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ABSTRACT For many physical systems, the fractional-order system can describe the dynamics more
accurately comparing with the integer-order system. However, its parameters, which include not only the
identification of model coefficients but also the estimation of fractional orders, are more difficult to be
identified. This paper proposes a modified quantum bacterial foraging algorithm (MQBFA) for parameters
identification of the fractional-order system, and the MQBFA algorithm is a relatively new issue in recent
years with strong engineering backgrounds. Not only does the proposed MQBFA algorithm apply the real
number encoding of the single gene to effectively perform encoding, but it also utilizes a continuously
varying rotation angle to update the rotation gate. First, a real number encoding of the single gene is
designed to improve the searching efficiency of the algorithm. Second, an improved quantum rotation
angle is applied to update the rotation angle continuously and adaptively. Third, the modificatory factor of
probability amplitude is introduced to enrich the population diversity. In addition, to prevent the generation of
invariant solutions in the early stage of quantum evolution, probability of optimal rotation angle is presented.
Furthermore, the convergence of the proposed algorithm is analyzed. Based on several benchmark functions
and parameters identification of the fractional-order system, simulation results and comparisons demonstrate
the effectiveness of the proposed MQBFA algorithm.

INDEX TERMS Quantum bacterial foraging algorithm, fractional-order system, parameter identification,
rotation angle, real-coded.

I. INTRODUCTION
A. MOTIVATION
In the past few decades, the fractional calculus theory has
attracted attention of many scholars, and the reason lies in
the application of the fractional differential equations for
many actual systems, such as thermal systems [1], power sys-
tems [2], financial systems [3] and hyperchaotic systems [4].
Therefore, it is an important issue to study the fractional-order
theory.

The fractional-order model has been widely used in
many engineering and science applications because of its
lower order, fewer parameters and higher modelling accu-
racy. Recently, considerable attentions have been paid to
study the identification method for the fractional-order
structure parameters [5]–[8]. Based on particle swarm

optimization (PSO) algorithm, Yuan et al. designed a new
method for parameters identification of the fractional-
order chaotic delayed systems [5]. Idiou et al. presented a
novel time-domain identification scheme by using adjustable
fractional-order differentiators to solve a more difficult iden-
tification problem [6]. According to the improvements of
population initialization, searching equation and the ratio
between employed and onlooker bees, Hu et al. introduced a
hybrid artificial bee colony (HABC) algorithm to identify the
unknown fractional-order chaotic systems [7]. Du et al. inves-
tigated an evolutionary optimization approach and applied the
method to identify a series of fractional-order chaotic systems
with unknown initial values and structure [8].

However, with the increase of the complexity of the
fractional-order system, it becomes more and more difficult
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to ensure the accuracy and stability of the system. So, a more
reliable optimization algorithm is reasonable for the design
of the fractional-order system.

B. RELATED WORK
Recently, a new bionic algorithm called bacterial foraging
algorithm (BFA) was proposed by Passino in 2002 [9].
Compared with other optimization algorithms, BFA includes
chemotaxis, reproduction and elimination-dispersal opera-
tions, and establishes a relatively complete information shar-
ing mechanism, which is helpful to improve the stability
and convergence precision of the algorithm. Panigrahi et al.
proposed a multiobjective fuzzy dominance BFA to solve
economic emission dispatch problem [10]. Das et al. applied
BFA to tuning the fractional-order PID controller in a master-
slave chaos synchronization configuration [11]. In [12], BFA
was used to generate accurate model for solar photovoltaic
(PV) module. Mazouz et al. investigated the robustness of
BFA, and combined BFA with PI controller to obtain a good
control effect for high-voltage direct current system [13].
In order to solve the problem of fault diagnosis existed in
aluminum electrolytic cell, Yi et al. presented an optimized
relative transformation matrix using BFA [14]. Based on
smallest univalue segment assimilating nucleus principle and
BFA, Verma and Parihar designed a fuzzy system for edge
detection [15].

Although BFA has made some achievements in practical
applications, it’s still difficult to resolve the problem of slow
convergence rate and large computation, especially in the
high dimensional condition. To improve the performance of
BFA, many BFA variants have been proposed [16]–[19].
To solve the function optimization problem, Kim et al. [16]
proposed a hybrid algorithm which was composed of genetic
algorithm and bacterial foraging algorithm. To accelerate
the optimization speed, Dasgupta et al. [17] presented a
novel BFA variant with adaptive computational chemotaxis.
To make full explore the potential of BFA, Li et al. [18]
designed a newBFAwith varying population. Chen et al. [19]
put forward a new bacterial colony foraging algorithm based
on the combination of colony foraging strategy and BFA.
These algorithms are classified into two categories: improve
their own parameters and present new algorithms combining
with other algorithms. In addition to above improvement
strategies, another important improvement is to introduce
quantum mechanisms into BFA [20]. Compared with BFA,
quantum bacterial foraging algorithm (QBFA) has the quan-
tum characteristics and greatly increases the search space,
which can improve the overall performance. Li et al. [21]
successfully solved the traveling salesman problem using
QBFA. In [22], QBFA was used in spectrum sensing, which
verified the effectiveness of the algorithm.

C. CONTRIBUTION
The traditional binary coding is adopted in QBFA, but the
coding and decoding operations will affect the efficiency
of the algorithm. In addition, the rotation angle of the

classical QBFA is obtained by look-up table. The rotation
angle obtained in this way is discrete and fixed, which can
not affect the solution space, and limits the increase of popu-
lation diversity. Thus, a modified quantum bacterial foraging
algorithm (MQBFA) is proposed in this paper. The main
contributions can be summarized as follows.

1) A real coding method of single gene is designed to
preserve the rich population brought by quantum coding, and
eliminate the time of searching optimum.

2) An improved quantum rotation angle is proposed, which
can update the rotation angle continuously and adaptively,
and enhance the global searching ability of the algorithm.

3) The application of the modificatory factor of probability
amplitude enriches the population diversity.

4) A concept called probability of optimal rotation angle
is presented to improve the searching performance of the
algorithm.

The remainder of this paper is organized as follows.
In section 2, the modified quantum bacterial foraging algo-
rithm (MQBFA) is proposed. The convergence of the pro-
posed MQBFA is analyzed in section 3. In section 4,
the parameter of MQBFA is analyzed, and the performance
of MQBFA is evaluated by seven benchmark functions.
In section 5, MQBFA is applied to identify the parameters
of fractional-order system. Conclusions are summarized in
section 6.

II. MODIFIED QUANTUM BACTERIAL
FORAGING ALGORITHM
A. CLASSICAL QBFA ALGORITHM
In theQBFA algorithm, quantum bit is the smallest unit which
is also called qubit. A qubit can represent the state 0 and
state 1 as well as any superposition of states between the two
states. Thus a quantum bit is represented as

ϕ = α|0〉 + β|1〉, (1)

where, α and β are the probability amplitude of state |0〉 and
state |1〉, respectively, andmeet the requirement: α2+β2 = 1.
α2 and β2 are the probability of state |0〉 and state |1〉, respec-
tively. A qubit is represented by the probability amplitude.
For example, a chromosome with qubits is represented as[

α1 α2 · · · αp

β1 β2 · · · βp

]
, (2)

where |α|2 + |β|2 = 1, i = 1, 2, · · · , p
In the QBFA algorithm, the update process of chromosome

state is accomplished by a single quantum rotation gate which
is defined as

U (θ ) =
[
cos θ − sin θ
sin θ cos θ

]
, (3)

Obviously, U (θ ) is a unitary matrix. The adjustment opera-
tion of the quantum rotation gate is shown as follows[

α′i
β ′i

]
= U (θi)

[
αi
βi

]
=

[
cos θi − sin θi
sin θi cos θi

] [
αi
βi

]
, (4)
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where the rotation angle is defined as θi = s(αi, βi) ·1θi, and
its value can be obtained by look-up table from [20].

The QBFA algorithm is a probabilistic algorithm, in which
the bacterial population is composed of quantum chromo-
somes. Suppose that the population of the tth generation is
Q(t) = {qt1, q

t
2, · · · , q

t
n}. The probability amplitude of the jth

chromosome is given by

qtj =
[
αt1 αt2 · · · αtN
β t1 β t2 · · · β tN

]
, j = 1, 2, · · · ,N , (5)

where, n is the population size, and N is the chromosome
length.

B. THE PROPOSED MQBFA ALGORITHM
In this paper, there are mainly four improvements in our
proposedMQBFA algorithm including encodingmechanism,
update strategy, population initialization and the improve-
ment for optimal rotation angle.

1) ENCODING STYLE OF MQBFA ALGORITHM
Compared with binary coding in classical QBFA, an extra
storage space exists in the real coding of single gene, and the
coding mode is as follows,∣∣rx1 rx2 · · · rxn

∣∣ , (6)

r = lmax − lmin, (7)

where r is the range of the real domain, lmax is the upper
limit of the real domain, lmin is the lower limit of the real
domain, n is the length of chromosome, xi(i = 1, 2, · · · , n)
is a random number generated from the interval [0, 1], and xi
corresponds with the ith probability amplitude in QBFA algo-
rithm. The form of the corresponding probability amplitude
is as follows,∣∣∣∣cos θ1 cos θ2 · · · cos θn

sin θ1 sin θ2 · · · sin θn

∣∣∣∣ (8)

The chromosome with a length of n is coded by the real
coding of single gene, and the probability cos θ2i related to
the probability amplitude cos θi is compared with a random
number rand generated between 0 and 1. If cos θ2i > rand ,
the measured value of the corresponding gene is set as r ∗ xi,
otherwise, it is set as r ∗ rand . The real number encoding of
the single gene is essentially the expansion of the quantum bit
encoding.

The new encoding mechanism not only preserves the qubit
encoding, but also replaces the binary encoding with real
encoding, which retains the rich population brought by quan-
tum encoding and eliminates the time converted from binary
form to decimal form.

2) MODIFICATORY FACTOR OF PROBABILITY AMPLITUDE
In order to improve population diversity and searching effi-
ciency of the algorithm, the modificatory factor of probability
amplitude (MFB) in [23] is introduced. As the name suggests,
the modificatory factor of probability amplitude is used to

modify the probability amplitude updated by quantum rota-
tion gate. MFB is defined as follows.

[
α′i
β ′i

]
=


(
√
γ ,
√
1− γ )T , |α′i|

2
≤ γ

(
√
1− γ ,

√
γ )T , |α′i|

2
≥ 1− γ

(α′i, β
′
i )
T , else

(9)

where γ is a relatively small positive number, and [α′i β
′
i ]
T

is the probability amplitude updated by quantum gate.

3) IMPROVED QUANTUM ROTATION ANGLE
Some parameters are defined as follows:
θi represents the angle of a quantum bit on the unit circle

of the current bacterium.
θb denotes the angle of a quantum bit on the unit circle of

the optimal bacterium.
[α∗i β∗i ]

T is the probability amplitude related to a quantum
bit of the current optimal bacteria.

[αi βi]T is the probability amplitude related to a quantum
bit of current bacteria.
θ0 is the initial value of the rotation angle.

Ai =

∣∣∣∣α0 αiβ0 βi

∣∣∣∣ and sgn(t) =

{
1, t ≥ 0
−1, t < 0

is the sign

function.
The improved quantum rotation angle is defined as

S1 = sgn|Ai|

S2 = sgn(θi − θ∗), (10)

θ = S1θ0e−(θi−θ
∗)S2 . (11)

S1 is used to control the direction of the rotation angle, and
S2, θ0, θi and θ∗ are used to control the size of the rotation
angle. When m = θi − θ∗ > 0, we have S2 = 1. Thus, |θ ′| =
θ0e−m < θ0, which implies the value of rotation angle varies
towards to the trend of less than θ0. When m = θi − θ∗ = 0,
we get S2 = 1. So, |θ ′| = θ0e−m = θ0, which implies the
value of rotation angle varies is the same as the initial value
θ0. When m = θi − θ

∗ < 0, we have S2 = −1. Therefore,
|θ ′| = θ0e−m > θ0, which implies the value of rotation angle
varies towards to the trend of greater than θ0. The rotation
angle obtained by (11) is continuous, and the solution space
can be searched comprehensively, which drives the algorithm
to find the global optimal solution quickly.

From above analysis, once the value of the initial rotation
angle is fixed, the value of the quantum rotation angle is
adjusted adaptively around θ0 until the global optimal rotation
angle is obtained. Thus, the value of θ0 has a great influence
on the quantum rotation angle.

4) PROBABILITY OF OPTIMAL ROTATION ANGLE
In the classical QBFA algorithm, the initial values of all
probability amplitudes are set as 1/

√
2. So, the current opti-

mal rotation angle is the same as the rotation angle of each
qubit, which is easy to generate the invariant solutions in the
early stage of quantum evolution, and even deteriorates the
performance of the algorithm. Motivated from the mutation
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operation in genetic algorithm, this paper presents a concept
called probability of optimal rotation angle. The probability
of optimal rotation angle Pθ is adopted to modify the optimal
rotation angle, and the corresponding expression is shown
below.

θb =

{
θ ′ ∗ µ, Pθ < ε

θ ′ ∗ (1− µ), Pθ ≥ ε
(12)

where µ and ε are random numbers obeying (0, 1) distribu-
tion. θb takes θ ′ ∗µ or θ ′ ∗ (1−µ) with the same probability.
So, the value of Pθ is set as 0.5.

III. CONVERGENCE ANALYSIS
Definition 1: Suppose that the population size is S. Define
that f represents the fitness function value, and fbest repre-
sents the global optimal solution which is defined as fbest =
minxti ∈X t {f (x

t
i ), i = 1, 2, · · · , S}. Let X t = {x t1, x

t
2, · · · , x

t
S}

represents the position information at the tth iteration.
Definition 2: For a set of random sequences τ (n =

1, 2, · · · ), where existing a random variable τ , let
p{ lim
n→∞

τ = τ } = 1; or for ∀δ > 0, there is p(∩∞n=1∪
∞
k≥n |τk−

τ | ≥ δ) = 0, which we call random sequence τn converges to
random variable τ with probability 1.
Definition 3:Define that E = {E1,E2, · · · ,ED} represents

the searching space, whereD =
n∏
i=1

ai−bi
ε

. Suppose that a and

b are the upper and lower bounds of the searching space, and
ε is a given precision. The state space is defined as:
(1) A1 = {Ei||fEi−fbest | < ε}

(2) A2 = {Ei||fEi−fbest | ≥ ε}
Suppose that p11 is the transfer probability from A1 to A1,

p21 is the transfer probability from A2 to A1, and p22 is the
transfer probability from A2 to A2. Because the strategy of
reserving optimum is used for the MQBFA algorithm, we get
p11 = 1.
Lemma 1 [24]: Suppose that (B1,B2, · · · ,Bn) is an event

sequence of mutual independence in probability space, and
p(Bk ) is the corresponding probability. Then,

(1)
∞∑
n=1

p(Bk ) <∞, p(∩∞n=1 ∪
∞
k=n Bk ) = 0

(2)
∞∑
n=1

p(Bk ) = ∞, p(∩∞n=1 ∪
∞
k=n Bk ) = 1

Lemma 2 [25]: The population sequence {Qt , t ≥ 0} of
MQBFA is a homogeneous Markov chain with finite state
space.
Theorem 1: The optimal solution sequence {X t , t ≥ 0} of

MQBFA is a homogeneous Markov chain with finite state
space.

Proof: The state transfer process in MQBFA is car-
ried out in a finite space, and its operations such as quan-
tum coding, measurement, chemotaxis, reproduction, and
elimination-dispersal, are performed in an independent ran-
dom process. Besides, the whole process of evolution adopts
the strategy of reserving the best individual, which means
that Qt+1 is only related to Qt and has no relationship with

the previous population information. According to Lemma 1,
we can complete the proof of Theorem 1. �
Theorem 2: There exists a constant µ ∈ (0, 1) in MQBFA,

thus, we have p22 < µ.
Proof: For a given precision ε > 0, when ∃l > 0 and

|X − Xbest | ≤ l, we have |f (x) − f (xbest )| < ζ , where Xbest
is the optimal solution of the optimization problem, and 0 <
ζ < ε. Let S1 = {X ||X − Xbest | ≤ l}, and it is easy to find
that S1 ⊂ A1.
In the MQBFA algorithm, the operation for modifying the

optimal rotation angle is the same as the Gauss mutation.
Assume that the individual X in A2 is implemented with the
operation and generate a new individual X + λ, then we have

p{(X + λ) ∈ S1} < p{(X + λ) ∈ A1} = p21. (13)

The random variable λ follows Gauss distribution N (0, λ2)
whose probability density function is defined as

f (x) =
1

λ
√
2π

exp(−
x2

2λ2
),

Because

p{(X + λ) ∈ S1} =
n∏
i=1

p{|Xi + λ− Xbest | ≤ l}

=

n∏
i=1

∫ Xbest−Xi+l

Xbest−Xi−l
f (x)dx,

we get
n∏
i=1

∫ Xbest−Xi+l

Xbest−Xi−l
f (x)dx < 1⇒

0 < p{(X + λ) ∈ S1} < 1.

Because the random variable λ follows Gauss distribution,
the variable x related to p{(X + λ) ∈ S1} is continuous. Thus
∃X ′ ∈ E , we have

p{(X ′ + λ) ∈ S1} = min{p{(X + λ) ∈ S1}}. (14)

Let µ = 1− p{(X ′+λ) ∈ S1}. According to (13) and (14),
we get

p{(X ′ + λ) ∈ S1} ≤ {p{(X + λ) ∈ S1}} < p21 = 1− p22 ⇒

p22 < 1− p{(X ′ + λ) ∈ S1} ⇒ p22 < µ. �
Theorem 3: TheMQBFA algorithm is globally convergent.
Proof: For a given precision ε > 0, after evolution from

generation t to generation t+1, the probability of not meeting
the precision is p′ = p22 = p{|f (X ) − f (Xbest )| ≥ ε}.
According to Theorem 2, we have

∞∑
t=1

p′t <
∞∑
t=1

µ. (15)

Becauseµ ∈ (0, 1), we can get
∞∑
t=1

µ =
µ

1−µ , and
∞∑
t=1

p22 <
µ

1−µ < ∞. According to Lemma 1, we have p(∩∞n=1 ∪
∞
k=n

|ft − fbest | ≥ δ) = 0. Based on Definition 2, we can
draw the conclusion that the MQBFA algorithm is globally
convergent. �
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TABLE 1. Test results with different θ0.

IV. PERFORMANCE EVALUATIONS
A. PARAMETER ANALYSIS
According to the analysis for the improved quantum rotation
angle, it is clear that the optimal rotation angle is obtained
around θ0, which implies that θ0 has a great influence on the
performance of the algorithm. In order to obtain an excellent
performance of the algorithm, the selection for θ0 is essential.
Therefore, a classical function named Sphere is used for
testing the MQBFA algorithm to get an appropriate θ0. The
function is defined as

f1(x) =
n∑

d=1

x2d . (16)

When x = (0, 0, · · · , 0), the function get the optimum 0.
In Sphere function, the searching space is set as [-100,100],
and the order is set as 2. For the MQBFA algorithm, in order
to make the simulation results more convincing, parameters
such as S (population size), Nc (number of chemotaxis),
Nre (number of reproduction), Ned (number of elimination-
dispersal), Ped (probability of elimination-dispersal) and len
(length of chromosome) are set according to [21]. The spe-
cific parameters are set as: S = 40, Nc = 50, Nre = 5,
Ned = 2, Ped = 0.25 and len = 44. Run the algorithm
50 times and the test results with different values of θ0 are
listed in Table 1.

From Table 1, when θ0 = 1.1π , the proposed MQBFA
algorithm get the best results regardless of the average
value, the worst value or the variance, which implies that
the MQBFA algorithm has higher calculation accuracy and
stronger stability. It is easy to find that the algorithm can get
the same optimal value for different θ0. The reason for the
same optimal value lies in the algorithmic structure.

To test the performance of the proposed method,
the MQBFA algorithm is compared with QBFA, QGA and
PSO algorithms by seven benchmark functions in Table 2.
In Table 2, f1 − f4 are multimodal functions, and f5 − f7 are
unimodal functions.

B. PARAMETER EVALUATIONS
For theQBFA algorithm, the parameters are set based on [21]:
S = 40, Nc = 50, Nre = 5, Ned = 2, Ped = 0.25, len = 44.
For the MQBFA algorithm, The values of Nc, Nre, Ned , len
and Ped are set as that in QBFA, and other parameters are
set as: θ0 = 1.1π and Pθ = 0.5. For the QGA algorithm,
the maximum number of iterationsMaxIter = 500, crossover

probability Pcross = 0.7 and mutation probability Pm =
0.15 [21]. Because MQBFA, QGA and QBFA algorithms
are coded by binary mode, PSO algorithm is introduced to
highlight the good performance of the proposed scheme. For
the PSO algorithm, the population size S = 40, the maximum
iteration number MaxIter = 500, the inertia factorW = 0.8,
and the learning factor c1 = c2 = 1.5 [26].
The difficulty of optimization enhances with the increase

of dimension. To demonstrate the effectiveness of the pro-
posed MQBFA algorithm, the dimension of the seven bench-
mark functions is set to 30. Running 30 times, the average
value (Mean ) and the number of iterations (Iter) of test
results are listed in Table 3.

From Table 3, we note that the MQBFA algorithm has
more accurate results than those of QBFA, QGA and PSO
algorithms, which indicates that the MQBFA algorithm has
higher calculation accuracy. Furthermore, from the aspect of
Iter , we can easily find that the proposed approach has faster
convergence rate than QBFA and QGA algorithms. Besides,
the MQBFA algorithm has a relatively smaller convergence
rate than PSO. The reason lies in that the MQBFA algorithm
adopts binary encoding, which affects the convergence rate
of the algorithm.

V. PARAMETER IDENTIFICATION OF
FRACTIONAL-ORDER SYSTEM
A. FRACTIONAL CALCULUS THEORY
1) DEFINITION OF THE FRACTIONAL-ORDER DERIVATIVES
AND INTEGRALS
Although the fractional calculus has a history of more
than 300 years, it is applied in practical fields in recent
decades. In the fractional calculus theory, the basic operator
is defined as

aDαt =



dα

dtα
, Re(α) > 0

1, Re(α) = 0∫ t

a
(tτ )−α, Re(α) < 0,

(17)

where a and t are the upper and lower bounds of the opera-
tional factor. α is the order of calculus, and Re(α) is the real
part of α. In the development of the fractional calculus, there
are several typical definitions: Caputo, Riemann-Liouville
(RL) and Grumwald-Letnikov (GL) definitions [27]. For
example, GL is defined as

aDαt f (t) = lim
h→0

1
hα

[(t−a)/h]∑
j=0

w(α)
j f (t − jh), (18)

w(α)
j =

(−1)j0(α + 1)
0(j+ 1)(α − j+ 1)

, (19)

where 0(·) is the 0 function, [(t − a)/h] is the largest integer
that is not greater than (t − a)/h, and h is the sampling
period.
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TABLE 2. Basic information of benchmark functions.

TABLE 3. Performance comparison of MQBFA, QBFA, QGA and PSO algorithms.

2) THE FRACTIONAL-ORDER SYSTEM
So far, we have found that many fields such as electrochem-
istry, control theory and biology, can be accurately described
by the fractional difference equations. Under zero initial con-
dition, the corresponding transfer function of the fractional
difference equations is given by

G(s) =
Y (s)
U (s)

=
bmsβm + bm−1sβm−1 + · · · + b0
ansαn + an−1sαn−1 + · · · + a0

, (20)

where ai and bi are real numbers,αi and βi are calculus orders,
u(t) and y(t) are the input and output signals of the system,
respectively.

With the increase of the fractional order, it is difficult
to accurately identify the fractional-order systems. In view
of this, a fractional-order system with continuous order is
proposed in [28]. And its expression is described as

G(s) =
Y (s)
U (s)

=
bmsmβ + bm−1s(m−1)β + · · · + b0
ansnα + an−1s(n−1)α + · · · + a0

. (21)

B. SIMULATIONS
To further prove the effectiveness of the proposed scheme,
theMQBFA algorithm as well as QBFA, QGA and PSO algo-
rithms is applied to estimate the parameters of the fractional-
order system. The parameter settings of all the algorithms are
shown in Sec 4.2.

The simulations are implemented using MATLAB 7.11 on
Intel(R) Core(TM) i5-2320 CPU, 3.00 GHz with 4 GB RAM.
And the specific identification steps are as follows.

Step1:Determine the parameters to be identified, including
model parameters and order.
Step2: Determine the input signal and the fitness function.

In this paper, The sum of the squared errors between the out-
put y(t) and the true value y0(t), i.e., J =

∫ T
0 [y(t)− y0(t)]2dt

is used as the fitness function, and the sinusoidal signal is
introduced as the input signal.
Step3: Initialize the parameters of the algorithm to generate

searching vector.
Step4: The parameters in the fractional-order system are

identified with the corresponding algorithm.
Step5: If the deadline condition is satisfied, the algorithm

will stop, otherwise, go to step 4.
The structure chart of parameter estimation for the

fractional-order system is shown in Figure 1.

1) IDENTIFICATION FOR THE KNOWN FRACTIONAL-ORDER
MODEL STRUCTURE
Suppose that the transfer function of the identified system is
known, its expression is shown below.

G(s) =
1

2.2S2.3 + 1.4S1.1 + 1
(22)

For the fractional-order system, the searching range of
coefficients is set as [0, 3], and the fluctuation range of
order is limited as [−0.05, 0.05]. The identification vector
is described as

x = [a1 a2 a3 b1 b2],
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FIGURE 1. Structure chart of parameter estimation for fractional-order
system.

TABLE 4. The estimation results of various algorithms.

where a1, a2 and a3 are the model parameters, and b1 and b2
are the orders of the model. Table 4 shows the best, the mean
and the worst estimated parameters with over 30 independent
runs.

TABLE 5. The estimation results of various algorithms.

From Table 4, an interesting observation to notice that the
estimated values obtained by MQBFA are much closer to the
true values, which reveals that the proposed method is more
accurate than the other three algorithms being compared.
In addition, it is easy to find that the MQBFA algorithm
can obtain the optimal fitness function values whether in the
optimal value, the mean value or the worst value.

In order to verify the search efficiency of MQBFA algo-
rithm, the evolutionary process of the fitness function and the
estimated parameters are shown in Fig. 2. Fig. 2 illustrates
that the estimated parameters can quickly converge to the
true values, and the fitness function value also has a fast
convergence rate, which means the MQBFA algorithm has
better convergence characteristics.

In order to study the influence of the variation range of
order on the identification effect, the variation range of order

FIGURE 2. Evolutionary curves of estimated parameters and adaptive function values.
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TABLE 6. The model structure.

is set as [−0.5, 0.5], and other conditions remain unchanged.
The statistical results are listed in Table 5.

FromTable 5, it is worth noting that the identification effect
can be improved significantlywith the decrease of the random
number range of order. The main reason is that the objective
function value affected by the order changes exponentially,
which indicates that there is a large change in the function
value with a minor change of order. Thus, the appropriate
reduction of the order helps shorten the convergence time of
the algorithm and improve search ability.

2) IDENTIFICATION FOR THE UNKNOWN
FRACTIONAL-ORDER MODEL STRUCTURE
In the model identification, the model structure is often
unknown. When one assumed model structure matches the
real model, the measured error will be smaller than that of
other models. Usually, the high-order systems rarely occur in
the actual system, and the higher order fractional-order sys-
tem can be reduced to one of themodels in Table 6. Therefore,
the 4 models in Table 6 are selected for simulation study. The
transfer function of the identified object is assumed to be

G(s) =
1

2.5S2.3 + 1.4S1.4 + 0.8S0.6 + 1
. (23)

The statistical results are listed in Table 7.
Table 7 shows that MQBFA algorithm outperforms other

three algorithms. Besides, we can find that the performance
index J of model 3 is significantly smaller than that of other
models, so model 3 is closest to the target model. Moreover,
taking the J value of model 3 as the dividing point, the J value
decreases first and then increases. Furthermore, the difficulty
of parameters identification is greatly increased with the
increase of the parameters of the system. We can also see
that the identification accuracy of a2, b1 and b2 obtained by

TABLE 7. The estimation results of various algorithms.

MQBFA is not the best. We take the parameters obtained by
MQBFA as an example to explain the above phenomena. a2,
a4, b1 and b2 are used as independent variables respectively,
and the values of independent variables in the test are based
on the results obtained by the other three algorithms. The test
results are listed in Table 8.

In Table 8, the data of line 1 represents the results obtained
by MQBFA. The values of a2 obtained by the other three
algorithms are used as independent variables, and other vari-
ables remain unchanged, and the performance index J are
listed in lines 2-4. Similarly, the data of lines 5-13 represents

TABLE 8. Test results using a2, a4, b1 and b2 as independent variables.
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FIGURE 3. Evolutionary curves of estimated parameters and adaptive function values.

the results which are obtained by using a4, b1 and b2 as
independent variables respectively. Table 8 reveals that a
small change of a2, b1 and b2 has little effect on the per-
formance index J , whereas a slight change of a4 causes a
significant change of the performance index J . In the early
iterations of the MQBFA algorithm, J changes from big to
small with the tuning of all the parameters. However, in the
later iterations of the algorithm, when J becomes smaller
mainly due to change of a4, the algorithm is insensitive to
minor changes of other parameters, and the algorithm tends to
converge gradually. The evolutionary processes of estimated
parameters in model 3 are shown in Fig. 3. Fig. 3 reveals that
the proposed MQBFA algorithm has the fastest convergence
speed.

VI. CONCLUSIONS
In this paper, based on a modified quantum bacterial foraging
algorithm, a new parameter estimation scheme is proposed to
identify the parameters of the fractional-order system. A new
encoding mechanism is designed to improve the searching
efficiency of the algorithm. Besides, a novel update strat-
egy for the quantum rotation gate is presented to further
strengthen the convergence rate of the algorithm. In addition,
to enrich the diversity of population, a modificatory factor of
probability amplitude is introduced in population initializa-
tion. Furthermore, the application of probability of optimal

rotation angle enhances the searching ability of the algorithm.
To verify the correctness of the MQBFA algorithm, seven
benchmark functions are adopted to test the performance.
In contrast to the other three algorithms, the test results
demonstrate the correctness of the proposed scheme. In order
to test the validity and convergence rate of the proposed
algorithm, the MQBFA algorithm as well as other algorithms
is used for parameters identification of a typical fractional-
order system. Numerical simulations show that the proposed
approach is an effective method with faster convergence rate
and higher precision.

For a complex system with multiple parameters (more
than 10), if we want to obtain a good performance, the time
complexity will be increased due to the complex structure
of MQBFA. So, in the future work, we will enhance the
performance by improving the structure of algorithm. Fur-
thermore, we will utilize the proposed algorithm to identify
the parameters of the actual fractional-order model, such as
the Cole impedance model.
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