index numbers pick up {3, 7, 9}, the time overhead
are {8.845ms, 27.849ms, 39.080ms}. Meanwhile, the points
of MOPSE and MOPSE+ are overlap, which satisfies the
conclusion (2). For memory usage of indexes, Fig. 6b shows
that it is linear growth with an increasing number of n. When
n is 2, the memory usage is 20.25KB.

B. INDEX ENCRYPTION
To evaluate the performance of index encryption, we take
the above indexes as input, and runs MOPSE and MOPSE+

schemes to output the encryption time.
In MOPSE, we utilize the AES scheme as a symmetric

encryption, and HMACKi (•) to generate Mi,d . As shown
in Figure 6d, the encryption overhead for indexes increases
with the indexes number n. When n=3, the encryption time is
about 1289.894ms.

In MOPSE+, we use our proposed method HPBPE to
generate Ch,d . Figure 7a shows the time overheads for setup,
key generation and delegation inMOPSE+. In setup, the over-
head includes O(z20) = O(z2) exponentiations each (where
z0 is equivalent to z+3). When z is 31, the setup time is
about 1.56s. To evaluate the performance of key generation
and delegation, we choose h (1≤ h ≤8) identification from
the identification universe in each identification to form a
query. That is, the vector Ev does not have element 0 ∈ Fϕ .
According to Figure 7a, the direct key generation consumes
relatively long time, while the delegation consumes less time.
The reasons are that the former is processed by the central

trusted authority because it is usually an one-time opera-
tion; while the latter is experienced by Level-2 local trusted
authority and users under a Level-1 local trusted authority.
Notice that the capability generation/delegation times both
scale as O(z20). Fig. 6e shows the encryption consumption
withMOPSE+, andwe conclude that the encryption overhead
in MOPSE is lower than that in MOPSE+ through comparing
Figure 6d and 6e. For a attribute value, MOPSE+ takes
42.5ms to encrypt it.
For memory cost in MOPSE, the label for a attribute value

consists of two parts:Mi,d andPi,d . Each prefix inMi,d is with
128-bit, and the Pi,d is a integer value. While in MOPSE+,
the memory overhead of Ch,d need 65(z0+1)B. For a attribute
value, when z picks up 46 , the size is equal to merely 3.2KB.
Figure 6c shows the comparison of the memory overhead
between MOPSE and MOPSE+.

C. ENCRYPTED INDEXES TRANSFORMING
To evaluate the overhead of the merging for multiple
encrypted indexes, the cloud server merges the aforemen-
tioned encrypted indexes due to the comparison of the
suffixes. Fig. 7b concludes that the merging time grows
linearly with the elements number in the root which is rea-
sonable because ciphertexts for the same plaintext on dif-
ferent indexes are unequal. When n is {5, 10}, the merging
time is {4us, 15us}, respectively. According to the afore-
mentioned analysis, ciphertexts for one plaintext are distinct,
thus the merging cannot lead to a changeable in memory
overhead. While for the segmenting, the consumption is a
positive correlation with the total numbers of the nodes. The
results are shown in Fig. 7c, e.g., n is 9, the segmenting
time is 31ms.

VOLUME 6, 2018 3819

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

D. PRIVACY-PRESERVING QUERY
The performance of the privacy-preserving query is an key
evaluation for the cloud in MEIM. To evaluate the query
efficiency of data owner and data providers, we separately
use n×1296 (1≤ n ≤10) queries to test the average query
time on the above indexes. Fig. 7d depicts the query overhead
for queries issued by data providers with OPSE, MOPSE and
MOPSE+. As shown in Fig. 7d, we can conclude that the
query performance in OPSE is greater than that in MOPSE
and MOPSE+, and the cloud server only takes 5.4ms aver-
agely to process a query with eight attributes in MOPSE+.
Fig. 7e presents the query overhead for data owner, and the
query overhead is the same between with MOPSE and with
MOPSE+. As shown in Figure 7e, the cloud server takes
102.51ms to process 12960 queries. Hence, the performance
results demonstrate that MEIM is an efficient method for data
owner querying.

VIII. RELATED WORK
Recently, privacy preserving in PHRs have drawn researchers’
attention [2]–[7]. In this section, we review three
categories of work: searchable encryption, order-preserving
symmetric encryption and other related work. Search
encryption schemes guarantee that the untrusted entity
gains nothing about what data owners are searching for,
and order-preserving symmetric encryption can guarantee
the order of the ciphertexts following with that of the
plaintexts. There has been a lot of works for searchable
encryption [3], [12]–[19], [33], order-preserving symmet-
ric encryption [20], [24], [33], [34], and other related
work [41]–[46].

A. SEARCHABLE ENCRYPTION
With oursoucing encrypted data to the cloud, some
researchers [3], [11]–[19], [33] proposed searchable encryp-
tion. In [3], Li et al. proposed a framework to address the
problem of authorized private keyword searches (APKS)
upon encrypted PHI. Song et al. [14] proposed sym-
metric key cryptography upon searchable encryption, and
Boneh et al. [15] firstly proposed the public key cryptog-
raphy on searchable encryption scheme. In [18], Liu et al.
proposed EIRQ to support rank query, in which the queries
with higher rank can retrieve higher percentage of matched
files. Besides, Zhang et al. [33] focused on multi-keyword
ranked search upon encrypted data. However, these schemes
only support equal query, while not support range query.
In [17], the authors constructed the index on the plain-
texts and encrypted each page of the index separately.
This scheme can reduce the communication for users’
queries, but users need to manage amount of secret key.
During the multi-source cloud personal health record,
the low query efficiency and the highly communication
overhead cause this scheme becomes undesirable. Among
others, some researchers [25], [34], [36]–[38] focused on
secure single- or multi- dimensional range queries. But the
protocols [36]–[38] may return items that do not satisfy

the query. Although SafeQ [25] can output the precise query
results, the optimized version of SafeQ utilizes Bloom filter,
thus leading to unprecise query results. To obtain the precise
query results, Yi et al., [34] proposed a protocol QuerySec
to enable storage nodes to process queries correctly without
leaking data and queries. Besides, Liu et al., [35] proposed
an MDS-SSE scheme to support multi-source scenario, but
they ignored the hierarchical structure of data owners.

B. ORDER-PRESERVING SYMMETRIC ENCRYPTION
The order preserving encryption is utilized to encrypt the
index to preserve the order of the ciphertexts with that of
the plaintexts. Agrawal et al. [20] proposed an order pre-
serving symmetric encryption (OPSE) scheme. Furthermore,
Boldyreva et al. [24] proposed a modular order preserv-
ing encryption. Besides, Yi et al. [34] proposed an order
preserving function to encode data in sensor network, and
Zhang et al. [33] introduced identical function to implement
the query on the relevance scores of keywords on the cloud.
However, these schemes are only suitable for single source
scenario because the numeric order of various indexes cannot
be preserved with various OPSE. Besides, Liang et al. [40]
proposed an MPOPE to address multi-provider problem in
cloud. However, they ignored a practical problem, i.e., hier-
archical authentication query.

C. OTHER RELATED WORK
Data access control is another vital issue in cloud stor-
age system. Many researchers [41]–[46] focused on multi-
authority access control scenario. In [41], Yang et al. aimed
to address multi-authority problem, and proposed a data
access schemeDAC-MACS. However, Hong et al. [42] found
that Yang’s work may be attacked due to utilizing a bidi-
rectional re-encryption method, and described their attack
method. To address the data privacy problem and the user
identity privacy both, Jung et al. [43] proposed AnonyControl
scheme. In [44], Xue et al. stated that the prior work cannot
overwhelm the common shortcoming, like low efficiency and
single-point bottleneck. So they proposed RAAC, a robust
access control scheme. To reduce the overhead of decryp-
tion, Chase and Chow [45] proposed a scheme to remove the
trusted central authority. In [46], Li et al. proposed a threshold
multi-authority ciphertext-policy attribute-based encryption
access control solution (named TMACS). However, none of
them can be directly utilized to address our problem due to
ignoring hierarchical authentication query problem.

IX. CONCLUSION AND DISCUSSION
In this paper, we explore the problem of privacy-preserving
query for multi-source in the cloud-based PHR environment.
Different from prior works, our proposed MEIM mecha-
nism enables authenticated data owner to achieve secure,
convenient, and efficient query over multiple data providers’
data. To implement the efficient query, we introduce MDBT
as the data structure. To reduce the overhead of query
generation of data owner, and allow the cloud server to

3820 VOLUME 6, 2018

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

securely query, we propose a novel multiple order-preserving
symmetric encryption (MOPSE) scheme. To make our model
more practical, we propose an enhanced multiple order-
preserving symmetric encryption (MOPSE+) scheme to
satisfy the hierarchical authenticated query. Moreover,
we leverage rigorous security proof to prove that our schemes
are security. Finally, we demonstrate that the MEIM mech-
anism is computationally efficient by implementing our
schemes and running in a real dataset.

Alghought our work only focuses on CB-PHR sys-
tem, it can be theoretically extended to various scenarios,
mobile data collection, recommendation system, and so forth.
However, the devices, like mobile devices, have limited com-
putation and memory resource. For all this, we will discuss
light-weight schemes in our furture work.

X. PROOF OF SELECTIVELY IDENTIFICATION-HIDING
AGAINST CPA
To prove the security of our proposed scheme, the following
five games derived from [31] are deployed, i.e., Game 0 to
Game 4. Game 0 is the original selectively identification-
hiding game. Game 1 is an extension of the concept of
Game 0. The Setup+ (instead of Delegate+) algorithm in
Game 2 presents the query of a delegated key. Game 3 means
that the plaintext part of the target ciphertext and trapdoor is
randomized. While the randomly of the ciphertext part of the
target ciphertext and trapdoor is in Game 4.
• Game 0: Primitive game (Defined as [31]).
• Game 1: Apart from the following condition, Game 1 is
defined as the same with Game 1 in [31]. The adversary

A gives the challenge plaintexts C (0)
d and C (1)

d to chal-
lenger C, who computes the ciphertext (C1,C2) and the
trapdoor t̃h′,d as follows and returns it to A.

C1 = (
z∑
j=1

x+j bj + ζ (bz+1 + bz+2)+ δz+3bz+3) · Cd

C2 = gζT (14)

t̃h′,d = (
h′∑
j=1

v+j b
∗
j + (η + ε) · b∗z+1

+ (1− η − ε) · b∗z+2) · (
1
Cd

), (15)

where ζ, δz+3, η and ε
U
←− Fϕ .

• Game 2: Because Setup+ andDelegate+ algorithms are
equivalent to that in [31], the definition of Game 2 is the
same with that of [31].

• Game 3: Except the ciphertext Cz,d consisting of
C1 and C2 and the trapdoor t̃h′,d are issued by the fol-
lowing formulas, Game 3 is the same with Game 2.

C1 = (
z∑
j=1

x+j bj + ζ1bz+1 + ζ2bz+2 + δn+3bn+3) · Cd

C2 = gζT (16)

t̃h′,d = (
h′∑
j=1

v+j b
∗
j + (η + ε1) · b∗z+1 + (1− η − ε2)

· b∗z+2) · (
1
Cd

), (17)

where ζ, ζ1, ζ2, δz+3, ε1, ε2, η
U
←− Fϕ .

• Game 4: Except the ciphertext C1 and C2 is issued by
the following formula, it is indistinctive betweenGame 4
and Game 3.

C1 = (
h′∑
t=1

ujbj + ζ1bz+1 + ζ2bz+2 + δz+3bz+3) · Cd

C2 = gζT (18)

t̃h′,d = (
h′∑
j=1

ω+j b
∗
j + (η + ε1) · b∗z+1 + (1− η − ε2)

· b∗z+2) · (
1
Cd

), (19)

where ζ , ζ1, ζ2, δz+3, ε1, ε2
U
←− Fϕ and Eu=(u1, · · · , uz),

Eω=(ω1, · · · , ωz)
U
←− Fzϕ \ {E0}.

We assume that AdvIHA forGame 0 is Adv(0)A , and the advan-
tage of A for Game j corresponds to Adv(j)A , where j ∈ [1, 4].
Since Game 1 is an extension of the concept of Game 0,
Adv(0)A (λ) is the same with Adv(1)A (λ). Besides, Adv(4)A is equal
to 0 by the in [31, Lemma 4].

According to the analysis of evaluating the gaps between

pairs of Adv(j)A(λ). We conclude that AdvIHA (λ) = Adv(0)A (λ)=
Adv(1)A (λ) ≤

∑3
j=1 |Adv

(j)
A(λ) − Adv(j+1)A (λ)| + Adv(4)A (λ) ≤

AdvRDSPA (λ)+ AdvIDSPA (λ)+ 3ν/ϕ.

ACKNOWLEDGMENT
This paper was presented in the Proceedings of the
IEEE Symposium on Computers and Communications
(ISCC’15) [39].

REFERENCES
[1] C. Wang, B. Zhang, K. Ren, J. M. Roveda, C. W. Chen, and Z. Xu,

‘‘A privacy-aware cloud-assisted healthcare monitoring system via com-
pressive sensing,’’ in Proc. INFOCOM, Toronto, ON, Canada, Apr. 2014,
pp. 2130–2138.

[2] J. Sun, X. Zhu, C. Zhang, and Y. Fang, ‘‘HCPP: Cryptography based
secure EHR system for patient privacy and emergency healthcare,’’ inProc.
ICDCS, Minneapolis, MN, USA, Jun. 2011, pp. 373–382.

[3] M. Li, S. Yu, N. Cao, and W. Lou, ‘‘Authorized private keyword search
over encrypted data in cloud computing,’’ in Proc. ICDCS, Minneapolis,
MN, USA, Jun. 2011, pp. 383–392.

[4] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, ‘‘Patient controlled
encryption: Ensuring privacy of electronic medical records,’’ in Proc. ACM
Workshop CCS, New York, NY, USA, 2009, pp. 103–114.

[5] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, ‘‘Scalable and secure
sharing of personal health records in cloud computing using attribute-
based encryption,’’ IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 1,
pp. 131–143, Jan. 2013.

[6] M. Li, S. Yu, K. Ren, and W. Lou, ‘‘Securing personal health records
in cloud computing: Patient-centric and fine-grained data access control
in multi-owner settings,’’ in Proc. SecureComm, Singapore, Sep. 2010,
pp. 89–106.

VOLUME 6, 2018 3821

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

[7] X. Ma, Y. Zhu, and X. Li, ‘‘An efficient and secure ridge regression
outsourcing scheme in wearable devices,’’ Comput. Elect. Eng., vol. 63,
pp. 246–256, Oct. 2017, doi: 10.1016/j.compeleceng.2017.07.019.

[8] J. Liu, X. Huang, and J. K. Liu, ‘‘Secure sharing of personal health
records in cloud computing: Ciphertext-policy attribute-based signcryp-
tion,’’ Future Generat. Comput. Syst., vol. 52, pp. 67–76, Nov. 2015.

[9] P. Scheuermann andM. Ouksel, ‘‘Multidimensional B-trees for associative
searching in database systems,’’ Inf. Syst., vol. 7, no. 2, pp. 123–137, 1982.

[10] K. Xue, J. Hong, Y. Xue, D. S. Wei, N. Yu, and P. Hong, ‘‘CABE: A new
comparable attribute-based encryption construction with 0-encoding and
1-encoding,’’ IEEE Trans Comput., vol. 66, no. 9, pp. 1491–1503,
Sep. 2017.

[11] K. Xue, S. Li, J. Hong, Y. Xue, N. Yu, and P. Hong, ‘‘Two-cloud secure
database for numeric-related SQL range queries with privacy preserv-
ing,’’ IEEE Trans. Inf. Forensics Security, vol. 12, no. 7, pp. 1596–1608,
Jul. 2017.

[12] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable symmet-
ric encryption: Improved definitions and efficient constructions,’’ in Proc.
CCS, Alexandria, VA, USA, 2006, pp. 1–28.

[13] Y. Zhu, Z. Huang, and T. Takagi, ‘‘Secure and controllable k-NN query
over encrypted cloud data with key confidentiality,’’ J. Parallel Distrib.
Comput., vol. 89, pp. 1–12, Mar. 2016.

[14] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ in Proc. IEEE S&P, Berkeley, CA, USA, May 2000,
pp. 44–55.

[15] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public key
encryption with keyword search,’’ in Proc. EUROCRYP, Interlaken,
Switzerland, 2004, pp. 506–522.

[16] Y. Zhu, Z. Wang, and Y. Zhang, ‘‘Secure k-NN query on encrypted cloud
data with limited key-disclosure and offline data owner,’’ in Proc. PAKDD,
Auckland, New Zealand, 2016, pp. 401–414.

[17] B. Iyer, S.Mehrotra, E.Mykletun, G. Tsudik, andY.Wu, ‘‘A framework for
efficient storage security in RDBMS,’’ in Proc. EDBT, Heraklion, Greece,
2004, pp. 147–164.

[18] Q. Liu, C. C. Tan, J. Wu, and G. Wang, ‘‘Efficient information retrieval for
ranked queries in cost-effective cloud environments,’’ in Proc. INFOCOM,
Orlando, FL, USA, Mar. 2012, pp. 2581–2585.

[19] Y. Zhu, Z. Wang, and J. Wang, ‘‘Collusion-resisting secure nearest neigh-
bor query over encrypted data in cloud, revisited,’’ in Proc. IWQoS,
Beijing, China, Jun. 2016, pp. 1–6.

[20] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, ‘‘Order preserving encryp-
tion for numeric data,’’ in Proc. SIGMOD, New York, NY, USA, 2004,
pp. 563–574.

[21] A. Asuncion and D. Newman, ‘‘UCI machine learning repository,’’
Tech. Rep., 2010.

[22] Q. Liu, C. C. Tan, J. Wu, and G. Wang, ‘‘Cooperative private searching in
clouds,’’ J. Parallel Distrib. Comput., vol. 72, no. 8, pp. 1019–1031, 2012.

[23] The Unicode Standard Version 2.0, Univ. Consortium, Sep. 1997.
[24] A. Boldyreva, N. Chenette, and A. O’Neill, ‘‘Order-preserving encryption

revisited: Improved security analysis and alternative solutions,’’ in Proc.
CRYPTO, Santa Barbara, CA, USA, 2011, pp. 578–595.

[25] F. Chen and A. Liu, ‘‘SafeQ: Secure and efficient query processing in
sensor networks,’’ in Proc. INFOCOM, San Diego, CA, USA, Mar. 2010,
pp. 1–9.

[26] Y.-K. Chang, ‘‘Fast binary and multiway prefix searches for packet for-
warding,’’ Comput. Netw., vol. 51, no. 3, pp. 588–605, Feb. 2007.

[27] Order-Preserving Minimal Perfect Hashing. [Online]. Available:
http://www.nist.gov/dads/HTML/orderPreservMinPerfectHash.html

[28] ‘‘Advanced encryption standard (AES),’’Fed. Inf. Process. Standards Pub.,
vol. 197, pp. 311–441, 2001.

[29] F. Chen and A. X. Liu, ‘‘Privacy-and integrity-preserving range queries in
sensor networks,’’ IEEE/ACM Trans. Netw., vol. 20, no. 6, pp. 1774–1787,
Dec. 2012.

[30] X. Yao, Y. Lin, Q. Liu, and Y. Zhang, ‘‘A secure hierarchical deduplication
system in cloud storage,’’ in Proc. IWQoS, Beijing, China, 2016, pp. 1–10.

[31] T. Okamoto and K. Takashima, ‘‘Hierarchical predicate encryption for
inner-products,’’ in Proc. ASIACRYPT, Tokyo, Japan, 2009, pp. 214–231.

[32] B. Lynn. The PBC Library. [Online]. Available: http://crypto.
stanford.edu/pbc/

[33] W. Zhang, Y. Lin, S. Xiao, J. Wu, and S. Zhou, ‘‘Privacy preserving ranked
multi-keyword search for multiple data owners in cloud computing,’’ IEEE
Trans. Comput., vol. 65, no. 5, pp. 1566–1577, May 2016.

[34] Y. Yi, R. Li, F. Chen, A. X. Liu, and Y. Lin, ‘‘A digital watermarking
approach to secure and precise range query processing in sensor networks,’’
in Proc. INFOCOM, Turin, Italy, Apr. 2013, pp. 1950–1958.

[35] C. Liu, L. Zhu, and J. Chen, ‘‘Efficient searchable symmetric encryp-
tion for storing multiple source data on cloud,’’ in Proc. Trust-
com/BigDataSE/ISPA, Helsinki, Finland, Aug. 2015, pp. 451–458.

[36] B. Sheng and Q. Li, ‘‘Verifiable privacy-preserving range query in
two-tiered sensor networks,’’ in Proc. INFOCOM, Phoenix, AZ, USA,
Apr. 2008, pp. 46–50.

[37] J. Shi, R. Zhang, and Y. Zhang, ‘‘Secure range queries in tiered sen-
sor networks,’’ in Proc. INFOCOM, Rio de Janeiro, Brazil, Apr. 2009,
pp. 945–953.

[38] R. Zhang, J. Shi, and Y. Zhang, ‘‘Secure multidimensional range queries
in sensor networks,’’ in Proc. MobiHoc, New Orleans, LA, USA, 2009,
pp. 197–206.

[39] X. Yao, Y. Lin, Q. Liu, and S. Long, ‘‘Efficient and privacy-preserving
search in multi-source personal health record clouds,’’ in Proc. ISCC,
Larnaca, Cyprus, Jul. 2015, pp. 803–808.

[40] J. Liang, Z. Qin, S. Xiao, J. Zhang, H. Yin, and K. Li, ‘‘MPOPE: Multi-
provider order-preserving encryption for cloud data privacy,’’ in Proc.
SecureComm, Niagara Falls, ON, Canada, 2017.

[41] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, ‘‘DAC-MACS: Effective
data access control for multiauthority cloud storage systems,’’ IEEE Trans.
Inf. Forensics Security, vol. 8, no. 11, pp. 1790–1801, Nov. 2013.

[42] J. Hong, K. Xue, and W. Li, ‘‘Security analysis of attribute revocation in
multi-authoritydata access control for cloud storage system,’’ IEEE Trans.
Inf. Forensics Security, vol. 10, no. 6, pp. 1315–1317, Jun. 2015.

[43] T. Jung, X.-Y. Li, Z. Wan, and M. Wan, ‘‘Privacy preserving cloud data
access withmulti-authorities,’’ inProc. INFOCOM, Turin, Italy, Apr. 2013,
pp. 2625–2633.

[44] K. Xue et al., ‘‘RAAC: Robust and auditable access control with multiple
attribute authorities for public cloud storage,’’ IEEE Trans. Inf. Forensics
Security, vol. 12, no. 4, pp. 953–967, Apr. 2017.

[45] M. Chase and S. S. M. Chow, ‘‘Improving privacy and security in multi-
authority attribute-based encryption,’’ in Proc. CCS, Chicago, IL, USA,
2009, pp. 121–130.

[46] W. Li, K. Xue, Y. Xue, and J. Hong, ‘‘TMACS: A robust and verifi-
able threshold multi-authority access control system in public cloud stor-
age,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1484–1496,
May 2016.

XIN YAO received the B.S. degree in computer sci-
ence from Xidian University, China, in 2011, and
the M.S. degree in software engineering, Hunan
University, in 2013, where he is currently pursu-
ing the Ph.D. degree with the College of Com-
puter Science and Electronic Engineering. He is
currently a Visiting Student with Arizona State
University, Tempe, AZ, USA. His research inter-
ests include security and privacy issues in social
network, cloud, and big data.

YAPING LIN received the B.S. degree in com-
puter application from Hunan University, China,
in 1982, and the M.S. degree in computer appli-
cation from the National University of Defense
Technology, in 1985, and the Ph.D. degree in con-
trol theory and application fromHunan University,
in 2000. He has been a Professor and a Ph.D. super-
visor with Hunan University since 1996. From
2004 to 2005, he was a Visiting Researcher with
The University of Texas at Arlington. His research

interests include machine learning, network security, and wireless sensor
networks.

3822 VOLUME 6, 2018

http://dx.doi.org/10.1016/j.compeleceng.2017.07.019

X. Yao et al.: Privacy-Preserving Search Over Encrypted PHR In Multi-Source Cloud

QIN LIU received the B.S. degree in computer
science from Hunan Normal University, China,
in 2004, and the M.Sc. degree in computer science
from Central South University, in 2007, where
he received the Ph.D. degree from the School of
Information Science and Engineering. She is cur-
rently an Assistant Professor with Hunan Univer-
sity, China. Her research interests include security
and privacy issues in cloud computing.

JUNWEI ZHANG received the B.S. and Ph.D.
degrees in computer science from Xidian Univer-
sity, in 2004 and 2010, respectively. He is cur-
rently an Associate Professor with the School of
Cyber Engineering, Xidian University. His pri-
mary research interests are cryptography and
information security. He is a member of CCF and
CACR.

VOLUME 6, 2018 3823

	INTRODUCTION
	SYSTEM AND THREAT MODELS
	SYSTEM MODEL AND WORKFLOW
	THREAT MODEL

	MULTI-SOURCE ENCRYPTED INDEX MERGING
	INDEXING AND QUERYING PHRs
	OVERVIEW OF MEIM
	MULTI-SOURCE ORDER-PRESERVING SYMMETRIC ENCRYPTION
	GENERATING ENCRYPTED INDEX
	TRANSFORMING ENCRYPTED INDEXES
	TRAPDOOR GENERATION
	PRIVACY-PRESERVING QUERY

	ENHANCED SCHEME
	PRELIMINARIES
	MAIN DESIGN OF MOPSE+
	ENHANCED SYSTEM FRAMEWORK
	SCHEME DETAILS

	TRANSFORMING ENCRYPTED INDEXES UNDER MOPSE+
	TRAPDOOR GENERATION UNDER MOPSE+
	PRIVACY-PRESERVING QUERY UNDER MOPSE+

	PERFORMANCE ANALYSIS
	INDEX GENERATION
	INDEX ENCRYPTION
	INDEXES TRANSFORMING
	QUERY

	SECURITY ANALYSIS
	INDEX PRIVACY
	QUERY PRIVACY
	AUTHORIZED SEARCH

	EXPERIMENTAL RESULTS
	INDEX GENERATION
	INDEX ENCRYPTION
	ENCRYPTED INDEXES TRANSFORMING
	PRIVACY-PRESERVING QUERY

	RELATED WORK
	SEARCHABLE ENCRYPTION
	ORDER-PRESERVING SYMMETRIC ENCRYPTION
	OTHER RELATED WORK

	CONCLUSION AND DISCUSSION
	PROOF OF SELECTIVELY IDENTIFICATION-HIDING AGAINST CPA
	REFERENCES
	Biographies
	XIN YAO
	YAPING LIN
	QIN LIU
	JUNWEI ZHANG

