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ABSTRACT This paper addresses the problem ofmonitoring online a non-stationary process to detect abrupt
changes in the process mean value. Two main challenges are addressed: First, the monitored process is non-
stationary; i.e., naturally changes over time and it is necessary to distinguish those ‘‘regular’’ process changes
from abrupt changes resulting from potential failures. Second, this paper aims at being applied for industrial
processes where the performance of the detection method must be accurately controlled. A novel sequential
method, based on two fixed-length windows, is proposed to detect abrupt changes with guaranteed accuracy
while dealing with non-stationary process. The first window is used for estimating the non-stationary process
parameters, whereas the second window is used to execute the detection. A study on the performances of
the proposed method provides analytical expressions of the test statistical properties. This allows to bound
the false alarm probability for a given number of observations while maximizing the detection power as a
function of a given detection delay. The proposedmethod is then applied for wheels coatingmonitoring using
an imaging system. Numerical results on a large set of wheel images show the efficiency of the proposed
approach and the sharpness of the theoretical study.

INDEX TERMS Process control, statistical analysis, sequential analysis, parameter estimation, hypothesis
testing theory, non-stationary process.

I. INTRODUCTION
In recent years, the change-point detection topic has
been receiving increasing attention in various domains.
It addresses the problem of detecting the point or multiple
points at which a ‘‘significant change’’ occurs in a time series.
These points are referred to as change points. The change-
point detection process must be able to distinguish between a
‘‘significant change’’ indicating an abnormal event, and an
‘‘insignificant change’’ due to noise and that indicates a pre-
dicted or a normal behavior of data. Distinguishing change-
points from spurious noise is very important in order to keep
a false alarm rate. However surprisingly, sequential methods
are hardly provided with established, or bounded, false-alarm
probability and power functions.

A. STATE-OF-THE-ART
In general, change-point detection methods can be classi-
fied into ‘‘offline’’ and ‘‘sequential’’ methods. The choice

of the appropriate class of methods depends heavily on the
application.

‘‘Offline’’ methods, also referred to as retrospective meth-
ods, are considered in many applications, such as climate
change study [1], biological applications [2], [3], econometric
applications [4], and utility change in social media [5], to cite
few topics. Such methods can only be applied after all the
data, or observations, are received. Then, the objective is to
detect all the change-points available in the data, along with
estimating their locations. In applications for which these
types of methods are used, the goal is usually to analyze time
series and not to take immediate action after detecting the
change points.

On the opposite, many other applications analyze data in
real time with the goal to take an immediate response as
soon as a change in the data is detected, as it can reveal a
system failure which must be handled. In such cases, real-
time data acquisition and analysis processes are required in
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order to raise an alarm as soon as a change-point is detected.
Such problems fall within the scope of ‘‘sequential’’ methods,
also referred to as online or real-time methods, in which it is
assumed that the data are received sequentially, and that until
a change-point is detected the process is allowed to continue.
Contrariwise, when the data change, typically revealing a
failure or a change in the underlying process, the aim is to
detect the change-point with a minimal delay, in order to take
the relevant actions, while also preserving a low false-alarm.
Obviously, minimizing the detection delay and the false-
alarm rate are contradictory goals. Sequential methods have
been especially attracting attention from the industrial world,
in which the term control chart is widely used, for quality
control applications [6]–[8]. Industries have been pushing
to produce higher quality and innovative products, which
requires more and more manufacturing processes, while on
the opposite, they are also required to reduce costs and pro-
duction time. Hence, early fault detection for these industries
is crucial to minimize downtime, reduce the product losses,
and thus reduce manufacturing costs.

‘‘Sequential’’ change-point detection methods can be fur-
ther categorized into ‘‘parametric’’ and ‘‘non-parametric’’
methods. On the one hand, ‘‘non-parametric’’ or data-driven
methods have the advantage not to require any assump-
tions or any model on the data. They are based on statistical
methods, especially supervised or non-supervised learning,
to build detection rules based on large set of observations.
Such decision rules are then applied to new data. While not
requiring a model to describe the observations, those methods
may, however, be limited, typically when the manufacturing
process can largely change, and they are hardly provided with
known statistical performances.

On the other hand, ‘‘parametric’’ methods are used when
sufficient information on the monitoring process is avail-
able such that a statistical model of the observations can
be designed. In other words, this approach requires that
some distributional knowledge of the data is available and
employed into the detection scheme. A common limitation
of such methods is that they rely on pre-specified parametric
models that are based on a priori information about the form
of the data distribution, which is not always available.

B. CONTRIBUTION AND ORGANIZATION OF THIS PAPER
The present paper falls within the scope of ‘‘parametric
sequential’’ with the goal to monitor a non-stationary pro-
cess in real time in order to detect an abrupt change in its
mean. In an industrial situation, it is required to detect the
change within a given maximal detection delay (number of
observations after the change) and it is wished to control
the false-alarm probability over a fixed run length. In this
operational context, a two fixed-length windows sequential
method (2FLW-SEQ) based on the well-known CUSUM pro-
cedure is proposed for which the statistical performances are
bounded. This sequential method is then applied for wheels
coating monitoring. In fact, when a spray gun nozzle partially
clogs, or gets blocked, this will be translated into a sudden

change in the paint intensity caused by the lack of paint on
the wheel.

The main contributions of the present paper are the
following:

1) A two fixed-length windows sequential method
(2FLW-SEQ) is proposed for monitoring a non-
stationary process in real time. The first window is
considered to deal with the non-stationarity of the
process, while the second window is the one used for
the sequential detection procedure.

2) The proposed sequential procedure operates under the
non-classical criteria of minimizing the worst-case
probability of missed detection under the constraint of
a maximal detection delay, while controlling the false
alarm probability for a given number of observations.

3) A statistical study of the proposed method is estab-
lished that allows to lower bound the detection power
as a function of the maximal allowed detection delay,
and enables to upper bound the false alarm probability
for a given number of observations.

One can note that the present submission is an extended
version of the conference paper [9]. In comparison to this
prior publication, this paper includes a statistical study that
allows the calculation of an upper bound of false detection
probability and a lower bound of power function. The sharp-
ness of those theoretical findings is verified on a large dataset.
This paper also includes a practical study on the impact of the
parameters of the proposedmethodology in order to select the
most relevant ones.

The present paper is organized as follows. Section II briefly
recalls the well-known cumulative sum (CUSUM) proce-
dure [10] and states the problem of change-point detection
for a non-stationary process emphasizing on the main diffi-
culties and limitations of the CUSUM in this context. Next,
section III presents the proposed method; first, the model
used to deal with observations’ non-stationarity is presented.
Second, the ensuing statistical test is detailed. Then, to com-
ply with requirements on low false alarm probability and
highest change-point detection performance under a maximal
delay constraint, the performance of the proposed method
are studied in Section IV. Afterwards, section V presents
the problem of paint coating intensity variation on pro-
duced wheels. Finally, Section VI presents numerical results
obtained on a wide range of real data and studies the sharp-
ness of the theoretical performance for the proposed method.
Finally, Section VII concludes the paper.

II. CHANGE-POINT DETECTION PROBLEM STATEMENT
This section formally states the usual problem of abrupt
change-point detection and recalls the well-known CUSUM
method before highlighting themain particularity of the prob-
lem addressed in this paper.

The sequential change-point detection problem can be for-
mulated as follows.1 Let us consider {xn}n≥1 a sequence of

1The reader is referred to [6]–[8] for detailed introduction on sequential
and change-point detection.
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independent and identically distributed (i.i.d) observations
that are acquired sequentially. At the beginning, the sequence
is considered in a normal state, and the observations follow
a probability distribution Pθ0 . Then, at an unknown point
v ≥ 0 (the change-point), the sequence reaches an abnormal
state, in which the observations follow a different probability
distributionPθ1 . The problem formulation can be rewritten as
follows:

xn ∼

{
Pθ0 if 1 ≤ n ≤ v,
Pθ1 if n ≥ v+ 1,

(1)

The sequential change-point detection consists of detecting
the change-point v as soon as it occurs, while at the same time
preserving a low false alarm rate.

For the online continuous inspection, for each new obser-
vation received, a decision rule is computed to test between
the two following hypotheses:{

H0 : {θ = θ0},

H1 : {θ = θ1},
(2)

As long as the test (also called the stopping rule) fails to
reject H0, the data acquisition continues. When the obser-
vations xi are statistically independent, a usual approach to
decide between the hypotheses H0 and H1 is to use the
cumulative sum (CUSUM) procedure which can be defined,
for observations up to N as follows [10]:

δN =

{
0 if SN1 = max(SN−11 + sN − λ; 0) < τ,

1 if SN1 = max(SN−11 + sN − λ; 0) ≥ τ,
(3)

where δN is the CUSUM statistical test, λ is a constant that
avoids spurious false-alarms, τ is a conveniently pre-defined
threshold and, for initialization, S01 = 0. Though the decision
statistics sN and the constant λ were not defined in [10],
the logarithm of the well-known likelihood ratio is commonly
used:

sn = log
(
pθ1 (xn)
pθ0 (xn)

)
, (4)

where pθ0 and pθ1 are the probability density functions (PDF)
under hypotheses associated with distributions Pθ0 and Pθ1
respectively, which are assumed to be known, and the con-
stant λ is usually the average of the expected values λ =
1/2

(
EH0 [s]+ EH1 [s]

)
.

A. DIFFICULTIES OF NON-STATIONARITY AND
CRITERION OF OPTIMALITY
In the present paper, the studied process is non-stationary in
the mean. As a consequence, the problem of detecting an
abrupt change in an i.i.d random sequence is not relevant any-
more because (1) the hypotheses are composite, that is they
are characterized by a set of possible parameters 20 and 21
and (2) for observation xn the PDFs pθ0 and pθ1 are unknown.
In fact, when monitoring a non-stationarity process whose
distribution parameters may ‘‘naturally’’ change over time,
the change-point detection problem as stated in (1)–(2) is

no longer relevant. Indeed, since under the hypothesis H0
the distribution parameter θ0 may change within the set 20,
the hypotheses are defined by:{

H0 : {θ ∈ 20},

H1 : {θ ∈ 21},
(5)

and one should instead consider the following sequential test
problem:

xn ∼

{
Pθ0,n , θ0,n ∈ 20 if 1 ≤ n ≤ v,
Pθ1,n , θ1,n ∈ 21 if n ≥ v+ 1,

(6)

The main issue to tackle those scientific difficulties is to
have an accurate model of 20 and 21; in other words, to be
able to model with enough accuracy the set of ‘‘regular’’
changes in the process of the abrupt changes that reveals a
malfunctioning.
Regarding the scientific difficulties, when the distribution

parameters θ0,n and θ1,n are unknown, in such a context the
likelihood ratio (4) cannot be calculated for a given obser-
vation xn. A usual solution that is adopted in the present
paper is to use a generalized likelihood ratio that consists
of substituting unknown parameters θ0,n and θ1,n by their
estimations using the maximum likelihood estimation.
The second main challenge addressed in the present paper

is the introduction of an unusual criterion of optimality.
Indeed the CUSUM has been shown to be asymptotically
optimal with respect to the criterion that consists in minimiz-
ing the average worst case detection, see [23]–[25] for details
on the so-called Lorden’s criterion and CUSUM optimality.
However, a minimal average delay is not equivalent to

a maximal detection accuracy for a given detection delay.
Focusing on a practical industrial context, the present paper
aims at maximizing the probability of change-point detection
for a fixed maximal delay; this is justified for cost-reduction
purposes as the change point corresponds in practice to a
malfunction in a production process.

III. PROPOSED CHANGE-POINT DETECTION METHOD
As discussed in section II-A, the purpose of this article is to
design a change point detection method in the case of a non-
stationary process with a constraint on the maximal detec-
tion delay. This section first presents how to deal with the
process non-stationarity that represents a nuisance parameter;
then the novel two fixed-length windows sequential method
(2FLW-SEQ) is presented, that fits with the constraint on the
detection delay, and rejects online the nuisance parameter
generated by the process non-stationarity.
To facilitate the theory elaboration of the proposedmethod,

Table 1 provides a nomenclature that lists all the important
symbols that are to be used in what follows.

A. PROCESS MODELING
Let us consider a sliding window of size L. After the first
L observations, for each new received data xN , the window
slides by one point to contain the observations from xN−L+1
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TABLE 1. Nomenclature.

to xN . Let YN = (xN−L+1, . . . , xN−1, xN )T denotes this
window after the reception of observation xN . The vector YN
is modeled with the following normal distribution:

YN ∼ N (µN , σ 2IL), (7)

where µN is the expectation in this window, IL is the identity
matrix of size L, and σ 2 is the variance which is assumed
constant for all windows YN ,∀N ≥ L.
A linear parametric model is proposed to represent the

expectation µN . It essentially consists in representing all
the observations in the window YN as a weighted sum of q
basis vectors that represent the columns of a matrix H of
size L × q. The weight of this sum represents the vector of
q parameters dN . Hence, the expectation µN can be written
as:

µN = HdN . (8)

In this paper, the model of H is based on the following
algebraic polynomial:

h(x) =
q−1∑
j=0

djx j, (9)

with q− 1 the degree of the algebraic polynomial. The use of
a linear parametric model in statistical testing theory has been
widely exploited [13]. One can note that we have used such
approach of polynomial image modeling in some of our prior
work on image processing [14]–[16] and especially for the
detection of defects on wheels’ surface [17], [18]. However,
here it is used in a simplistic manner within a sequential
detection method to remove the possible slight ‘‘natural’’
intensity changes that are not abnormal and should thus be
removed.

It follows from Eqs. (7) and (8) that in the absence of any
anomaly, the vector of observations YN is modeled by:

YN ∼ N (HdN , σ 2IL). (10)

On the opposite, when a defect happens in the process,
a change occurs in the mean value which will affect all the
observations after the change-point. Consequently, when the
change occurs, the observations YN can be modeled as:

YN ∼ N (HdN + aKM , σ
2IL), (11)

where the sudden shift in the mean value is described by the
vector KM , of size L, containing L − M zeros before the
change occurs and minus onesM times after, and the constant
a > 0 represents the amplitude of the change. Here,M is the
number of maximal acceptable observations with defects. For
example, the change vector K1 = (0, 0, . . . , 0,−1) describes
a change that only affects the last observation in the window
of size L.
It is important to note that the ‘‘acceptable’’ variation of

mean value, modeled byHdN , is a nuisance parameter as it is
of no use for the considered detection problem. To deal with
this nuisance parameter, it is proposed to use the maximum
likelihood (ML) estimation method to perform a rejection of
this nuisance parameter as follows:

rN =
1
σ
WYN . (12)

Here W is the orthogonal projection of size L − q × L,
onto the null space of H, whose columns correspond to the
eigenvectors of the matrix IL − H

(
HTH

)−1HT associated
with eigenvalues equal to 1. The vector rN represents the
projection of the observations onto the null space of H.

B. 2FLW-SEQ PROCEDURE
Among others, the matrixW has the following useful proper-
ties: WWT

= IL−q; it thus follows from Eqs. (10)-(12), that
the residuals rN can bemodeled under hypothesesH0 andH1
by the following statistical distribution:{

H0 :
{
rN ∼ N (0, IL−q)

}
H1 :

{
rN ∼ N

( a
σ

θM , IL−q
)}
,

(13)

where θM represents the shift of expectation, due to the pro-
cess failure, projected onto the null space ofH: θM =WKM .
From the definition of the hypotheses in Eq. (13), after

the rejection of the nuisance parameter HdN , it is obvious
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that the considered detection problem essentially consists in
the detection of a specific signal in noise. In this paper, it is
proposed to use a sequential method with a fixed window of
lengthM which also corresponds to a pre-defined fixed max-
imal detection delay. Similar approaches have been studied
in the context of sequential detection in [19] and [20]. They
proposed to use the well-known match space detection which
is given in our case by:

δN =

{
0 if S̃NN−L+1 = θTMrN < τ

1 if S̃NN−L+1 = θTMrN ≥ τ.
(14)

From Eq. (13) it is straightforward to establish the statistical
distribution of results S̃NN−L+1 of the proposed 2FLW-SEQ:H0 :

{̃
SNN−L+1 ∼ N (0, ‖θM‖22)

}
H1 :

{̃
SNN−L+1 ∼ N

( a
σ
‖θM‖

2
2, ‖θM‖

2
2

)}
.

(15)

which can be normalized, for the sake of clarity, as follows:
H0 :

{
S̃NN−L+1
‖θM‖2

∼ N (0, 1)

}

H1 :

{
S̃NN−L+1
‖θM‖2

∼ N (
a
σ
‖θM‖2, 1)

}
.

(16)

It is important to note that the choice of the first window
size L and the polynomial degrees q − 1 is crucial and
essentially depends on the observations. First, L must be
much greater thanM in order to avoid any significant impact
of the abrupt change on the estimate of the linear model
parameters dN . On the opposite, L must remain reasonably
small such that the linear model will well model the observa-
tions’ expectation and to ensure that the residuals rN follow
a standard normal distribution underH0.
As for q, it is the opposite scenario. Indeed, high poly-

nomial degrees may lead to the shift being eliminated with
the projection (12), and thus removed from the residuals.
On the other hand, very small polynomial degrees may not
be sufficient to properly model the process, and thus putting
parts of the healthy observations among the residuals, and
probably losing the standard normal distribution underH0.

IV. ASSESSMENT OF 2FLW-SEQ
STATISTICAL PROPERTIES
A sequential change-point detection procedure stops as soon
as its decision rule δn becomes 1. Then, the stopping time T is
defined as the smallest observation index n for which δn = 1.
A correct change detection consists in stopping the sequential
procedure after the change has occurred, which means T ≥ v
where v is the change point index. A false alarm is raised
in case where T < v, i.e. the process has been stopped
before the change occurred. A usual criteria for a sequential
procedure is to detect the change as soon as it occurs, thus
minimizing the detection delay T−v. Many criteria have been
used to investigate the optimality of change point detection
algorithms concerning the detection delay, as the ‘‘mean
delay’’, the ‘‘conditional mean delay’’, the ‘‘worst mean

delay’’, etc. . . . [10], [21]–[23]. In that context, the CUSUM
algorithm has been proven to be optimal in [23]–[25]. How-
ever, in the proposed detection scheme, the goal is to fix a
detection delay after which the change detection is consid-
ered too late. In fact, minimizing the detection delay does
not necessarily lead to a higher detection power, or to a
small probability of missed detection. Therefore, the aim of
the proposed sequential method is to minimize the worst-
case probability of missed detection under constraint on
the worst-case probability of false alarm for a given run
length.

A. MINIMIZING THE PROBABILITY OF
MISSED DETECTION
The stopping time of the classical CUSUMprocedure is given
by:

Tc = inf
n≥1
{n : max

1≤k≤n
S̃nk ≥ τ } (17)

In this context, the CUSUM procedure takes into account all
previous observations. However, for the proposed sequential
method, after collecting the first L observations, the stopping
time can be defined as:

T2FLW = inf
n≥L
{n : S̃nn−L+1 ≥ τ } (18)

The probability of missed detection can be considered as
the probability that the detection delay is higher than the
acceptable one defined as M , knowing that the detection is
made after the change has occurred with T ≥ v. Then, to the
purpose of minimizing the probability of missed detection,
the following criteria can be applied:

Pmd (M ) = sup
v≥L

P(T − v+ 1 > M | T ≥ v) (19)

where Pmd (M ) is the worst-case probability of missed detec-
tion. Minimizing this probability will lead to maximizing the
detection probability denoted as β(M ) = 1− Pmd (M ).
Eq. (19) can be developed to:

Pmd (M ) = sup
v≥L

P

(
M+v−1⋂
n=L

{̃
Snn−L+1 < τ

})

P

(
v−1⋂
n=L

{̃
Snn−L+1 < τ

}) (20)

It is complicated to calculate the exact value of Pmd (M ),
instead it is proposed to calculate an upper bound. It can be
seen that:

P

(
M+v−1⋂
n=L

{̃
Snn−L+1 < τ

})

≤ P

({
v−1⋂
n=L

{̃
Snn−L+1 < τ

}}⋂{̃
SM+v−1M+v−L < τ

})
(21)

Note that in Eq. (21), the two events have common
observations of indexes (M + v− L, . . . , v− 1). In order
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to calculate the result S̃M+v−1M+v−L , observations of indexes
(M + v− L, . . . ,M + v− 1) have been projected onto the
null space of the model matrixH, and then the resulting resid-
uals have been multiplied by θM which represents the shift of
expectation, due to the process failure, projected onto the null
space ofH. Because all the common observations are healthy
observations, as they are acquired before the change v, their
effect is neglected when multiplied by θM . Following that,
the two events can be considered as independent, and Eq. (21)
can be written as:

P

(
M+v−1⋂
n=L

{̃
Snn−L+1 < τ

})

≤ P

({
v−1⋂
n=L

{̃
Snn−L+1 < τ

}})
· P
({̃
SM+v−1M+v−L < τ

})
(22)

Then, from Eq. (20), we get:

Pmd (M ) ≤ P
({̃
SM+v−1M+v−L < τ

})
= PH1

({̃
SL1 < τ

})
(23)

where PH1 is the probability under H1. Based on (15),
under H1, the result S̃L1 is a Gaussian random variable with
mean a

σ
‖θM‖

2
2 and variance ‖θM‖22. As a result, the worst-

case probability of missed detection can be upper bounded
as:

Pmd (M ) ≤ 8
(

τ

‖θM‖2
−
a
σ
‖θM‖2

)
(24)

with8 the standard normal cumulative distribution function.
Finally, the power function β(M ) of the proposed test (15),

that is the probability of detecting a failure after at most M
observations, is bounded by:

β(M ) ≥ 1−8
(

τ

‖θM‖2
−
a
σ
‖θM‖2

)
. (25)

In what follows, this lower bound will be referred to as β̃(M ).

B. WORST-CASE PROBABILITY OF FALSE ALARM
On the other hand, for a given run length R and at a given
time `, the false alarm probability is given by:

P0(` ≤ T ≤ `+ R) (26)

Hence, the worst-case probability of false alarm for all ` ≥ L
can be defined as:

Pfa(R) = sup
`≥L

P0(` ≤ T ≤ `+ R) (27)

The calculation of the exact value of Pfa(R) is absurd, instead
it is proposed to calculate an upper bound only. In this way,
it is possible to guarantee a false alarm rate lower than that
bound for all ` ≥ L.

The calculation will be done in two steps. First, the proof
that the worst-case probability of false alarm is indeed the
probability of false alarm at the starting point L. And then,
the second step is to determine the upper bound.

First, let us start the proof of the following equality:

Pfa(R) = sup
`≥L

P0(` ≤ T ≤ `+ R) = P0(L ≤ T ≤ L + R)

(28)

Let us denote U` = P0(T = `) for all ` ≥ L. For the first
point L, it can be clearly seen that:

UL = P0 (̃SL1 ≥ τ ) (29)

and that:

UL+1 = P0

({̃
SL1 < τ

}⋂
{̃SL+12 ≥ τ }

)
≤ P0

({̃
SL+12 ≥ τ

})
(30)

As all the observations of indexes (1, . . . ,L + 1) follow the
same distribution under H0, then the inequality in Eq. (30)
can be rewritten as:

UL+1 ≤ P0

({̃
SL1 ≥ τ

})
= UL (31)

In a similar manner, for ` > L, we can verify that:

U` = P0

(
`−1⋂
n=L

{̃
Snn−L+1 < τ

}⋂{̃
S``−L+1 ≥ τ

})
(32)

and that:

U`+1 = P0

(⋂̀
n=L

{̃
Snn−L+1 < τ

}⋂{̃
S`+1`−L+2 ≥ τ

})

≤ P0

 ⋂̀
n=L+1

{̃
Snn−L+1 < τ

}⋂{̃
S`+1`−L+2 ≥ τ

}
≤ P0

(
`−1⋂
n=L

{̃
Snn−L+1 < τ

}⋂{̃
S``−L+1 ≥ τ

})
= U`

(33)

Therefore, it is concluded that (U`)`≥L is a decreasing
sequence. Now let us define V` = P0(` ≤ T ≤ `+ R) for all
` ≥ L. It can be seen that:

V` =
`+R−1∑
n=`

P0(T = n) =
`+R−1∑
n=`

Un (34)

Then:

V`−V`+1 =
`+R−1∑
n=`

Un−
`+R∑
n=`+1

Un = U`−U`+R ≥ 0 (35)

Consequently, (V`)`≥L is also a decreasing sequence. As a
result, the equality in Eq. (28) is proven to be correct:

sup
`≥L

V` = VL = P0(L ≤ T ≤ L + R) = Pfa(R) (36)

The second step consists in calculating the upper bound ofVL .
From Eq. (29), UL can be rewritten as:

UL = 1− P0 (̃SL1 < τ ) (37)
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Similarly for all ` > L, Eq. (32) can be rewritten as:

U` = P0

(
`−1⋂
n=L

{̃
Snn−L+1 < τ

})

−P0

(
`−1⋂
n=L

{̃
Snn−L+1 < τ

}⋂{̃
S``−L+1 < τ

})

= P0

(
`−1⋂
n=L

{̃
Snn−L+1 < τ

})
− P0

(⋂̀
n=L

{̃
Snn−L+1 < τ

})
(38)

It follows from Eqs. (37), (38), and (34), that the worst-case
probability of false detection VL is:

VL = 1− P0

(
L+R−1⋂
n=L

{̃
Snn−L+1 < τ

})
(39)

For any two positive integers n 6= n′, it is possible to prove
that the covariance of the two Gaussian variables S̃nn−L+1 and

S̃n
′

n′−L+1 is non-negative cov
(̃
Snn−L+1, S̃

n′
n′−L+1

)
≥ 0. As a

consequence, one can immediately get:

P0

(
L+R−1⋂
n=L

{̃
Snn−L+1 < τ

})
≥

L+R−1∏
n=L

P0
({̃
Snn−L+1 < τ

})
(40)

Thus, VL is upper bounded by:

VL ≤ 1−
L+R−1∏
n=L

P0
({̃
Snn−L+1 < τ

})
(41)

Finally, based on (15), under H0, the results S̃nn−L+1 ∀n ≥ L
are Gaussian random variables with zero mean and vari-
ance ‖θM‖22. As a result, the probability of having a false
alarm α(R) after R observations is bounded by:

α(R) ≤ 1−8
(

τ

‖θM‖2

)R
, (42)

In what follows, this upper bound will be referred to as α̃(R).
Equations (25) and (42) emphasize the main advantages of

the proposed approach. First, the statistical performance of
the proposed test is bounded. The false alarm probability α(R)
is upper bounded which will enable to calculate a detection
threshold τ using a pre-defined false alarm rate knowing that
the application is guaranteed not to exceed. On the other
hand, the detection power β(M ) of the test is lower bounded
which will allow to guarantee, for a pre-defined false alarm
rate, a minimal detection power that the application will not
decrease bellow. Second, the false alarm probability α(R)
only depends on the prescribed run-length R and the maximal
acceptable detection delay M . Last, the power function (25)
shows that the accuracy of the proposed method essentially
depends on the ‘‘change-to-noise ratio’’ a/σ , along with the
maximal acceptable detection delayM .

V. PAINT COATING INTENSITY VARIATION
A. PAINTING PROCESS
Wheel paint has two purposes; to protect the underlyingmetal
from the harsh environment to which it is exposed, and most
importantly to improve the look of the wheel. Modern wheel
coating methods consist of five main steps, starting with the
pre-treatment which removes and cleans excess metal to form
a smooth surface structure, and ending with the topcoats
which provide the surface characteristics including color,
appearance, gloss, smoothness, and weather resistance [11].
This paper focuses on the topcoats as they are the only visible
layer.

Wheel topcoats are usually composed of several layers
of paint coatings, with a precise thickness, spread on the
whole surface of the wheel one after another [12]. They
are generally applied in the form of liquid or powder using
spray atomizers, also called spray gun nozzles [12]. The
appearance (color, gloss, texture, etc. . . ) of a coated surface
greatly affects the perception on the product quality. In fact,
everywheelmanufacturer has a list of client requirements that
defines every detail concerning the final product, including
a ‘‘top-coat requirements’’ list that contains specifications
about the color, the gloss level, and many other aspects of
the topcoats. Given this set of specifications, any significant
deviation from what is standard or normal to the product
is considered an anomaly that has to be correctly detected.
However, it is important to note that in this context a defec-
tive process will not only affect one wheel, but all of the
following products. Therefore, a fast and accurate detection
of any anomaly, as soon as it appears, is necessary in order
to reduce the number of defective products, thus reducing the
loss. Moreover, the deviation that is considered as anomalous
is hardly distinguishable from other normal deviations, and
hence may remain unnoticed by visual inspection.

All those points lead us to the necessity of an automatic
inspection system that monitors the variations of the topcoat
intensity, and signals the change-point with minimal delay
time. The detection process has to be fast and sufficiently
efficient in order to distinguish between a normal state and
the anomalous state.

Technically speaking, many factors influence the quality
of the coating, thus its appearance, such as temperature, paint
viscosity, solvents, etc. [11], [12] . . . . Specifically for liquid
painting, as time goes by, the viscosity of the paint in the
paint bath decreases (the paint becomes more pasty) since
the solvents are evaporating over time. This process may
be faster or slower depending on the neighboring tempera-
ture [11], [12]. To rectify the effects of this process, usually
the operators tend to increase the paint / airflow on the spray
gun nozzle. These variations in the topcoats remain in the
acceptable zone in accordance with the technical require-
ments. This paper focuses on a usual problem, that is when
the spray gun nozzle partially clogs, or gets blocked, which
will be translated in a sudden change in the intensity of the
topcoats.
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B. MONITORING SYSTEM
The monitoring system consists of an imaging system placed
over the conveyor belt of a wheel factory, just after the
painting process. It involves a camera that takes the image
of each produced wheel, using a proper illumination setup,
to uniformly brighten the whole surface of the wheel while
reducing light reflection artifacts. An example of a wheel
image acquired by the imaging system is shown in Figure 1.

FIGURE 1. A typical example of a wheel image obtained from the
monitoring system.

To the purpose of monitoring the variation of paint coating
intensity on produced wheels, it is wished to consider a block
containing s pixels in the image of the wheel, over which the
mean value of all pixels is computed. The considered window
maintains the same size and position on the surface of the
wheel for all images. Then, for one image of a wheel, let
Z = {zw}sw=1 denote the window containing s pixels and
x = s−1

∑s
w=1 zw the mean value of pixels’ intensity. Note

that the behavior of the observations is independent from the
window position on the surface of the wheel.

The variation of the mean value x from a wheel image
to another describes the variation of the topcoat intensity.
Indeed, the mean value is a sufficient parameter to detect
coating failure as the change in pixel values that it causes
affects the whole surface of the wheel. Figure 2 shows an
example of series of mean pixels’ value xi for 1 000 images of
consecutive wheels without change points, with i the image
index. The observed variation in the mean values is con-
sidered to be normal, and it is due to the reasons detailed
previously. It is shown that the mean value of observations xi
evolves smoothly.

Note that, the window Z has always the same position from
the center of the wheel, but not exactly the same position
on the wheel image. In fact, the wheels are not perfectly
centered under the imaging system, which means that from
an image to another, the position of the wheel may differ by
few pixels. In addition, the illumination system is not ideal,
meaning that the distribution of light over the whole wheel
surface is not perfectly uniform, hence some locations on
the wheel are slightly more or less illuminated than others.
Therefore, it is concluded that the variance of the variable xi
is only related to the imaging system which is not modified
during the acquisition, thus it remains constant for all obser-
vations, whether before or after the change. Based on these
factors, and based on the behavior of the variable xi observed

FIGURE 2. A typical example of variation of wheel images mean value.

in Figure 2, the process can be considered as a non-stationary
process in the mean, with a constant variance over all the
observations.

VI. EXPERIMENTS AND RESULTS
In this section, five types of results are presented. First,
the proper choice of the first window length L and the
degree of the polynomial q − 1 is discussed with simulation
results. The second experiment aims to study the effect of
the second window length M on the performances of the
proposed test. In the third part, it is wished to examine the
efficiency of the bounds calculated in subsection IV and to
study the detectability of the proposed test function of the
abrupt change amplitude, given a set of requirements. Next,
the fourth experiment is a study of a real case scenario with
a real change point in the observations. Finally, a perfor-
mance comparison is conducted to highlight the advantages
of modeling the observations and examine the difference in
the detection criteria between our approach and the CUSUM
method.

To conduct these experiments, a data base of 500 000 suc-
cessive healthy images has been acquired using an area scan
camera installed over the production line of a wheel factory.
The acquired images aremade of 2046×2046 pixels of 12 bits
depth. The procedure described in section V has been applied
to obtain the observations xi with i = {1, 2, . . . , 500 000}.
The observed standard deviation, related to the imaging sys-
tem, is σ = 22. As supposed in section V, this parameter
is assumed to be constant during the monitoring process.
However, the variance can be changed with the acquisi-
tion conditions, for instance, with the illumination intensity.
To deal with the problem of imaging acquisition system drift,
the variance is periodically computed (typically at the begin-
ning of each week). The detection problem of abrupt changes
in acquisition conditions is not addressed in this paper.

First, let us start by discussing the choice of the first
window length L, and the degree of the polynomial q − 1.
In fact, as mentioned in subsection III-B, the choice of
parameters L and q has an important role, on the one hand,
to increase the detection performances of the test, and, on the
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TABLE 2. The empirical detection power β(M) and the Hellinger distance HD for different values of L and q.

other hand, to correctly model the paint coat intensity process
as a Gaussian process. Hence, multiple Monte-Carlo simula-
tions, with different values of L and q, have been performed
to correctly tune these parameters to ensure the best perfor-
mances. Two important factors are directly affected by the
change in these parameters, those are the detection power
β(M ) and the accuracy of the standard Gaussian distribution
model for residuals’ rN distribution underH0. This accuracy
can be expressed using the Hellinger distanceHD between the
empirical residuals rN and the theoretical standard Gaussian
distribution. Table 2 contains the calculated values of β(M )
andHD for values of L ranging from 50 to 1 000, and values of
q− 1 ranging from 2 to 10. These results have been obtained
for a maximal detection delay M = 5, over a run length of
R = 5 000 which represents about half of a day’s production,
and for a pre-defined value of false alarm rate α(R) = 10−2.
It can be observed from Table 2 that for a certain polynomial
degree, increasing L will lead to a better detection perfor-
mance as β(M ) increases, however, the Hellinger distance
HD increases alongside which indicates a decrease in accu-
racy. For large values of L, as L = 1 000, small values
of polynomial degree are not even sufficient to correctly
represent the observations under H0, which can be seen by
the increase in HD and the decrease in β(M ). Thus it is
necessary to increase the polynomial degree just to correctly
model the observations. On the other side, for a certain value
of L, increasing q will lead to an increase in the accuracy,
in favor of a decreasing performance. For large values of q,
as q = 10, the accuracy increases significantly, however,
the test performance is low. To choose the optimal values
of L and q, it is important to have the maximal detection
power β(M ) alongside a sufficient accuracy so that the empir-
ical performance matches at best the theoretical performance
study. For the values L = 200 and q − 1 = 2, we have
the best detection power β(M ) = 0.9351. Then, to better
understand the relation between the Hellinger distance and
the accuracy, figure 3 represents a comparison between the
theoretical standard Gaussian cumulative distribution func-
tion (cdf) and the empirical cumulative distribution functions
of the residuals rN for L = 200 and L = 1 000, and with
q − 1 = 2. It can be seen that for L = 200, the empirical
distribution is accurate enough compared to the theoretical

FIGURE 3. Empirical and theoretical cumulative distributions of the
normalized residuals rn with two different values of the first window
size L with polynomial degrees q− 1 = 2.

distribution, and that moving from HD = 0.0443 for L =
200 to the highest distance values HD = 0.0564 for L =
1 000 will only have a small effect on the accuracy of the
distribution underH0. Therefore, the choice of the parameters
can be made on the basis of the highest detection power β(M )
for a Hellinger distance HD lower than a certain value after
which the accuracy is considered no longer acceptable. As a
result, the correct choice of the parameters in our application
is L = 200 and q − 1 = 2, which will be considered in all
following experiments.

Secondly, it is proposed to study the effect of the second
window length M on the detection performances. The same
data base has been used to perform aMonte-Carlo simulation,
for which a simulated shift of amplitude a = 60 has been
superimposed on some of the observations. Figure 4 repre-
sents the empirical false alarm probability α(R) and detection
power β(M ) over a run lengthR = 5 000 for 3 different values
of the maximal allowed detection delay M = {1, 3, 5}, as a
function of the decision threshold τ . It can be observed that
when M increases, ‖θM‖2 increases, which affects both the
false alarm rate α(R) and the detection power β(M ), as seen
in (15). However, the increase rate of β(M ) is larger than the
one of α(R). Hence, the shift between the detection power
and the false alarm probability becomes larger which implies
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FIGURE 4. Empirical false alarm probability α(R) and detection power
β(M) over a run length R = 5000 for 3 different values of M, plotted as a
function of the decision threshold τ .

FIGURE 5. Empirical and theoretical false alarm probability α(R) over
three different values of run length R, plotted as a function of the
decision threshold τ .

a better detection performance, but at a larger delay M .
As a result, it can be seen that the choice of M essentially
depends on the application requirements. Depending on the
application, this test allows to either increase the detection
performance at a cost of a larger detection delay, or decrease
the detection delay at a cost of a lower detection performance.

In the third part of the experiments, and because one of the
main contributions of this paper is the design of a change-
point detection method with bounded performance proper-
ties, it is wished first to examine the efficiency of the bounds
calculated for α(R) and β(M ). Figure 5 shows the empir-
ical false alarm probability α(R) and its theoretical upper
bound α̃(R) for three different values of the run length R =
{50, 500, 5 000} as a function of the detection threshold τ .
The maximal delay for detection is set to M = 5. It can be
observed that the upper bound is accurate and relatively tight.
However, as the run-length increases, one can notice that
the upper bound is gradually losing its accuracy for smaller
values of false alarm. At α(R) = 10−2, the distance between
the empirical threshold and the theoretical one obtained by
the upper bound is 0.7 for R = 50, but it increases to 1.2

FIGURE 6. Empirical and theoretical detection power β(M) for 2 different
values of M and 2 different values of false alarm rate α(R), plotted as a
function of the change amplitude a.

for R = 5 000. This is due mainly to the fact that the obser-
vations are not totally independent. In fact, the calculation
of the upper bound of the false alarm probability is based
on the inequality in equation (40) which is greatly affected
by the independence of the observations. When R increases,
the number of events in equation (40) increases, resulting
in an increase in the difference between the probability of
their intersection (the first term (40)) and the product of their
individual probabilities (the second term in (40)). As a result,
the sharpness of the upper bound for the false alarm proba-
bility decreases. In addition, a second factor can be the fact
that the data base used to perform these experiments is rather
small to be generally accurate in the empirical results for large
values of run length as R = 5 000. Then, in order to test
the detectability of the proposed test and the sharpness of the
detection power lower bound, figure 6 presents the empirical
detection probability β(M ) and its theoretical lower bound
β̃(M ) for two different values ofM = {3, 5} and two different
false alarm rates α(R) = {10−2, 10−3} over a run length
R = 5 000, as a function of the change amplitude a. First,
it can be seen that the theoretical lower bound is precise
and really tight for the different parameter values. Second,
for a fixed value of the false alarm rate, when M increases,
the detection power β(M ) increases accordingly. This result
confirms the one obtained in the second experiment in
Figure 4.
Next, it is wished to exemplify the efficiency of the pro-

posed 2FLW-SEQ sequential detection method on a real case
scenario with a real change-point in the observations. Figure 7
portrays a real case of observations when the spray gun nozzle
got partially clogged. As a consequence, a sudden shift in the
observations of amplitude a = 55 can be seen at exactly the
image index 2434. The blue plot represents the real observa-
tions, while the red plot represents the expectation values (8)
estimated using the polynomial model over a window of size
L = 200 and a degree of q − 1 = 2. Because it is aimed to
be as close as possible from the real practical requirement
that corresponds to the specific application of paint coat
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FIGURE 7. Real example of the variation of mean value with a
change-point at index 2434.

FIGURE 8. Result of the proposed 2FLW-SEQ detection method
with M = 5.

FIGURE 9. Result of the proposed 2FLW-SEQ detection method
with M = 3.

monitoring, the false alarm rate is set to α(R) = 10−3 over a
run length R = 5 000. This will result in a detection threshold
of τ = 10.12 for M = 5 and a threshold of τ = 8.2
for M = 3. Figure 8 illustrates the result of the proposed
2FLW-SEQ method with M = 5. It can be seen that the
change point is detected at the index 2438 which means a
delay of exactly 5 defective wheels.

Then, the same experiment has been performed for a max-
imal allowed delay of M = 3 where the detection power
is much lower than the previous case of M = 5, as seen
in Figure 6. Figure 9 illustrates the corresponding result
where it can be seen that the change-point has been missed.

FIGURE 10. Empirical ROC curves for the proposed 2FLW-SEQ method
and the CUSUM method with and without the polynomial model,
computed over a run length R = 5000, with a maximal detection delay
M = 5 and change amplitude a = 60.

Note that, usually when the change is detected, the sequen-
tial process stops. However to better illustrate the results of
the test, the sequential procedure was allowed to continue.
It is shown in Figure 7 that after the change occurs, the obser-
vations return to a state similar to the one just before the
change occurred. Then, just after the change, the sequential
procedure will re-operate under the hypothesis H0, and the
results S̃ ii−L+1 will return to have a Gaussian distribution
with zero mean and a variance ‖θM‖22, as it can be seen in
Figures 8 and 9.
Last, but not least, the first goal is to investigate the advan-

tages of modeling the paint coat intensity process to deal with
its non-stationarity. To this purpose, it is proposed to compare
the performance of the original 2FLW-SEQmethod presented
in this paper with a classical sequential detection method,
more precisely the well-known CUSUM, in two different
scenarios. In the first scenario the polynomial model is used
to represent the expectation of the last L observations, while
in the second scenario only the mean value of the last L obser-
vations is considered. In addition, the proposed 2FLW-SEQ
is included in the comparison in order to show its efficiency.
Note that when the polynomial model is used, the optimal
parameters obtained from the first part of the experiments are
considered, i.e. L = 200 and q − 1 = 2. However, for the
CUSUMwithout a model, multiple simulations with different
values of L have been conducted and lead to the choice of L =
20 which is the best in terms of detection power. Figure 10
presents the empirical ROC curves for the proposed 2FLW-
SEQ method and the CUSUM method with and without the
polynomial model, computed over a run length R = 5000,
with a maximal detection delayM = 5 and change amplitude
a = 60. It can be seen that using the polynomial model
actually improves the performance of the CUSUM method.
Figure 10 also shows that the proposed 2FLW-SEQ method
outperforms the CUSUM method even when using the poly-
nomial model. Indeed, the CUSUMmethod has proven many
times to be optimal as mentioned in section IV, however, this
optimality is related to the average detection delay. To better
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FIGURE 11. Average detection delay as a function of the average run
length to false alarm for the proposed 2FLW-SEQ method and the CUSUM
method with polynomial model with a maximal detection delay M = 5
and change amplitude a = 60.

FIGURE 12. Empirical detection power β(M) as a function of the average
run length to false alarm for the proposed 2FLW-SEQ method and the
CUSUM method with polynomial model with a maximal detection delay
M = 5 and change amplitude a = 40.

understand the difference in the detection criteria under which
each of the proposed 2FLW-SEQ method and the CUSUM
method operates, two sets of simulations are conducted.

Figure 11 represents the average detection delay (ADD) as
a function of the average run length to false alarm (ARLFA)
for the proposed 2FLW-SEQ method, with a maximal detec-
tion delay set to M = 5, and for the CUSUM method with
polynomial model with q − 1 = 2 and change amplitude
a = 60. It can be seen that in this context, the CUSUM
has proven to be optimal and, hence, outperforms the pro-
posed 2FLW-SEQ method. On the other hand, as noted in the
section IV, the aim of the proposed 2FLW-SEQ method is
to minimize the worst-case probability of missed detection
under constraint on the worst-case probability of false alarm
for a given run length. To highlight this criteria, figure 12
represents the empirical detection power β(M ) as a function
of the ARLFA for the same sequential methods and with a
change amplitude a = 40. The smaller value of the change
amplitude is considered to emphasize better the difference.
Obviously, figure 12 shows that, in this context, with the
increasing values of the ARLFA, the proposed 2FLW-SEQ

method outperforms the CUSUM method in terms of detec-
tion power. Indeed, it is well known that minimizing the
average detection delay does not necessarily lead to a higher
detection power under a given maximal delay, or to a small
probability of missed detection.

VII. CONCLUSION AND PERSPECTIVES
This paper proposes a method for online monitoring of a
non-stationary process in the mean with a constant variance,
to detect abrupt changes in the process mean value. Since
the monitored process is non-stationary, in other words nat-
urally changes over time, the proposed method must be able
to distinguish those ‘‘regular’’ process changes from abrupt
changes resulting from potential failures. In addition, since
this method aims at being applied for industrial processes,
it is required to detect the change within a given maximal
detection delay and to control the false alarm probability over
a fixed run length. Hence, in order to adapt to the operational
requirements of the industrial context, the CUSUM method
is modified to design a novel sequential method based on
two fixed-length windows. Over the first window, the non-
stationary process parameters are estimated using a linear
parametric model, while the second window is used to exe-
cute the detection.

In this paper, the non-stationary process results from the
variation of the paint quantity on inspected wheels surface,
where the abrupt change corresponds to a sudden lack of
paint. The mean value of pixels from all wheel images are
used to measure the coating intensity. Numerical results on
a large set of images show the accuracy of the proposed
model, the efficiency of the proposed detection method, and
the sharpness of the statistical performances theoretically
established.

Since the proposedmethod is designed to monitor any non-
stationary process in the mean with a constant variance, a first
perspective is to test the efficiency of the proposedmethod for
other industrial processes of such type. Furthermore, in this
paper, modeling the non-stationary process over the first
windowwas conducted using a polynomial model. Replacing
this model with any other type of parametric models is feasi-
ble, and will not alter the detection procedure performed on
the second window. Hence, a second interesting perspective
is to test the accuracy of other types of parametric models to
model the non-stationary process, such as the autoregressive
integrated moving average (ARIMA) for example, and to
compare it with the accuracy of the proposed polynomial
model.
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