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ABSTRACT Complementary with electroencephalograph (EEG), functional magnetic resonance
imaging (fMRI), with high spatial resolution, is powerful at providing prior source locations based on
actual brain physiology. It hereby can help improve the accuracy of EEG source localization. However,
most of the current methods directly penalize the sources whose fMRI activation probability is low and
estimate the sources activities at every time point. Thus, they do not account for the temporal interrelated and
non-stationary features of electromagnetic brain signals, and some are too much dependent on the
fMRI prior. Here, we propose a new fMRI informed EEG source localization method and is termed
fMRI-informed spatio-temporal unifying tomography (FIST). It uses a mixed norm constraint defined in
terms of time—frequency decomposition of the sources and combines it with fMRI prior. The Fast Iterative
Shrinkage Thresholding Algorithm is employed to solve the optimization problem. Both simulated and
real EEG data are applied to assess the performance of the proposed method. Compared with L2-norm
constrained methods, FIST has the superiority brain source estimation both in the spatial and temporal
domains. By virtue of the fMRI information as a prior, FIST has great improvement in spatial accuracy
and computational efficiency, when comparing with the method which only uses mixed-norm constraint.
In addition, FIST shows good ability to select the fMRI priors to get a better estimation without totally

depending on the prior, when comparing with the method which also has fMRI prior information.

INDEX TERMS Source localization, EEG, fMRI, mixed-norm constraint, inverse problem.

I. INTRODUCTION
As a popular noninvasive technology to measure brain activ-
ity, the electroencephalograph (EEG) has been applied to
measure the dynamic processes in the brain with great tempo-
ral resolutions of milliseconds [1], [2]. Due to the limitation
of the number of measurement sensors, EEG has poor spatial
resolution [3]. However, source localization with EEG can
overcome this drawback, which reconstructs brain activities
with high temporal and good spatial resolution [3], [4]. The
reconstructed brain activities are also known as source cur-
rents, which located everywhere in the brain [5]. Such EEG
source localization technique has been widely used in disease
diagnostics [6], [7] and in cognitive research [8], [9].

At present, there are two main methodological cate-
gories for solving the EEG source localization problem [10]:

(1) the dipole fitting method of which attempts to estimate
brain source activities with a small number of equivalent
current dipoles [11] and (ii) the distributed method of which
estimates the brain sources activities using a large number
of dipoles that encompass the whole cortical surface [12].
Since the distributed methods assume that thousands of
dipole sources are distributed in the brain cortical surface
while an order of magnitude fewer scalp sensors are used
to record the EEG signal, the EEG source localization prob-
lem is ill-posed [13]. Therefore, constraints based on the
characteristics of the actual source distribution are essen-
tial for solving the problem [14]. One common constraint
is the L2-norm, which measures the overall energy of the
sources. This type of methods includes the minimum norm
estimate (MNE) [15], weighted MNE (wWMNE) [16], and
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low-resolution electromagnetic tomography (LORETA) [17],
along with the family members exact LORETA

(eLORETA) [18] and standardized LORETA (sLORETA) [19].

Another is sparse constrained methods, including the
L1-norm constraint [20] and sparsity-inducing norm afforded
by empirical Bayes (such as Sparse Bayesian learn-
ing (SBL) [21] and Multiple Sparse Priors (MSP)) [22].
Nevertheless, L2-norm constrained methods usually overes-
timate the source spatial extent, so that cannot distinguish
multi-patch sources [23]; while sparse constrained methods
may lead to over-focal or scattered estimation, which contain
activations at fewer cortical regions than actual sources [24].

Both the L2-norm and sparse constrained methods are
implemented separately at each time point leading to
non-smooth and noise sensitive source time course esti-
mation [25], [26]. They merely take into account the spa-
tial characteristics of the sources, without considering the
fact that the activities related to EEG measurements are
spatially and temporally interconnected [27]. Hence, sev-
eral studies try to combine spatial and temporal constraint
as regularization term in source localization problem. For
instance, a random-walk dynamical model with Laplacian
spatial constraints is used to describe the dynamics of
EEG source currents [28]. The spatio-temporally regular-
ized algorithm for M/EEG patch image (STRAPS) [26] and
dynamic maximum a posteriori expectation maximization
(dIMAP-EM) [29] use a nearest-neighbor multivariate autore-
gressive (MVAR) model to formulate the spatio-temporal
connections. However, the implicit assumption of these meth-
ods is that the sources are stationary, which is only suit-
able for short time intervals [25]. Indeed, multiple transient
sources are sequentially activated during the EEG analysis
period, in other words, brain source signals are transient and
non-stationary [30].

The presence of the source non-stationarity is due to
many reasons, such as epileptogenic transients [31], physi-
ological and instrumental artifacts [32]. Evoked brain activ-
ity, on the other hand, reflects event related non-stationary
phenomena [33]. Time-frequency mixed-norm estimates
(TE-MxNE) [25] and spatio-temporal unifying tomography
(STOUT) [34] address these transient and non-stationary
characteristics by a sparse set of time-frequency basis func-
tions (atoms). TF-MxNE obtains the frequency domain repre-
sentation from the time-series data using the Gabor transform,
uses a composite regularizer which is the sum of the
L21-mixed-norm and L1-norm. While the TF-MxNE solu-
tions are not composed of smooth activation patches. As a
remedy, STOUT imposes a spatial basis function [35] con-
straint at each modeled dipole location. However, the con-
straints are not based on actual brain physiology, and it may
leads to biased and plausible solutions. Another disadvan-
tage is that due to the source time-frequency decomposition,
STOUT requires a great amount of computational time and
memory consumption.

The functional magnetic resonance imaging (fMRI) is
another widely used non-invasive neuroimaging technique
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with a high spatial resolution of millimeters [36] and is
useful for providing prior source locations based on actual
brain physiology in EEG source localization [36]-[38]. Based
on the hierarchical linear model, the covariance derived
from fMRI data has been proposed to improve the spatial
accuracy of EEG source localization [39], [40]. This model
was further improved in the L2 minimum norm estimation
with a subspace regularization term of fMRI-defined sub-
space [41], or with a functional area constrained estima-
tor (FACE), which was derived from a segmentation of the
cortex into areas defined by retinotopic maps of the visual
field or by functional localizers obtained independently by
fMRI [42]. However, most of the previous models were devel-
oped for a single time-point, based on the adaptive Wiener fil-
ter, and estimate the source covariance matrix by combining
the quantified fMRI responses with the segmented EEG sig-
nals before response averaging [43], [44]. Some researchers
take advantage of the spatial alignment between neural and
vascular activities to reduce ambiguity [36], or consider the
source variance at each location as an unknown parameter,
which depends on the fMRI activity [14], [45], based on
Bayesian estimation. These techniques suggested that uti-
lizing the fMRI information as a prior in different ways
is feasible and effective for EEG source localization [46].
However most of these methods estimate source activity at
each time-point, they do not take temporal interrelated fea-
tures of electromagnetic brain signals into account, or are too
dependent on the fMRI prior.

Motivated by previous studies [25], [34], [39], [46], this
paper develops a new method based on STOUT, which intro-
duces fMRI prior in the EEG source localization and is
termed fMRI-informed spatio-temporal unifying tomogra-
phy (FIST). Unlike previous methods [39]-[41], [45] that
directly penalize the EEG sources whose fMRI-derived
activation probability are low [47], FIST uses a mixed
norm constraint, which is defined in terms of the time-
frequency decomposition of the sources, and combines it
with fMRI prior. Thus, this can avoid direct penaliza-
tion of the EEG sources and estimate source activity at
every time-point. The Fast Iterative Shrinkage Thresholding
Algorithm (FISTA) [48], [49] is employed to solve the opti-
mization problem. To assess the performance of the proposed
method, we compared it with the classical L2-norm con-
strained methods (LORETA, wMNE), mix-norm constrained
method (STOUT), and fMRI informed method dynamic Sta-
tistical Parameter Mapping (dSPM) [39]. We first validated
the methods on simulated datasets, and then applied them to
a realistic human EEG dataset.

Il. MATERIALS AND METHODS

A. FMRI INFORMED SPATIO-TEMPORAL

UNIFYING TOMOGRAPHY

We now describe the mathematical formulation of the source
localization problem. Based on the quasi-static approxima-
tion of Maxwell’s equations, the relationship between the
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observed EEG signals and the source currents is described
by the following linear function [50]

Y=LJ+e ey

where Y e RN*N: denotes the observed EEG signals
on the scalp from N, sensors, sampled at N; time points.
J e R3NaxNi g the source current density matrix of Ny
dipolar electrical brain sources with three unknown dipole
moments at the N, time points. L € RNe*3N¢ s the lead
field matrix composed as L = (L*, LY, L?) where L*/¥/2
are lead fields of the current sources in each direction X, y
and z, respectively. & € RN<*Ni is the Gaussian distributed
noise with covariance Q. € RNexNe which can be estimated
from pre-stimulus data, or simply set to the identity matrix.
We applied the latter approach in this study [10].

The goal of the source localization is to estimate J.
We now describe our proposed algorithm FIST, which
extends STOUT [34], to solve it. The objective function of
STOUT is given by

C* = arg min {||Y —L (2 13) Co[3,
C

g ICE Al + 3 1CH | @)

where the current density J = C®; is decomposed into
temporal basis functions ®; and the corresponding coef-
ficients C by time-frequency decomposition. The matrix
®, ¢ NNexNa represents the spatial basis functions,
I; € N3 is an identity matrix, and ® is the Kronecker
product. Ay and A; are the parameters to be estimated. After
the coefficients C are obtained by solving equation (2),
the estimated source can be given by J=Ceo,.

Similar to the representation in STOUT, the objective func-
tion of FIST can be written as

C* = argmin { [|Y — L (®; ® I3) C®¢ ¢,
C

3Ny
+ > wlil (s IC T, i) + A4 ICy

i=1
(3)
where w [i] represents the i source weighting. The spatial
basis function is defined as ®; (i, j) =exp {—dg {xi, xj}2 /02},
where d, {xi,xj} refers to the geodesic distance between
the i and the j” dipole along the cortical surface. The
parameter o refers to the spatial width of the Gaussians.
For the coefficients C, it’s obtained using short-time Fourier

transform (STFT) [51], and can be defined as C (m,n) =
SOf (1) e 2rimbU=an/Lo (] — ap), where f (I) is the input
1

signal at time /, g (-) is the modulated window, b is the length
of the frequency shift, and a is the length of the time shift.
For the parameter a and b, we use the same values as in [34].

FISTA is employed to solve the objective function equa-
tion (3). Before applying FISTA, It needs to compute the

8260

TABLE 1. FISTA algorithm used to compute the FIST.

Algorithm 1: FISTA

Initialization: Z®=0 , with all-zeros matrix Ze C**" | cV =2,
o _ 1 _
W=, 0<ﬂ</L,k 1
Ensure: X = u(®, ®1,) L’ (Y—L(<I>s ®13)c<1>,)<1>,”
Estimate the Lipschitz constant L with the power iteration method.
while HZ" —ZHHF /HZHHF > tolerance do

VAR prox, ., (Ck +X54,4 )

L g
;
ot _ 1+1+47%

2

kel (k) -1 (k) (k-1)
=z (2" -2")
T

proximity operator of the weighted £71 4+ £; norm:

C = prOX[21+[1 (Gv )"Sv )\'l‘)
k
! . .

argmin = |G — CII% + ZW ] (s IC 1 -1l21)

c 2 i=1
+ 2 IC L -1l 4)
where G = C4p (®s ® I3)T LT (Y — L (&5 ® I3) C®¢) &/
<I>f1 denotes the Hermitian transpose of &; [25],

0<u< L~! L is the Lipschitz constant. Each coordinate
element Cy , is given by

Gy, As/WIK]
Cip= |ka} (|qun| - )‘t)+ 1- - 3
» /z (IGep| = 2)}
P +
&)
For calculation convenience, it can also be simplified as
- A
Ck,p = Gk,p (1 — ﬁ) (a)
k.p n
- As/WIK]
Cip=Cip |1 -7 @  (©
‘ k.p Hz

with ()™ = max (a, 0). The pseudo code for FIST optimiza-
tion is provided in Algorithm 1. If the value of w [{] is small,
the penalty for the i source will be small, which means the
i’ source is likely to be selected as a candidate source. Farther
mathematical details and implementation of FISTA can be
found in [48] and [49].

B. DERIVING PRIOR FROM FMRI

In this section, we describe a genetic method to derive prior
source weighting w = [wi, wa, ---wy,| for FIST from
fMRI data, the prior weighting may provide prior source
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location information. It consists of several steps: (i) anal-
ysis the preprocessed fMRI data with the General Linear
Model (GLM) framework to obtain a statistical parameter
map (SPM); (ii) define a threshold for the SPM to get discrete
and local contiguous clusters; (iii) project the “clusters’” onto
the cortical mesh. These steps are summarized in Fig. 1.

FIGURE 1. Derivation of the prior source weighting from fMRI data.

The “clusters” definition in this study is similar
with [37] and [52]. The exclusion threshold was set to be
0.05 and the cluster size was 20 voxels in this study. Only the
voxels with positive values are considered here, as negative
values are thought to be modulated oppositely to the experi-
ment conditions [50]. The 3D clusters are projected onto the
cortical surface using nearest-neighbor interpolation method.
Each dipole in the EEG source space is assigned the t or
F values of its nearest-neighbor voxels; the mean value will
be used if a dipole has several nearest-neighbor voxels. This
process translates the fMRI cluster matrix into r € RNe*!
in solution space, where Ny is the number of dipoles. The
sources weighting w is given by

1

W= g )

In practice, some brain regions are not activated, which result
in some elements of r being zero. Hence, adding a constant B
can avoid the element value of w being Inf.

For the dSPM, the estimation is given by Sgspy =
RL (LRL” +1C) 'y, where R € RNV¢ is a diago-
nal matrix, denotes source covariance matrix. The diagonal
element value is assigned the t or F values of its nearest-
neighbor voxels, the mean value will be used if a dipole has
multiple nearest-neighbor voxels. Large values indicate that
those locations that are more likely to be active, while small
values indicate locations that are less likely to be active.

C. SELECTION OF THE REGULARIZATION PARAMETERS

In practice, selection of the regularization parameters has
big challenge. For all methods, it’s to control the balance
between the error term |[Y — LJ ||%2€ and the regularization
term to avoid overfitting or underfitting. In the present case,
the parameter selection is to set Ay and A;. Several fixed
ratios were employed in FIST: Ag A = 60:2, 70:2,
80:2, 90:2. Here, we present only the results which derived
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from A; : A; = 70:2. For adjusting the balance between
the error term and the regularization term, the ground truth
in the simulation is used to tune the parameters A and A;.
Starting with strong regularization Ay : A, = 70:2, we then
iteratively update them using factors of 0.8 to let the residual

variance ”SA( — Lj ‘

2 R
o of the estimated sources J matches the
€

residual variance ||Y — LJ IIés of the simulated sources J.
When applying FIST to the real EEG data, the spatial-to-
temporal regularization ratio Ay : A, was set to 90:2. Since
the ground truth is unknown, here we used the same strategy
as STOUT for the regularization parameters tuning.

Ill. SIMULATION SETUP AND DATA DESCRIPTION

A. SOURCE SPACE AND LEAD FIELD MATRIX

The cortex surface and head layers (scalp surface, outer
skull, and inner skull) were obtained using Brainstorm’s
(http://neuroimage.usc.edu/brainstorm/) default MRI, which
is derived from an MNI/Colin27 brain using FreeSurfer
(http://www.freesurfer.net/). The source space was then gen-
erated by down-sampling the cortical surface mesh to a total
6,002 nodes. In the current study, we assumed that the ori-
entation of the source was unknown, and thus, each dipole
had three free directions. The forward model which assessed
the contribution of every dipolar source to EEG sensors was
computed using the Boundary Element Method (BEM) [54].
The lead field matrix L. was calculated using a three-layer
BEM model, which consisted of the brain, skull, and scalp
surface (conductivity: 1 S/m, 0.0125 S/m, 1 S/m; number of
vertices: 642, 642, 1082.), based on the sensor configuration
in the 128-channel ActiveTwo system. The forward model
and lead field matrix computation were performed using
the OpenMEEG implemented in the Brainstorm with default
parameters settings.

B. SIMULATED DATA

To demonstrate the performance of the proposed method,
in this section, we generate simulated EEG data. We first
randomly selected a seed node on the cortical mesh, before
gradually growing it into a patch by adding the nearest node.
Gaussian-damped sinusoidal time courses [59] were simu-
lated for each node in the patch using

7 (1) = exp (— t— c)2/202) xsin@r xfxt) (8

wheret = —0.1:0.001:0.3,f = 17Hz, 0 = 0.02, and ¢ varied
between 0.1, 0.12, and 0.15 to generate different source time
course between different active patches. Simulated noiseless
EEG data was then generated as the product between the lead
field matrix L and the source currents J. The sensor noise
was randomly generated as Gaussian white noise, whose
amplitude was controlled by the signal-to-noise ratio (SNR):
SNR = 101log (P (X) /P (¢)), where P (X) and P (¢) denoted
the power of the signal and the noise, respectively, and were
defined as the mean variance across channels. The overall
noise was then added to the simulated ERP signal. In our
experiments, the following scenarios were tested:
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1. A single patch with approximately 15 activated
dipoles, located on the right parietal region as shown
in Fig. 4 ground truth. The corresponding source time
courses are shown in Fig. 5(A). The sensor-level SNR
was 5-dB.

2. EEG signals with different SNRs. To evaluate the sen-
sitivity to SNR, one patch sources, under different
sensor-level SNRs (e. g. -2, 2, 5, and 10-dB), were
simulated.

3. Two patch sources, each with approximately 15 acti-
vated dipoles, located on the left Middle Temporal and
Precentral Gyrus, as shown in Fig. 7. The correlation
coefficient between the sources time course of different
active patch was 0.9. The sensor-level SNR was 2-dB.

4. Two patch sources with different correlation coeffi-
cients (e.g. 0.2, 0.6, 0. 9) between the source time
courses of different active patch. Each had approx-
imately 15 activated dipoles. The sensor-level SNR

was 2-dB.
In scenario 1 and 2, the source time courses were simu-

lated based on equation (8), with ¢ = 0.15 and 0 = 0.02.
In scenarios 3 and 4, for the correlation coefficient 0.9,
we used the same signals as in scenario 1 for the dipoles
in one of the patch, and introduced a 5-ms delay in another
patch. To avoid the potential bias at the patch position,
50 experiments were conducted for each condition, such
that the generated cortical patch sources covered most brain
regions, including both superficial and deep sources.

C. REAL DATA

1) DATA ACQUISITION

The real EEG and fMRI data used in this study were
downloaded from the SPM website publicly available
online (http://www.fil.ion.ucl.ac.uk/spm/data/). The dataset
was recorded from the same subject with the same experimen-
tal paradigm. The experimental paradigm involves random-
ized presentation of 86 faces and 86 scrambled faces for each
run (totally 2 runs) [55]. The EEG data were recorded on a
128-channel ActiveTwo system, and sampled at 2048 Hz. The
fMRI data were acquired using a gradient-echo EPI sequence
on the Sonata. The source space and lead field matrix were
calculated with the way described in *““Source Space and Lead
Field Matrix” section.

2) ANALYSIS OF FACE-PROCESSING TASK EEG AND FMRI
DATA

EEG data was preprocessed using the public free softw-
are EEGLAB (http://cognitrn.psych.indiana.edu/busey/temp/
eeglabtutorial4.301/). It was bandpass filtered at 0.1-40Hz,
down-sampled to 1000 Hz and transformed to the average ref-
erence. The EEG data was then decomposed into independent
components using Independent Component Analysis (ICA)
method [56]. The components reflecting muscle activity, eye
movements and eye-blink artifacts were visually identified
and removed. Since each artifact has its typical topogra-
phy and wave shape, it is easy to visually identify the
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artifacts from independent components (see [57] for more
details). After excluding the artifacts, the clean EEG signal
was reconstructed, and segmented into epochs beginning
100 ms pre-stimulus onset and ending 300 ms post-stimulus
onset, a 100 ms pre-stimulus baseline was subtracted from
each epoch. Finally, each condition got 172 trials for cal-
culating the ERPs. For source localization, the trials cor-
responding to the face presentations were averaged to
obtain face-processing ERPs. The ERPs exhibited a max-
imal activity peak approximately 160 ms after the stimu-
lus onset, in accordance with a face-specific “N170” [27].
It appeared an enhancement of a negative component at
occipito-temporal channels, or enhancement of a positive
peak near central channels. These effects are shown as a
topography map and times series in Fig. 2.

FIGURE 2. Face processing ERP. The topographic map is shown at 160ms
after stimulus onset.

FIGURE 3. Thresholded SPM(T) of face processing in MNI space from one
subject.

fMRI data preprocessing and statistical analysis were per-
formed using SPM12, with a conventional preprocessing
pipeline including the following: realignment, slice timing
correction, normalization, and spatial smoothing. Statisti-
cal analysis was performed using the GLM. An SPM of
the T-statistic was created, which compared face processing
against baseline. This SPM{T} image was then thresholded
for regions of at least 10 contiguous voxels, which survived
the threshold for a local maxima of P < 0.05 (FEW-corrected
across the whole brain). Fig. 3 shows the threshold SPM{T}
image. The clusters were mainly located at the bilateral mid-
fusiform, bilateral occipital, and medial frontal areas [55].
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The clusters in the SPM{T} image were then converted into
prior source weighting w across the 6002 dipolar sources
on the cortical mesh, using the previously described steps.
Only voxels with a positive value were considered for the
conversion. Voxels with negative values were set to zero
before the conversion. It should be noted, however, that fMRI
prior from a SPM{T} or SPM{F} image that corresponds
to a contrast between the responses to faces and scrambled
faces stimulations should be used for the source localization
analysis of differential ERPs generated from the two types of
stimulations.

D. PERFORMANCE METRICS

We used the following three performance metrics to eval-
uate the performance of the compared source localiza-
tion methods: the earth mover’s distance (EMD) [58],
area under the receiver operating characteristic (ROC)
curve (AUC) [7], [26], [59], and mean square error
(MSE) [59]-[60]. j and J denote the estimated and simulated
current sources, respectively. The energy of the i simu-
lated and estimated source current were defined as e(i) =

2 2 2 . A2 (a2 (32
J@P+ @7+ 0P e = (1) (@) + ()"
If the energy of the i dipole source e(i) # 0, é(i) # O,
we consider the i’ dipole source is active.

EMD measures the localization error, and a lower EMD
value means lower localization error [58]. It’s defined as

, 1 <m,n <Ny 9

where D; ; is the geodesic distance between the i’ simulated
source and the j7 estimated source, F;, j denotes the energy
cost between the i simulated source and the j”* estimated
source, and it can be obtained by minimizing the following
overall cost:

m n
ok — ] .. .
F; = ar%mm Z Z F;;D;;,

W=l j=1

_Fi’j Z O —_
n

ZFi,j <e@, l1<i<m
j=1
m
SEL Y Fij<@(), 1<j<n
i=1

> Fij=min | > e, 21: e ()
e

| i=1 j=1 i=1

(10)

AUC is used to assess the sensibility and specificity of
the source estimation [7], [26], [59]. For a chosen threshold
a € [0, 1], if the i dipole energy e(i) > o, we consider
that the i dipole is active. We can then calculate the true
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positive (TP), false positive (FP), true negative (TN) and false
negative (FN) for each threshold «. If €(i) > «, e(i) # O,
the i source is TP; if &(i) > «, e(i) = 0, it’s FP; if &) < «,
e(i) # 0,it’s FN; if &) < «, e(i) = 0, it’s TN. Then,
The ROC curves can be generated based on true positive
rate (TPR) and false positive rate (FPR):

TPR= —— R= — (11)
TP + FN FP+ TN

Since the number of inactive sources (~10,000) is much
larger than the number of active sources (~100) in our sim-
ulations, direct estimate the AUC would have been biased.
To circumvent this problem, the procedure in [7], which
randomly samples the same number of inactive sources as
active sources from both close and far fields of simulated
patches, was also applied in the current study. The close
field is defined as a 10" neighborhood order of simulated
active sources, which as denoted by ©®!0, The far field denotes
the complementary set of ®!9. By choosing the inactive
sources from both the close field and far field, we obtain
two metrics, i.e., AUCose and AUCy,,. Overestimation or
underestimation of the spatial extent of the source would
affect AUC|ose, and the occurrence of false positive gener-
ated far from the simulated patches would reduce the cri-
terion AUCy, [7]. The unbiased AUC is then defined by
AUC = %(AUCCIOSE -+ AUCy,r). To obtain consistent mea-
surements, which are not sensitive to a particular inactive set
selection, the above procedure is repeated 50 times. The mean
AUC generated over those 50 trials is used to evaluate the
detection accuracy [7], [59]. A large AUC value indicates that
a method has high detection sensitivity.

MSE is the square error between the normalized estimated

2
, where
F

jT = j/ HjH and Jt = J/|IJ |l are the normalized estimated
and simulatgd sources, respectively [59], [60]. It’s used to
evaluate the accuracy of the estimated source time course
within the simulated patch. A lower MSE value indicates a
higher accuracy for a method to reconstruct the time course.

Two-tailed paired t-tests were performed on all conditions
in FIST against each of the other compared methods to deter-
mine if FIST yields significantly better estimates.

and simulated source activity: MSE = Hj t— JT‘

E. THE PRIOR SOURCE WEIGHTING OF SIMULATIONS
The prior source weighting of simulated data at each loca-
tion i can be written as
1
e(i) +B

To ensure that the w was derived from experimentally
realistic fMRI data, the energy of simulated sources at loca-
tions that were not activated were varied between five values,
corresponding to 100, 80, 50, 10, and 0% of the maximum
value of activated source energy, respectively. These non-zero
energies of non-active sources provided a mismatch between
fMRI and EEG. This is important because the causes of real
EEG signals are not exactly the same as those of the fMRI

wli] = 12)
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signal, according to the current literatures [52], [61], [62]. B is
a positive random number here. It was set to 1 in the current
study.

For the dSPM method, each diagonal element of R was
given by e(7). While for the energy value of simulated sources
at locations that were not activated were set as the same way
of FIST. The off-diagonal elements of R were set to zero.

IV. RESULTS

A. SINGLE PATCH SIMULATION RESULTS

In this section, we investigate the performance of FIST when
there is only one patch, and perform a quantitative compari-
son with traditional L2-norm constraint methods, including
LORETA and wMNE, as well as a L.21-mixed-norm con-
straint method STOUT and fMRI informed method dSPM.
The source estimations for the above mentioned methods
are shown in Fig. 4. We can see that FIST can recover the
sources in space with higher fidelity than STOUT, while
LORETA and wMNE generate spatially blurred solutions,
and dSPM yields scattered sources. Fig. 5(B-F) presents the
corresponding time course reconstruction of each method.
It shows that the time course reconstruction of FIST and
STOUT are relatively similar with the ground truth, while the
LORETA, wMNE and dSPM are totally distorted due to the
sensitivity to noise.

FIGURE 4. The ground truth of one simulated patch with
approximately 15 active sources and the estimated results
from FIST, STOUT, dSPM, LORETA, and wMNE. Only dipoles with
amplitudes larger than 10% of the maximum value are visible.

We also presented the aforementioned performance met-
rics for all the source localization methods with single patch
under 5-dB SNR, as well as other SNRs (i.e., -2, 2, and
10-dB) in Fig. 6. It shows the mean and standard error
of the mean (SEM) value for each method. Among the
methods, FIST achieves the best performance for MSE
at all tested SNRs (p < 0.001), and has the best per-
formance of EMD among all the methods (p < 0.05)
under —2, 2, and 5-dB SNRs. When at 10-dB SNR, FIST
has numerically smaller EMD values than STOUT with-
out significance (FIST: 2.068 + 0.180, STOUT: 2.356 +
0.151, p = 0.252). However, the EMD values in FIST
are significantly lower than in the other three methods
(p < 0.001). FIST also yields significantly higher AUC val-
ues than STOUT, LORETA, and wMNE, when the SNR
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FIGURE 5. The ground truth and the sources time course reconstructions
of FIST, STOUT, dSPM, LORETA and wMNE under one simulated patch with
5-dB SNR of sensor noise, the source location of the ground truth and the
reconstructed locations by all methods are shown in FIGURE. 4.

FIGURE 6. Performance metrics for the five source localization methods
under one simulated patch with different sensor-level SNRs. The figure
includes the results of 50 simulations. Data are shown as Mean +
standard error of mean (SEM).

is —2, 2, and 5-dB (p < 0.001). The AUC values generated
with FIST are significantly higher than that yielded with
dSPM, with an SNR of -2 and 5-dB (p < 0.001). It is also
numerically higher than that of dSPM under 2 and 10-dB
SNRs (2-dB: FIST: 0.980 % 0.006, dSPM: 0.968 + 0.006,
p = 0.209; 10-dB: FIST: 0.977 + 0.006, dSPM: 0.966 £
0.006, p = 0.313).

B. TWO PATCHES SIMULATIONS RESULTS

To further explore the advantages of FIST, in this section,
we apply the same group of methods to the data with
two simulated patches. The source estimation results are
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FIGURE 7. The ground truth of two simulated patches with approximately
15 activated sources for each and the estimated results from FIST, STOUT,
dSPM, LORETA, and wMNE. The correlation coefficient between the
source time courses of different patches is 0. 9. Only dipoles with
amplitudes larger than 10% of the maximum value are visible.

shown in Fig. 7. We can see that the estimates by FIST
exhibit the closest to ground truth, while STOUT yields over
extend sources. LORETA and wMNE cannot clearly detect
the true number of the patches due to the spatially blurred
reconstruction. Except for the true sources, dSPM also yields
scattered sources in other locations.

FIGURE 8. Performance metrics for the five source localization methods
with three correlation coefficients (i.e., 0.2, 0.6, and 0.9) between two
simulated patches. The figure includes the results of 50 simulations. Data
are shown as Mean = standard error of mean (SEM).

In real EEG recordings, activations from two patches are
more likely to be different. Thus, correlation between source
time courses in different active patch is challenging for
source localization. Therefore, we investigated the influence
of different correlation coefficients between the time courses
of different active patches. Fig. 8 presents the performance
metrics of all the methods with three correlation coeffi-
cients (i.e., 0.2, 0.6, and 0.9). As the correlation coefficient
increases, EMD and MSE values of FIST are increased, while
there are only slight changes for AUC. EMD and MSE values
of STOUT are also increased as the correlation coefficient
increases, but STOUT yields the highest AUC value at cor-
relation coefficient 0.6. EMD values of dSPM are increased
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as the correlation coefficient increases, while there are only
slight changes for AUC and MSE. In contrast, EMD val-
ues of LORETA are decreased as the correlation coefficient
increases, there are slight changes for AUC and MSE. wMNE
provides the highest AUC value at correlation coefficient 0.6,
while there are slight changes for EMD and MSE. Among
the methods, FIST provides the best performance for EMD
and MSE, at all correlation coefficients (EMD: p < 0.001;
MSE: p < 0.001). It has significantly higher AUC values
than STOUT, LORETA and wMNE (p < 0.001) at all corre-
lation coefficients, and numerically higher AUC values than
dSPM without significance (correlation coefficient 0.2: FIST:
0.978 0.007, dSPM: 0.966 £ 0.006, p = 0.132; correlation
coefficient 0.6: FIST: 0.976 &£ 0.007, dSPM: 0.964 + 0.006,
p = 0.219; correlation coefficient 0.9: FIST: 0.974 %+ 0.006,
dSPM: 0.966 =+ 0.006, p = 0.332).

FIGURE 9. Mean Calculation times of FIST, STOUT, wMNE, LORETA and
dSPM for one patch and two patches sources (average over the
50 simulations).

All algorithms are implemented in Matlab2012b on a com-
puter with 3.6 GHz Intel Core i7 processor and 8 GB of RAM.
The calculation times of the algorithms are shown in Fig. 9.
For one patch, FIST only requires about 15 min, STOUT
takes nearly 100 min. In addition, when the activated sources
are increased (two patches), running FIST takes about 20 min,
while executing STOUT takes 150 min longer. LORETA,
dSPM and wMNE require less than 5 min for both 1 patch
and 2 patch sources.

C. REAL DATA RESULT

In this section, we apply FIST, STOUT, LORETA, wMNE
and dSPM to a real EEG data. Fig. 10 presents the source
localization results by applying the five methods to the face
processing EEG data at 160 ms, in which the left/right and
top/bottom view of the cortex are shown for each method.
The corresponding reconstructed source time courses for
each method are shown in Fig. 11. As shown in Fig. 10,
the activations from FIST are mainly localized in the bilateral
fusiform gyrus and occipital pole, which corroborate with
the results from previous studies [55], [59]. STOUT mainly
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FIGURE 10. Source localization results from FIST, STOUT, dSPM, LORETA
and wMNE for face processing EEG, at 160 ms post-stimulation. Only
dipoles with amplitudes larger than 10% of the maximum value are
visible.
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FIGURE 11. The sources time courses estimated by FIST, STOUT, dSPM,
LORETA and wMNE for the face processing EEG.

detects activations in the occipital area. dSPM reconstructs
source activities in the bilateral fusiform gyrus and occipital
pole, sources are also activated in other areas of the brain that
are not functional relevant. LORETA and wMNE reveal peak
activated sources at the occipital and frontal poles, but the
sources around the fusiform area are very widespread.

V. DISCUSSION AND CONCLUSION

In this work, we propose a new EEG-fMRI integration
method for EEG source localization. We combine fMRI infor-
mation as a prior knowledge with a mixed-norm constraint
term which defined in terms of time-frequency decomposi-
tion of the sources. The well-known FISTA [48], [49] which
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based on proximal operators is employed for the FIST opti-
mization. And the performance of FIST is discussed with both
simulated data, as well as real EEG data from face-processing
experiment.

Due to the nature of ill-posed problem, appropriate prior
constraint becomes important for achieving optimal and
unique solutions in EEG source localization [63]. Previous
studies have demonstrated that brain activities may be spa-
tially contiguous [29], [58] and locally homogeneous [27].
The classical LORETA [17] and wMNE methods [16], which
based on the L2-norm penalty, produce fuzzy estimates with
low spatial resolution (Fig. 4), and leads to non-smooth time
courses (Fig. 5 E-F). In particular, we have shown that they
may not be able to clearly distinguish multi-patch sources
(Fig. 7). Another type of method is to use sparse constraint,
including L1-norm [20] and sparsity-inducing norm con-
straint [21], [22]. As previous studies report, sparse con-
strained methods may produce over focal estimates, which
mean that the estimated activations cover fewer cortical
regions than actual sources [64]. An important property of
FIST is that leverage spatial basis functions and L21-mixed-
norm constraint, which can promote spatially sparse and tem-
porally smooth activations [48]. In this sense, FIST presents
better estimation in both space (with better EMDs and AUCs)
and time (with better MSEs) compared with LORETA and
wMNE which use spatial-only constraint.

fMRI, which is another kind of neuroimaging technique
with high spatial resolution [37], [46], is powerful for provid-
ing prior information for EEG source localization. For FIST
and dSPM [39], although both use prior information provided
by fMRI, we note that FIST performed better than dSPM (see
Fig. 6 and 8). The estimation of dSPM is more dependent on
fMRI than FIST, as illustrated in Fig. 4 and 7. The dSPM has
some scattered activations except for the true locations, these
scattered locations are false active sources, but their prior
weighting values R;; are not zeros. In addition, the dSPM
estimation with real EEG data (Fig. 10) has almost the same
active locations with fMRI. In contrast, FIST can avoid
false active source, as shown in Figs. 4 and 7. Meanwhile,
the estimated sources of FIST from real EEG data are mainly
located at the bilateral fusiform gyrus and occipital pole.
These results are consistent with previous studies [55], [59].

As expected, the prior source weighting w in FIST can
help improve computational efficiency. Because each source
has its own weight, as previously mentioned, one with
small weight is likely to be the candidate source. When the
model parameters are optimized, if the prior weighting of
a source is bigger, the time-frequency coefficient is closer
to zero. As such, the source amplitude also closes to zero.
In this sense, the source (or location) without fMRI acti-
vation or with negative activation has big prior weighting.
It helps reduce the number of candidate sources, which means
it decreases the solution space of the source localization
problem. Hence, FIST has fewer candidate sources than
STOUT [34], which saving a great deal of computational time
during optimization (Fig. 9).
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As described above, the prior source weighting scheme
derived from fMRI data is the key to promote method
efficiency. In equation (7), the constant B modulates the
strength of prior source weight. The smaller the value of
B, the stronger the weight of source. Previous studies have
reported that BOLD signals can be directly or indirectly
related to neural activity [60]-[62]. The currents that generate
EEG are roughly synchronous with BOLD signals [52]. How-
ever, there is no evidence demonstrated that EEG and fMRI
signals are exactly generated by the same brain area when a
cognitive task is being processed [61], [62], [65]. Therefore,
if the value of B is too small, the regularization for the
corresponding source would be too strong, which leading the
source estimation depends on the prior fMRI information too
much. Nevertheless, the scheme we proposed in equation (7)
can avoid this issue. The weight of one source (or location)
without positive fMRI activation was set to 1. In this case,
the regularization strength would not be changed.

The mismatch between EEG-fMRI, which is caused by the
highly different temporal and spatial scales at which each are
generated and collected, poses a challenge to any EEG-fMRI
integration analysis. However, it was previously reported that
fMRI BOLD signals correlate with local field potentials [66].
Further, they were also correlated with neuronal activity with
different frequency bands, both at resting state [61], [67] and
during a cognitive task [68]. Based on this evidence, it was
reasonable that our inverse scheme, in which the fMRI priors
were added as source weighting, only partial corresponded to
the fMRI BOLD signals.

In conclusion, this paper proposes a new fMRI informed
EEG source localization method FIST, which employs a
mixed norm constraint defined in terms of time-frequency
decomposition of the sources, and combines the fMRI
prior with it. The designed simulated and real EEG data
demonstrate that FIST has the superiority in spatio-temporal
source recovery ability. By leveraging fMRI information as
a prior, FIST improves the source spatial estimation and
computational efficiency. In addition, FIST has a potential
ability to select the source prior to get better estimation,
without totally depending on fMRI information. Therefore,
FIST proves to be a promising EEG source localization
method for investigating various cognitive tasks and neu-
rological disorders. In the future, we will consider incor-
porate other neuro image modalities, such as sMRI [69]
or diffusion tensor imaging (DTI) [70] in this model.
We will also apply the proposed method to analysis of brain
networks.
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