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ABSTRACT Accelerated development of eco-friendly technologies, such as renewable energy (RE),
smart grids, and electric transportation will shape the future of electric power generation and supply. The
power consumption characteristics of modern power systems are designed to be more flexible and easily
controllable, which will also affect the sizing of power generation system. This paper presents a methodology
for the joint capacity optimization of a typical residential standalone microgrid (MG) employing RE sources,
i.e., solar photovoltaic (PV), wind turbines (WTs), diesel generators (DGs), and battery energy storage
system (BESS). The MG supplies a residential community load comprising of typical residential load plus
electric vehicles (EVs) charging load. The realistic mathematical models of PV, WT, diesel generation
system, BESS, and EV load are formulated to improve the capacity optimization methodology, which
involves various realistic constraints associatedwith the RE sources, diesel generation system, BESS, and EV
load. The labyrinthine optimization problem is formulated and solved innovatively to 1) minimize the cost;
2) reduce greenhouse gases (GHG) emissions; and 3) curtail dump energy. All three objectives have special
significance in designing a standalone MG, for example, cost is related to the economics, GHG emissions
deal with global warming, and dump energy is related to the stability and economics of the system. The
optimization problem is solved for different possible combinations of PV, WT, DG, and BESS to determine
the best possible combination to serve the load effectively and economically. In addition, the impact of load
shifting on the sizes of distributed generators and BESS in terms of per-unit cost and GHG emissions is
analyzed using the concept of controllable loads. This study could be assumed as a powerful roadmap for
decision makers, analysts, and policy makers.

INDEX TERMS Microgrid, optimization, renewable power, electric vehicles, hybrid generation.

NOMENCLATURE
A. ABBREVIATIONS
BESS Battery energy storage system
DG Diesel generator
ERBC Emission reduction benefit cost
ESS Energy storage system
EV Electric vehicle
GHG Greenhouse gases
HPGS Hybrid Power generation system
MG Microgrid
PV Photovoltaic
RE Renewable energy
WT Wind turbine

B. INDICES
c Index of EV class
d Index of day
e Index of EV
i Index of DG
j Index of year
t Index of time
m Index of GHG gases
k Index of RE sources
l Index of Storage

C. PARAMETERS
Apv Area of PV array
ct Total number of EV classes
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Cc,sr Capital cost of RE sources
Cc,dg Capital cost of diesel generator
Cc,e Capital cost of storage related to energy

capacity
Cc,p Capital cost of storage related to power

capacity
Eev Battery energy capacity of EV
Ecc GHG emissions correction cost
fp Diesel generator fuel cost
Fom,v Variable operation and maintenance cost
Fom,f Fixed operation and maintenance cost
I Solar irradiation
Mdg Maintenance cost of diesel generator
nev Total number of EVs in each class
n Total number of intervals
nsc Total number of renewable sources types
nstg Total number of storage units
Nev Total number of EVs
ndg Total number of diesel generators
nh Total number houses
nl Total years of operation
Nmax
pv Maximum number of PV panels

Nmin
pv Minimum number of PV panels

Nmax
wt Maximum number of WTs

Nmin
wt Minimum number of WTs

pev Charging rate of EV
pevmin Minimum charging rate of EV
pevmax Maximum charging rate of EV
Prwt Rated power of WT
SOCmin

c Minimum State of charge limit of cth EV
SOCmax

c Maximum State of charge limit of cth EV
To Atmospheric temperature
vr Rated speed of WT
vci Cut-in speed of WT
vco Cut-out speed of WT
ηpv Efficiency of PV
ηc Charging efficiency of battery
ηd Discharging efficiency of battery
λ Charge depleting distance of EV
1t Time step
ð Discount rate
ϕ Fuel curve intercept coefficient
9 Fuel curve slope coefficient
µ Cost per unit of PV
σ Cost per unit of WT
3ar Average arrival time
3dp Average departure time
ρ EV penetration level
δ Percentage of EV class

D. VARIABLES
Ch Total cost of hybrid power generation system
Cb Total cost of battery energy storage system
Cb Total cost of diesel generation system
Cerbc Emissions reduction benefit cost
Cdump Dump energy cost

Es Energy served
Ens Energy not served
Estg Energy capacity of battery storage
E GHG emissions
EminBESS Minimum stored energy limit of battery
EmaxBESS Maximum stored energy limit of battery
Npv Number of PVs
Nwt Number of WTs
NDEs Net discounted energy served
Nrun Total number diesel generator operation hours
p Life of storage unit
Pwt Power output of WT
Pstg Power capacity of battery storage
PH Power output of hybrid generation system
EBESS Energy stored in battery
PcBESS Battery charging power
PdBESS Battery discharging power
PDG Power output of diesel generation system
pdg Power output of diesel generator
PBESS Power supplied by battery
PL Load power demand
PMG Microgrid total power generation
Pr,dg Rated power of diesel generator
PcmaxBESS Battery charging power limit
PdmaxBESS Battery discharging power limit
SOCev State of charge of EV
T Time of operation of RE sources
To Atmospheric temperature
v Wind speed
η Life of diesel generator
ϒ Dump energy
~ Daily mileage
τ Departure time
τ Departure time
h̄ Energy needed to charge EV
τ chg Charging time of EV
ξ chg Hourly charging load of EV

I. INTRODUCTION
Most recently, improving the effectiveness and efficiency of
electric energy generation and utilization is a pre-eminent
concern around the globe due to number of reasons, i.e., the
limited resources of fossil fuels, the legislation of new envi-
ronmental policies, the increasing effects of global warming,
political impacts of energy dependence/independence, and
the stochastic nature of renewable energy (RE) sources. Thus,
new concepts and novel ideas are being proposed to accom-
plish this goal. Among them, microgrid (MG) concept has
drawn significant attention of both academia and industry for
the reliable, efficient, effective, and economical operation of
the power system. MGs are state-of-the-art active distribution
networks employing distributed generators both renewable
and conventional, energy storage systems (ESSs), and variety
of loads, operated grid-connected or islanded, in a controlled,
coordinated way [1], [2].
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MG is a miniature version of the larger utility grid except
that, when required, it can be isolated from the main grid
to operate in islanded mode [3]. As in MGs, both RE and
conventional distributed generators lie in vicinity of the loads,
MGs are entrusted to supply the load with more efficient
and greener energy, better power quality and reliability, and
reduced power losses and network congestion, juxtaposed
to the conventional power generation plants. Furthermore,
for isolated and remote areas where supplying electricity
through national grid is infeasible due to techno-economic
constraints, standalone MG that utilizes local available RE
sources is considered as a viable attractive alternative and thus
adopted in many regions and countries [4]–[7].

The threemost widely used RE sources are solar, wind, and
hydro, especially solar and wind are getting more attention
now-a-days due to, the dramatic reduction in their costs in
the past few years and the recent advancements in power
electronics which have enabled their easier control, operation,
and integration in the power system [8], [9]. Nevertheless,
RE sources technologies, i.e., solar photovoltaic (PV) panels
and wind turbines (WTs) are dependent on the resources that
are random, stochastic, and intermittent as they depend upon
weather and climatic changes and time of the day and year.
So, the output of PV and WT may not match with the load
demand resulting detrimental impact on the reliability of the
electric power system.

The problems associated with RE sources for example,
poor load following, load mismatch, voltage instability, infe-
rior power quality, frequency deviation, output intermittency,
and reliability issues can be potentially addressed by employ-
ing suitable combination of the two RE sources technologies
(PV and WT) together with the use of an energy storage sys-
tem, such as battery energy storage system (BESS), as a type
of power balancing medium [10]–[16]. It is important to note
that the cost of BESS per kilowatt is a strong function of its
capacity, and has limited number of life cycles, so supplying
a load at 100% reliability by utilizing RE sources and BESS
onlymay result in very high cost. Moreover, the energy stored
in BESS depends upon the intermittent RE sources and it
may happen during the operation of MG that output of RE
sources and BESS become inadequate to supply the load.
So, a dispatchable source, i.e., diesel generator (DG) should
also be utilized alongwith the RE sources andBESS to supply
a load effectively and economically.

Power output of DG is predictable and independent of
climate. However, DG has some disadvantages such as, envi-
ronmental pollution due to greenhouse gases (GHG) emis-
sions and higher operation and maintenance costs. On the
other hand, RE sources and BESS have high initial invest-
ment costs, negligible operation and maintenance costs and
emit negligible GHG emissions. As too high cost and
GHG emissions are prohibitive to commercial and indus-
trial acceptance. So, developing a method for optimizing
the sizes and operation of a system, utilizing RE sources,
BESS, and DG, to fit application constraints is a crucial
task.

Transportation sector has been one of the major contribu-
tors of the GHG emissions [17], [18]. The conventional vehi-
cles use fossil fuels, i.e., diesel or gasoline, and emit gases
such as carbon dioxide, carbon monoxide, hydrocarbons, and
nitrogen oxides. Electric vehicles (EVs) have gained signif-
icant attention since the last decade as one of the promising
solution for GHG emissions reduction. Continuous advance-
ments in EVs anticipate their massive penetration in the future
power system, and the typical load diagram of future power
system can be significantly different from the present one
without EVs [19], [20]. So, substantial number of EVs must
be considered for future power system planning to ensure
customers daily travel.

MGs are envisaged to be transformed to smart grids in
the future electric power system due to, the innovations
in power electronics, and the introduction of the advance
high-speed information and communication systems and
sophisticated control [21]–[23]. Smart grids are perceived as
next-generation power systems, provide two-way communi-
cation channels between power generation station and the
end user [24], and allow the shifting of load demand away
from peak load hours or to renewable generation periods,
thereby improving reliability and stability, increasing effi-
ciency, reducing the capacity of peaking generation, which
consequently results in several financial, technical, and envi-
ronmental benefits [25]–[27]. Moreover, the recent increase
in the usage of EVs will significantly intensify the load
demand, yet at the same time this will improve the pliability
of load demand by the control of EVs charging periods and
vehicle-to-grid operations [28]–[32]. Owing to these facts,
the planning and design of the next-generation power system
will not be alike the conventional power system, where all
of the involved technologies should be contemplated at the
planning and design stage.

In this paper, a capacity optimization methodology is
developed for a standalone MG employing distributed gen-
erators, i.e., PV, WT, and DG coupled with BESS. The MG
supplies a residential community power demand, i.e., typical
residential load and EVs charging load. The mathematical
models of PV-WT hybrid system, DG system, and BESS are
derived to jointly optimize their capacities. Most importantly,
mathematical model of EVs load is developed to incorpo-
rate this new type of load in the design of power system.
The capacity optimization problem involves number of con-
straints inflicted by PV-WT hybrid system, BESS, DG, and
EVs load which complicates the problem. Moreover, the pro-
posed MG design employs both BESS and diesel generation
system which require accurate calculations for the BESS
cycles and DG operating hours to determine the optimal
solution. The optimization problem is formulated and solved
innovatively to minimize the cost, reduce GHG emissions,
and curtail dump energy. In addition, the effects of load
shifting on the cost, GHG emissions, emissions reduction
benefit cost (ERBC), and clean energy supplied by the system
are also investigated. The proposed idea can be effectively
applied for the planning and design of future smart grids.
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The simulation results show the effectiveness of the proposed
idea.

As a case study, the proposed methodology is validated
using real-world data of wind speed, solar irradiation, and
residential power demand from Dammam, which is located
in the eastern region of Saudi Arabia. The wind power output
is calculated using the GE 1.5xle WT power curve character-
istics. The EV charging load is simulated by using the real
characteristics of different types EVs available in the market.

The remainder of the paper is organized as follows.
Section II presents the related work and detailed MG model-
ing is discussed in Section III. The proposed methodology is
demonstrated in Section IV. The information of the databases
is provided in Section V. The Section VI presents results and
discussions followed by conclusion given in Section VII.

II. RELATED WORK AND RESEARCH GAP
The literature reporting the capacity optimization of RESs,
can be divided in two main classes. The first class dis-
cusses the sizing of RESs and/or ESSs without considering
the smart control of the load demand, and it has acquired
much attention in the literature. Reference [33] has proposed
a capacity optimization methodology for system employ-
ing PV, WT and BESS. The proposed technique is based
upon the following key principles: i) high supply reliability,
ii) complete usage of the complementary attributes of solar
and wind, iii) less fluctuations in the power supplied to the
utility grid, iv) BESS charge discharge rate optimization, and
v) minimization of the total cost. The sizing of a system
utilizing PV, WT, DG, BESS, fuel cell, electrolyzer and
hydrogen tank is done in [34]. Amulti-objective cost function
is developed with the aim of cost minimization, GHG emis-
sions reduction, minimization of unmet load. Particle swarm
optimization based approach has been used to solve the
multi-objective optimization problem. A multi-criteria
decision-making algorithm is presented in [35] for capac-
ity optimization of a PV, WT system, that meets a certain
balance of economic, environmental, and social factors.
Amulti-objective optimization algorithm is developed in [36]
for the sizing of a standalone system employing PV, WT,
BESS. The sizing is done based upon the power supply
reliability, the energy stability, the energy utilization ratio,
and the economic efficiency. The non-dominated sorting
genetic algorithm is used to determine the optimal size of
a standalone system employing PV, WT, and BESS [37].
The optimization problem is solved to achieve minimum cost
and maximum reliability. In [38], the capacity optimization
of standalone system utilizing, PV, WT, BESS and DG is
done based upon three objectives, i.e., i) cost minimization,
ii) job creation maximization, and iii) human development
index maximization. A pareto-optimization multi-objective
evolutionary algorithm is used to solve the optimization
problem. The planning of PV, WT, and BESS grid-connected
MG is done based upon cost minimization and customer
satisfaction maximization, and the optimization problem is
solved using mixed integer linear programming [39]. In [40],

sizing of PV and BESS is done with the aim of minimiza-
tion of levelized cost of energy. The proposed methodology
also aims to maximize the PV size. A robust optimization
approach is proposed in [41] to determine the sizes of PV,
WT, ESS supplying energy to a remote telecommunication
facility. The aim of the optimization is to minimize the total
cost and optimization is carried out using robust mixed-
integer linear programming. A methodology for the capacity
optimization of a standalone system utilizing PV, WT, BESS,
and DG is developed in [42]. Genetic algorithm is used to
solve the optimization problem to minimize the life cycle
cost, reduceGHG emissions and reduce dump energy. In [43],
PSO and fuzzy logic are used to determine optimal sizes
and types of distributed generators and optimal capacity of
ESS. Similarly, some more methodologies dealing with the
capacity optimization of RE sources and ESS are discussed
in [44]–[48]

The second class considers the integrating RESs in a
smart grid paradigm, where the potential role controllable
loads, i.e., EVs and conventional loads for accommodating
higher levels of sustainable energy sources are accentuated,
for example in [49]–[55]. A stochastic method based upon
monte-carlo simulation and particle swarm optimization is
developed in [49] for the capacity optimization PV, WT and
BESS supplying a smart household load. In [50], a stochastic
based optimization methodology is presented for the sizing
of PV, WT, BESS. Load shifting plans are developed to
give some flexibility and decrease the mismatch between the
generation and air conditioning and heating ventilation loads.
The optimization problem is solved with the aim of the cost
minimization. The effect of several EV control strategies on
reducing surplus generation and GHG emissions is studied
in [51]. The effects of EVs on high PV penetration levels are
investigated in [52]. In [55], capacity optimization of a grid-
connected PV, WT and BESS is done based upon the cost
minimization.

All the cited studies show that the design of a system
employing RE sources and ESS depends upon the behavior
of load, solar irradiation, and wind power. It varies from
one location to another depending on the local available
resources. So, optimal capacities of RE sources and energy
storage system calculated for a particular geographical loca-
tion cannot be taken as optimal for any other location even
with same value of peak load demand. Also, most of the
system designs in the aforementioned studies are determined
based on the cost and GHG emissions. The dump energy
that has special significance in the design of RE sources
based system is ignored in most of the cases. Ignoring the
dump energy at the design stage may lead the system towards
the instability especially when the system is stand-alone.
We believe that the three main important objectives that
should be considered while designing RE based system are
i) cost, ii) GHG emissions, iii) dump energy. Cost accounts
for the economics, GHG emissions account for environmental
policies, and dump energy accounts for stable design and
economics. Moreover, a new load type, i.e., EV load has not
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FIGURE 1. A stand-alone MG system.

been considered and modeled properly for the planning of the
future power systems. So, novel methodologies are required
which incorporate the EVs charging load for the planning
and design of power system. In addition, as mentioned ear-
lier that due to the introduction of high speed communica-
tion, automation, and sophisticated control, the load demand
has become flexible and the load flexibility is expected to
increase in future. So, it is also necessary to consider the
impact of load shifting on the design of power generation
system.

III. MICROGRID MODELING
A stand-alone MG system employing PV panels, WTs,
BESS, and DGs to supply a typical residential demand is con-
sidered in this study, shown in Fig. 1. TheMG system has four
major sub-systems: hybrid power generation system (HPGS),
battery energy storage system, diesel generation system, and
community load demand.

A. HYBRID POWER GENERATION SYSTEM MODELING
The HPGS consists of RE sources, i.e., PV and WT. The PV
system is connected to the ac bus via DC-to-AC converter
while WT system is connected to the ac bus via AC-to-AC
converter. Power output of a solar PV system depends on
solar irradiation, area and efficiency of the PV array, angle
of incidence, and atmospheric temperature. In this study, it is
assumed that a maximum power point tracker (MPPT) is
installed to harvest the maximal of available power. Power
generated by single PV panel at any instant of time can be
calculated using the following equation [56]

Ppv (t) = ηpvApvI (t) (1− 0.005 (To (t)− 25)) ∀t > 0

(1)

where Ppv is the power output of PV system in W , ηpv and
Apv are the efficiency and area in m2 of PV panel, To is the
atmospheric temperature in oC , and I is the solar irradiation
inW/m2. Power output of aWT depends upon thewind speed

FIGURE 2. Power curve of GE 1.5xle WT.

and hub height (HH). In this study, the characteristics of GE
1.5xle turbine are used to calculate the wind power output.
The GE 1.5xle is one of the most commonly used WTs in the
industry. Power curve of GE 1.5xle turbine is shown in Fig.2.
Power output of the WT is modeled as follows

Pwt (v) =


0 v < vci
ψ(v) vci ≤ v < vr
Prwt vr ≤ v < vco
0 v ≥ vco

(2)

where Pwt is the power output of WT in W , v is the wind
speed in m/sec, Prwt is the rated power of WT in W , and vci,
vco, and vr are the cut-in, cut-out, and rated wind speeds in
m/sec respectively. From (2) it can be seen that below vci
and above vco WT generates zero power; below vci power
in the wind is not sufficient to either overcome the friction
of the drivetrain, or to yield net positive power generation,
above vco due to danger of mechanical failure the WT is
aerodynamically slowed and stopped, and then mechanically
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locked into place to prevent rotation. The total power output
of the HPGS is calculated using the equation given below

PH (t) = NpvPpv(t)+ NwtPwt (t) ∀t > 0 (3)

subject to the following constraints

Nmin
pv ≤ Npv ≤ N

max
pv

and

Nmin
wt ≤ Nwt ≤ N

max
wt

where PH is the total power output of HPGS, Npv is the
number of PV panels, and Nwt is the number number of WTs.

B. BATTERY ENERGY STORAGE SYSTEM
A BESS consists of series-parallel strings of batteries which
are connected to the ac bus via bidirectional DC-to-AC
converter. The BESS takes power from the network during
surplus generation hours and injects power in the network
when needed to improve the efficiency of the system. ABESS
model, as given in [56], is formulated as given below

Charge : EBESS (t +1t) = EBESS (t)+1tPcBESS (t)ηc
∀t > 0 (4)

Disharge : EBESS (t +1t) = EBESS (t)+1t
PdBESS (t)

ηd
∀t > 0 (5)

Charging/discharging constraints are

0 ≤ PcBESS (t) ≤ P
cmax
BESS ∀t > 0 (6)

and

−PdmaxBESS ≤ P
d
BESS ≤ 0 ∀t > 0 (7)

Stored energy bounds are

EminBESS ≤ EBESS (t) ≤ E
max
BESS ∀t > 0 (8)

where EBESS is the state-of-charge of the battery, PcBESS and
PdBESS are charging and discharging powers respectively, and
ηc and ηd are charging and discharging efficiency of the
battery.

C. DIESEL GENERATION SYSTEM MODELING
As discussed before that the power output of RE sources is
unpredictable and variable, so it can happen during the oper-
ation of MG that the outputs of the HPGS and BESS become
insufficient to supply the required load demand. During such
events, the diesel generation system supplies the excessive
demand. Instead of a single large DG unit we have assumed
several smaller DG units, to enhance the overall efficiency of
the system. The power output of diesel generation system is
modeled as follows

PDG(t)

=


ndg∑
i=1

pidg(t) PL(t) > PH (t)+ PBESS (t)

0 otherwise

∀t > 0

(9)

where
ndg∑
i=1

pidg(t) = PL(t)− PH (t)− PBESS (t) (10)

where PDG is the total power output of diesel generation
system and pidg is the output power of i

th DG unit, ndg is the
total number of DGs, PBESS is the power output of BESS, and
PH is the output power of hybrid power generation system.
From (9) PDG = 0 if power output of RE sources and BESS
is more than load power demand.

D. LOAD MODELING
The load can be classified into two main categories:
controllable load and uncontrollable load. Every home has
some appliances which are devoted to users habits and their
needs, for example hair dryers, cooking appliances, refriger-
ator, computers, and lighting. The load of these appliances is
referred as uncontrollable load. In this study, real residential
power demand data of Dammam is used.

Similarly, in every home their are some appliances which
are controllable, means that shifting their load to some extent
do not affect the daily routine of the consumers. For example,
water pump, dish washer, clothes dryer, washing machine,
and EV, the load of these appliances is called controllable
load. Load demand of both controllable and uncontrollable
loads except the EV load are incorporated in the load power
demand data of Dammam.

In near future, due to the integration of large number
EVs in the power system the load demand will increase
drastically. Hence, considering the EVs load at the design
stage is crucial for the reliable operation of the future power
system. Currently the real EVs load is not available. However,
EVs load can be approximated. In EV modeling the bat-
tery capacity, charge depleting distance, initial SOC, charg-
ing/discharging rate, and user behavior are themost important
parameters [57]. The battery capacity, charge depleting dis-
tance, and charging rate can be acquired in advance. However,
the user behavior may not be obtained in advance. In this
research, three types of EVs, i.e., Tesla S 70, Nissan Leaf,
and Th!nk City are considered to make the analysis more
realistic and practical. The information about the battery
bank, charging rate, and maximum daily mileage of the three
EVs are given in Table 1. The total number of EVs in the
system Nev can be obtained from the EV penetration level as
follows:

Nev =
ct∑
c=1

ρνcnh (11)

where ρ, is the penetration level, νc is the percentage of cth

class of EV, ct is the total number of EV classes, and nh
is the total number of houses. The daily mileage, departure
time, arrival time, and charging time are different aspects
of user behavior which can be obtained from lognormal
distribution.

χe,c,d = logNormal(3.375, 0.5) (12)
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TABLE 1. Characteristics of EVs.

τ e,c,d = logNormal(3dp,
√
3) (13)

τ e,c,d = logNormal(3ar ,
√
3) (14)

where χe,c,d is the miles driven by the eth vehicle of class c
at day d , τ is the departure time, τ is the arrival time,
and 3dp and 3ar are average departure and arrival times
respectively. Once the miles driven are calculated, the energy
needed to fully charge an EV can be estimated as described
below

h̄e,c,d =

E
ev
c χe,c,d ≥ λc

Eevc λcχe,c,d otherwise
(15)

where h̄ is the energy needed to charge an EV, Eev is the
battery energy capacity of EV, and λ is the charge depleting
distance. The time required to charge the EV is modeled as

τ
chg
e,c,d =

h̄e,c,d
pevc

(16)

where τ chg is total time required to charge the EV and pevc is
the charging rate of cth class of EV. It is assumed that EVs
start charging right after their arrival. The EV charging load
is modeled as follows

ξe,c,d
(
τ e,c,d + y

)
=

p
ev
c if y ≤ bτ chge,c,dc

pevc
(
τ
chg
e,c,d − bτ

chg
e,c,dc

)
else

(17)

where

y = 1, 2, . . . , bτ chge,c,dc + 1

and

τ e,c,d + y > τ e,c,d

where ξ is the hourly charging load of EV. The state-of-
charge of an EV after charging period is estimated as given
below

SOCe,c,d (t +1t)ev = SOCev
e,c,d (t)+1t

ξe,c,d (t)
Eevc

(18)

where

SOCmin
c ≤ SOCev

e,c,d (t) ≤ SOC
max
c (19)

where SOCev is the final SOC of an EV after charging.
SOCmin and SOCmax are the minimum and maximum SOC

of an EV battery. As EV is a controllable load so its load can
be shifted. The shifted EV load is determined as following

ξe,c,d (t + τs) = ξe,c,d (t) ∀t > 0 (20)

subjected to the following shift window constraint

τmins ≤ τs ≤ τ
max
s

where τs is the time shift. The daily EV hourly load (Pev) can
be calculated using following equation

Pevd (t) =
ct∑
c=1

nevc∑
e=1

ξe,c,d (t) ∀t > 0 (21)

We have assumed that MG supplies load of 2000 houses
and one EV is assumed for each house. As three different
types of EVs are considered is this study so it is assumed
that 60% of total number of EVs are Nisaan Leaf, 36% are
Th!nk City and 4% are Tesla S70. The percentages of EVs
are selected based upon their prices. These percentages can be
different for different types of EVs, but this would not affect
the methodology.

IV. PROBLEM FORMULATION
One of the primary reasons behind the exploitation of RE
sources around the globe is global warming due to GHG
emissions. RE sources has proved to be a promising solution
for GHG emissions but they have high cost and pose reli-
ability and stability problems in the power system. Hence,
in order to get the full benefits of RE sources a system
design is necessary, that could significantly reduce GHG
emissions at reasonable cost, and should also have higher reli-
ability and stability. The system design in this study is based
upon the cost minimization, GHG emissions reduction and
dump energy minimization while supplying the load demand
reliably.

A. RELIABILITY AND ECONOMIC MODELING
The total power generated by the MG consists of power
output of HPGS, BESS, and diesel generation system

PMG(t) = PH (t)+ PBESS (t)+ PDG(t) ∀t > 0 (22)

where PMG is the total generation of MG. Energy served Es is
the sum of the load demand that is supplied by theMG system
during its operation, mathematically Es is defined as

Es =
n∑
t=1

0es(t) (23)

where

0es(t) =

{
PL(t) PMG(t) ≥ PL(t)
PMG(t) otherwise

∀t > 0 (24)

Energy not served Ens is the sum of load demand that is not
supplied by the MG during its operation.

Ens =
n∑
t=1

0ens(t) (25)
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where

0ens(t) =

{
PL(t)− PMG(t) PL(t) > PMG(t)
0 otherwise

∀t > 0

(26)

The net discounted energy served NDEs is calculated as

NDEs =
nl∑
j=0

1
(1+ ð)j

Es (27)

where nl is the total number of years of operation and ð is the
discount rate. The cost of the HPGS is modeled as follows

Ch =
nsc∑
k=1

Ck
c,srP

k
sr+

nsc∑
k=1

nl∑
j=0

n∑
t=1

Fkom,vP
k (t)+T k (t)Fkom,f P

k
sr

(1+ð)j

(28)

where Ch is the total cost of hybrid generation system,
Ck
c,sr is the investment cost of the k th source in $/MW , Pksr is

the installed capacity of k th source in MW , nsc is the total
number of sources employed by HPGS, Fkom,v is the fixed
operation and maintenance cost of k th source in $/MW , Pk

is the power output of k th source, and Fkom,f is the fixed
operation and maintenance cost of k th source in $/MW − yr .
In (27) the first term represents the initial investment cost
and second term stands for the present worth of operation
and maintenance costs. The cost of energy storage system
depends on both power and energy capacity of BESS. The
cost of BESS is modeled as follows

Cb =
nstg∑
l=1

(
C l
c,eE

l
stg + C

l
c,pP

l
stg

)

+

nstg∑
l=1

nl−`ibat∑
s=`ibat

C l
c,eE

l
stg + C

l
c,pP

l
stg

(1+ ð)s

(29)

where

s = `ibat , 2`
i
bat , 3`

i
bat , . . . .nl − `

i
bat

where Cb is the total cost of the BESS, C l
c,e is the cost related

to the energy capacity of l th storage unit in $/MWh, E lstg is
the energy capacity of l th storage unit in MWh, where C l

c,p
is the cost related to the power capacity of l th storage unit
in $/MW , Plstg is the power capacity of storage unit in MW ,
nstg is the total number of storage units, and `bat is the life
of the BESS. In (29), the first term stands for the initial
investment cost of the BESS, while second term represents
the present value of replacement cost of BESS. The cost
associated with the diesel generation system is modeled as
following

Cd =
ndg∑
i=1

C i
c,dgP

i
r,dg +

nd∑
i=1

nl−`idg∑
s=`idg

1
(1+ ð)s

C i
c,dgP

i
r,dg

+

ndg∑
i=1

nl∑
j=0

n∑
t=1

N i
runM

i
dg

(1+ ð)j−1
(
9 ipidg(t)+ ϕ

iPir,dg
)
fp

(30)

where

s = `idg, 2`
i
dg, 3`

i
dg, . . . .nl − `

i
dg

where Cd is the total cost of the diesel generation system,
C i
c,dg is investment cost of ith DG unit in $/MW , Pir,dg is

the rated capacity of ith DG unit in MW , ndg is the total
number of DG units, γ i is the life of ith DG unit, N i

run is the
total operation time of ith DG in hr ,M i

dg is the operation and
maintenance cost of ith DG in $/hr , fp is the fuel price in $/ltr ,
Pidg is the power output of i

th DG, 9 i is the fuel curve slope
coefficient of ith DG unit, and ϕi is the fuel curve intercept
coefficient of ith DG unit. In (30), the first term represent
the initial investment cost of diesel generation system, second
term stands for the replacement cost, third term represents the
present worth of the cost associated with the operation and
maintenance costs and fuel cost of diesel generation system.

TABLE 2. Greenhouse gases emission data.

B. GHG EMISSIONS MODELING
When electric power is generated by burning fossil fuels,
it results in GHG emissions in the environment. There is
a correction cost which is needed to mitigate the damage
caused by these emissions as shown in Table 2. This correc-
tion cost would be a saving if the electric power is generated
by utilizing RE sources instead of fossil fuels. This saving
is named as emission reduction benefit cost (ERBC), and
modeled as

Cerbc =
nl∑
j=0

4∑
m=1

n∑
t=1

1
(1+ ð)j

PMG (t)EmEmcc (31)

where Cerbc is the total emission reduction benefit cost, Em is
the emission of mth type of greenhouse gas in kg/MW , and
Emcc is the correction cost associated with the mth type of
greenhouse gas in $/kg.

C. DUMP ENERGY MODELING
As the outputs of RE sources are uncontrollable and stochas-
tic, it is possible during the operation that the output of RE
sources become higher than the load demand and BESS max-
imum watt capacity. During such events the surplus energy
should be dumped for stable operation of MG. The cost of
dump energy is calculated using the following equation

Cdmp =
n∑
t=1

nl∑
j=0

1
(1+ ð)j

(
µ

α

α + β
ϒ(t)+ σ

β

α + β
ϒ(t)

)
(32)
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where α is the installed capacity of PV, β is the installed
capacity of WT, µ is the cost per unit of PV, σ is the cost per
unit of WT, and ϒ is the dump energy. For simplicity, it is
assumed that the total dump energy is equally coming from
WT and PV.

D. COST FUNCTION FORMULATION
Although the problem seems complicated due to coordinated
nature of system components, however, every effort has been
made to simplify the problem as much as possible, and mod-
eling of the problem was carried out in such a way that it con-
verges towards a standard optimization problem at each step,
so that the problem can be solved using standard optimiza-
tion approaches/tools. For example, an objective function has
been described in detail, i.e., the objective of the study is to
find an optimal combination of PV, WT, BESS, and DG that
must supply the complete load demand with lower cost, lower
GHG emissions, and lower dump energy.

obj : J =
√
(J1 (X)+ J2 (X)− J3 (X))2→ min (33)

s.t.

{
g` (X) = 0 ` = 1, 2, , . . . ,m
hı (X) ≤ 0 ı = 1, 2, , . . . , q

(34)

where

X =
[
NPV , NWT , Estg, Pstg,Pr,dg

]
(35)

The first term in the objective function is the total cost
of the MG. The total cost of HPGS (28), BESS (29), and
diesel generation system (30) is incorporated in the first term
of (33). The second term of the objective function represents
the cost of dump energy (32), while the last term represents
the GHG emissions that are translated in terms of cost using
ERBC (31) concept as discussed in Section IV-B. The equal-
ity constraints are represented by g and in-equality constraints
are represented by h. All system constraints are listed as
follows:

The Primary System Constraint (Generation = Demand):

PH (t)+ PBESS (t)+ PDG(t)− PL(t) = 0 ∀t > 0 (36)

The hybrid generation system constraints:

Nmin
PV ≤ NPV ≤ Nmax

PV (37)

Nmin
WT ≤ NWT ≤ Nmax

WT (38)

Battery energy storage system constraints:

0 ≤ PcBESS (t) ≤ P
cmax
BESS ∀t > 0 (39)

−PdmaxBESS ≤ PdBESS (t) ≤ 0 ∀t > 0 (40)

EminBESS ≤ EBESS (t) ≤ EmaxBESS ∀t > 0 (41)

Diesel generation system constraints:

ndg∑
i=1

pidg(t) = 0 if : PL(t) ≤ PH (t)+ PBESS (t) ∀t > 0

(42)

FIGURE 3. Power output of solar power generation system of one
calendar year.

FIGURE 4. Power output of wind power generation system of one
calendar year.

ndg∑
i=1

pidg(t) = PL(t)− PH (t)− PBESS (t)

if : PL(t) ≥ PH (t)+ PBESS (t) ∀t > 0 (43)

EV load constraints:

SOCmin
c ≤ SOCev

e,c,d (t) ≤ SOC
max
c ∀e, c, d, t (44)

Pevmin ≤ Pev(t) ≤ Pevmax ∀t > 0 (45)

τmins ≤ τs ≤ τ
max
s (46)

V. DATABASES
The solar PV andWT are modeled as discussed in Section III
and their power outputs are calculated using the solar irradia-
tion and wind speed data, spanning a length of one year with
a resolution of one hour. The power outputs of WT and PV
are shown in Fig. 3 and Fig. 4. The solar PV generates power
during the day time only and its power increases to maximum
from morning to noon and decreasing trend can be observed
afterward. The output power of WT fluctuates throughout the
day without following any pattern. Similarly, the controllable
load is modeled as given in Section III. A community load
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FIGURE 5. Community load power demand spanning a year.

TABLE 3. Economic and technical data of sources [58]–[60].

power demand which consists of EV load and residential load
is shown in Fig. 5. The EV owners are expected to reach home
around 6 pm, after reaching home the owners start charging
their EVs. It can be observed that residential load peak appear
around 8 pm. Since, solar PV cannot generate power during
the night time, hence supplying this type of load by utilizing
RE sources and storage only may result in a very high cost.
The tecno-economical data is provided in Table 3.

VI. RESULTS AND DISCUSSIONS
Since the future grid is becoming decentralized, we consider
the scenario of an standalone MG. The design of a MG
employing RE sources is site dependent and varies from
one geographical location to another depending on the local
available resources and load demand and their behaviour.
Different geographical locations may require different com-
binations of distributed generators and ESS. So, it is vital
to investigate the techno-economical feasibility of different
types of available solutions in order to supply the load effi-
ciently and economically. In this study, the following six
different topologies for the design of MG are considered:

• CASE-I: PV-WT-BESS-DG based MG
• CASE-II: WT-BESS-DG based MG

TABLE 4. Optimal capacities of different MG topologies.

• CASE-III: WT-DG based MG
• CASE-IV: PV-DG based MG
• CASE-V: PV-WT-DG based MG
• CASE-VI: PV-BESS-DG based MG

The capacity optimization of these topologies are done using
the cost function as in Section IV-D. The capacities that
correspond to the optimal solution are tabulated in Table 4.
The cost, reliability (energy served) and GHG emissions have
special significance in assessing the performance of a MG
employing both RE sources and conventions generators. It is
always desired that a system should have lower cost, higher
reliability and lesser GHG emissions. The cost per-unit of the
six MG topologies is presented in Fig. 6a. The term cost per-
unit incorporates both cost and reliability indices in it. It can
be seen that per-unit cost is minimum for CASE-I in which
all available sources are utilized, while cost is maximum for
CASE-IV in which only PV and DG are employed.

As one of the primary purposes behind the utilization of RE
sources in the power system is to reduce the GHG emissions
by supplying clean energy. The variation in GHG emissions
of the six MG topologies is shown in Fig. 6b. The GHG
emissions are minimum for CASE-VI as the overall installed
capacities of RE sources andBESS aremaximum for this case
and the DG size is also smallest for this case. While the GHG
emissions aremaximum for CASE-IV because in this case the
only RE source i.e., PV is employed, which supplies the load
demand during the day time only, while during the night DG
is utilized to supply the demand completely which results in
higher GHG emissions. A comparison based on ERBC and
clean energy (energy from RE sources and BESS) supplied
by the six MG topologies are shown in Fig. 6c and Fig. 6d
respectively. The clean energy served and ERBC are maxi-
mum for CASE-VI because the overall installed capacities of
RE sources and BESS are highest. While ERBC and clean
energy supplied are least for CASE-IV.

A MG having lower cost, higher reliability, lesser GHG
emissions, higher clean energy, and higher ERBC can be
considered as a promising solution. The best topology from
the possible solutions is selected by carrying out the sen-
sitivity analysis based upon the per-unit cost, GHG emis-
sions, ERBC, and clean energy served by the system. When
comparing CASE-I and CASE-II, it can be observed that
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FIGURE 6. (a) Cost per-unit of the six MG topologies (b) GHG emissions comparison of the six MG topologies (c) ERBC comparison of the
six MG topologies (d) Clean energy served by the six MG topologies.

CASE-I has lower cost, lower GHG emissions, higher ERBC
and higher clean energy which make CASE-I a better
solution as compared to CASE-II. Similarly, the cost and
GHG emissions are lower and ERBC and clean energy are
higher for CASE-I as compared to CASE-III, CASE-IV
and CASE-V. The GHG emissions for CASE-VI are
lesser than CASE-I but its cost is significantly higher.
Hence, from the previous analysis it can be concluded that
CASE-I is the better option. It is important to note that these
results can not be generalized for any location. As men-
tioned earlier, the design of aMG exploiting conventional and
RE distributed generators is site dependent. Hence, before
installing distributed generators, a feasibility study of several
possible solutions should be carried out to determine the best
techno-economical solution.

The innovations in power electronics and the introduction
of the advance high-speed information and communication
technologies and sophisticated control has made the load
demand of the power systemmore flexible and easily control-
lable. In order to highlight the impact of load shifting on the

cost, GHG emissions, ERBC, clean energy supplied by the
system, the load demand is shifted. The cost function for the
MG topology given in CASE-I is solved for different load
shifts and the optimal capacities determined are tabulated
in Table 5. As the load has typical residential load behaviour
due to which peak demand appears in the evening time and
shifting the load towards the day time results in a decrease in
capacities of DG.

The variation in cost per-unit with the load shift is shown
in Fig. 7a. The cost per-unit is minimum for the shift−3 hours
and maximum for the shift of 3 hours. Shifting the load by
−3 hours results in the efficient utilization of BESS and RE
sources which resulted in lower cost. The variation in GHG
emissions with the load shift is shown in Fig. 7b. The GHG
emissions are lowest for a load shift of 3 hours as for this case
the installed capacity of RE sources and BESS are highest,
similarly the GHG emissions are also lower for the load shift
of −1 hour. The variations is ERBC and clean energy served
are shown in Fig. 7c and Fig. 7d respectively. Both ERBC and
clean energy supplied are maximum for a shift of 3 hours and
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FIGURE 7. (a) Variation in cost per-unit w.r.t load shift (b) GHG emissions vs load shifting (c) ERBC vs load shifting (d) Clean energy served vs
load shifting.

TABLE 5. Optimal capacities for different time shifts.

minimum for a shift of 1 hour, as the installed capacities of
RE sources and BESS are lowest for a shift of 1 hour.

The determination of the best time shift depends upon the
priorities of the installing authority. If the priority is GHG
emissions then the combination that corresponds to the shift

of 3 hours can be taken as best solution. But if the the priority
is the cost then the capacities of PV, WT, BESS, and DG
corresponding to the shift of−3 can be taken as best solution.
As the combination corresponding to−3 hours shift gives the
lowest cost and supplies the load at 68% lesser emissions as
compared to the conventional generation so it can be taken as
best solution among the available options.

Sometimes it is difficult to shift the 100% of the load
demand due to the presence of uncontrollable appliances.
To study the impact of shifting different percentages of the
total load demand on the installed capacities, cost, GHG
emissions, ERBC, and clean energy served by the system,
different percentages of the total load are shifted by−3 hours.
The capacities that correspond to different percentages of
load shifts are tabulated in Table 6.

The variation in per-unit cost with the different percentages
of load shift is presented in Fig. 8a. It can be observed that
cost is minimum for a shift of 60% of load and maximum for
20% of load shift. Even the shift of only 20% of the load by
−3 hours can result in the considerable saving as compared to
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FIGURE 8. (a) Variation in cost per-unit w.r.t different percentages of load shift (b) GHG emissions vs percentages of load shift (c) ERBC vs
percentages of load shift (d) Clean energy served vs percentages of load shift.

TABLE 6. Optimal capacities for different percentages of time shift.

no shift. The variation in GHG emissions, ERBC, and clean
energy supplied are shown in Fig. 8b, Fig. 8c, and Fig. 8d.

From the above analysis it can be concluded that shifting
the load demand can result in cost reduction, GHG emissions
reduction, savings in terms of ERBC and increase the green
energy share. As it can be observed that shifting only 20%
of the total load demand resulted in 5.5% reduction in per
unit cost. It is important be noted that this reduction can
actually result in huge savings as this is the reduction in one
unit and this small system is serving more than 1000 GWh

during its life time. Similarly, the GHG emissions are 7.9%
lesser (as compared to no load shift) when 20% of the total
load shifted by −3 hours. Moreover, it can be observed that
shifting the load also benefits in terms of ERBC and clean
energy served.

Any small residential community, cite office of a com-
pany, or even a single home can benefit from the proposed
methodology. As the load control is easier in the aforemen-
tioned systems, proposed methodology can be utilized to get
maximum benefits in terms of cost, GHG emissions, ERBC
and clean energy. The proposed idea is also applicable for the
large-scale power systems.

VII. CONCLUSION
An improved methodology for the capacity optimization of
a typical residential MG employing distributed renewable
generation, especially solar PV and wind, and conventional
diesel generation coupled with battery energy storage system
has been presented. The strategy is particularly focusing at
the increased load demand from electric vehicles in addi-
tion to a residential house load. The capacity optimization
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of six different topologies of renewable and conventional
power mix along with storage technology, i.e., PV-WT-BES-
DG, PV-WT-DG, WT-DG-BES, WT-DG, PV-BES-DG, and
PV-DG has been done based upon the initial investment cost,
replacement cost, operation cost, maintenance cost, dump
energy cost, and GHG emissions. The multi-objective opti-
mization problem is formulated and solved innovatively in
the presence of various realistic constraints from RE sources
generation system, BES system, diesel generation system,
and EV load. A comparison has been made based on the cost
per unit, GHG emissions, and ERBC, and it was observed that
the proposed topology PV-WT-BESS-DG (see Section VI)
is not only economical but also more reliable, has lesser
emissions which makes it more environmental friendly, and
higher ERBC.

Furthermore, the impact of load shifting on the cost, GHG
emissions, ERBC and clean energy supplied by system has
been investigated. It has been observed that shifting a small
percentage (20%) of total load demand carefully can result
in considerable cost savings (5.5% reduction in per-unit
cost) and GHG emissions can be reduced significantly (7.9%
reduction in GHG emissions). In particular, shifting the load
demand can also increase ERBC and clean energy contribu-
tion in a MG system.

In future, considering V2G phenomenon of EVs, introduc-
ing uncertainty of EV owners, uncertainty associated with
intermittent RE resources, and detailed ESS model including
degrading and losses, can make the results more realistic.
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