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ABSTRACT A novel modeling method, which is based on a min-batch gradient descent neural
network (MGD NN), is proposed to establish an adaptive dynamic model of a turbofan engine in a large
flight envelope. For establishing a high precision engine dynamic model in a large flight envelope, it always
needs a very big training data. This proposed method adopts the MGD algorithm, which is more suitable
to train a neural network for big training data due to it consumes much less time to update NN parameters.
Dramatically, the huger training data of the MGD NN is the better generalization performance it would be.
Furthermore, a regularization strategy, which will also improve the generalization performance of the MGD
NN, is applied here. Finally, compared with a popular support vector regression (SVR) modeling method,
the proposed method for the adaptive dynamic model of the turbofan engine is validated within a supersonic
cruise envelops. The results show that the proposed method has not only much higher precision, but also less
data storage and better real-time ability than the SVR method.

INDEX TERMS Neural network, real-time, dynamic adaptivemodel, support vector regression, data storage.

I. INTRODUCTION
Aero-engine model especially the dynamic model always
plays a vital role in aero-engine control systems designed
process. As well known, some necessary simulation experi-
ments should be conducted in advance by employing a math-
ematic aero-engine model instead of the real aero-engine for
reducing the costs, decreasing accident risks and shortening
development period [1].

With the development of computer science, aero-engine
controls are experiencing an evolution from sensor-based
type to model-based ones. This model-based control con-
cept will fully utilize the information of the controlled
plant as reported in NASA (National Aeronautics and
Space Administration) IEC (Intelligent Engine Control) pro-
gram [2]–[4]. For example, modern aero-engine controls like
life extending control [5], fault diagnosis [6], performance
seeking control [7] and performance deterioration mitiga-
tion control [8] are all implemented with on-board adaptive
dynamic model of aero-engine, which is able to accurately
track engine parameters for on-line monitoring and
self-optimization.

However, aero-engine is a multi-variable, nonlinear and
extremely complicated thermodynamics system, operating
with changeable environment and large flight envelop.
In addition, the performance of its components is certain
to gradually degrade during aero-engine service period.
So, establishing a high precision dynamic model for
aero-engine even though in a small envelope, such as
sea level test state, is intractability. Nevertheless, it is
still in urgent need to establish on-board adaptive model
embedded in FADEC (Full Authority Digital Electronic
Controller) to real-time tracking the engine performance,
as preliminarily done for famous F119 turbofan engine health
management [9], [10].

So far, the most popular method for establishing on-board
dynamic model of aero-engine is PLM (Piecewise Linear
Modeling). This method has good real-time performance
and is suitable for some steady state performance seek-
ing [9]–[12]. However, significant cumulative errors do
inevitably exist in the simplified piecewise process.

For the on-line optimization of some transient operations,
such as acceleration, deceleration and afterburning on/off, the
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piecewise linear model is not good enough anymore. And
some alternative methods need to provide much better tran-
sient precision for some key parameters, such as compressor
surge margin and turbine inlet temperature. Besides, when
modeling within a large flight envelope, it needs a huge data
storage to store vast state variable models.

Hence, a SVR (Support Vector Regression) method was
reported and devised on-board engine dynamic models in
references [13], [14]. However, unfortunately, along with the
increasement of the training data, the training time of SVR
will increase rapidly. Moreover, for huge data within a large
fight envelope, it is very hard to only set up a single SVR
model instead of many sub SVR models [14]–[19].

With the ability of approximating nonlinear function with
arbitrarily high precision [20], [21], the NN (Neural Network)
had arisen a lot of interests in engine modeling in last three
decades [22]–[25]. However, due to poor generalization abil-
ity of the conventional NN, SVR methods seems to serve as a
more dominant role in engine on-board dynamic model since
the beginning of this century [15]–[18], [23]–[27].

The optimization method for the conventional NN train-
ing always adopts BGD (Batch Gradient Descent) method.
This method needs to compute all the gradients of the
entire training data before NN parameters updated. It costs
a large amount of time and limits a successful application
of NN for huge sample data. In the last decade, Hinton,
Le Cun and other researchers proposed some new neural
networks [28]–[31], such as DBN (Deep Belief Nets) [28],
CNN (Convolutional Neural Networks) [30] and Faster-
RCNN [31]. And they made a breakthrough in pattern
recognition, phonetic classification and object detection.
It greatly reignited an interest in NN field, such as unmanned
helicopter [32], [33], robots control [34]–[36].

Among the optimization technology in these new neu-
ral networks, a SGD (Stochastic Gradient Descent) training
method is one choice reported in [37]. It updates the NN
parameters using the gradients of one data point instead of
the whole training data set. Compared with the conventional
BGD, it has much faster convergence rate. This indicates
that the new NNs might be suitable for huge data training.
Nevertheless, only selecting one training point is always sen-
sitive to the noise and might not be the best gradient direction
choice, which results in an increasing number of iterations.
Hence, a MGD (Mini-batch Gradient Descent) method was
proposed in [38] and [39], which is a compromise scheme
between BGD and SGD [39]. It has less computation time
than BGD and has the ability to choose a better descent
direction than SGD. Moreover, some regulation measures,
such as L1/L2 regulation [38], [39], were proposed to improve
generalization ability of NN.

Therefore, a new modeling method, which adopts MGD
neural network, is proposed to establish the adaptive dynamic
model of turbofan engine. Simulations of SVR and the pro-
posed method are both conducted in a supersonic cruise
envelope in consideration of engine component degrada-
tion. The results show that the proposed method has better

generalization and real-time ability compared with SVR. And
it has less data storage and is able to be utilized in a larger
envelope.

The arrangement of this article is described below.
In section II, the preliminary study of MGD NN mainly
includes the structure ofMGDNN, the cost function choosing
of BGD, SGD and MGD NNs, regularization strategy and
back forward. In Section III, a benchmark test simulation
platform of a turbofan engine is clarified. In Section IV,
an on-board dynamic engine model based on MGD NN
is established. In Section V, simulations of SVR and the
proposed method are conducted separately in a super-sonic
cruise envelope.

II. THE PRINCIPLE OF MGD NN
In this section, the principle of the MGD NN is presented,
containing the structure and cost function of MGDNN, regu-
larization strategy and the back forward algorithm. Each part
for the new method is clarified in detail as follows.

A. THE STRUCTURE OF MGD NN
The MGD NN is a non-linear mapping from a input vector xi
to an output vector yi, where i = 1, 2, · · · ,N , N is the size of
the training set. A multi-layer MGD NN has more than one
hidden layer, and each hidden layer is defined as follows:

hki = σ (W
khk−1i + bk ) (1)

where h0i = xi is the input of the neural net, hki (for k > 0) is
the output of the k-th hidden layer with a weight matrix Wk

and a bias (or offset) vector bk , k = 1, 2, · · · nl , nl is the
number of layers, σ is activation function.

B. THE COST FUNCTION OF MGD NN
Any feed-forward NNs can be trained with BP (Back Propa-
gation) algorithm. The differences of them are just to change
the cost functions. The most popular cost function is SSE
(Summed Squared Error). The cost functions for BGD and
SGD are given as follows to show the priority of MGD NN.

And the cost function of BGD, which is usually used by
the conventional neural network, can be defined as:

J (W,b; x, y) = min
W,b

N∑
i=1

1
2
‖h(xi)− yi‖2 (2)

where h(xi) is the n-th hidden layer output of the neural
network. From Eq. (2), it can be found that the SSE of
the entire training set needs to be computed for updating
the traditional NN parameters, which leads to much bigger
computation complexity and much longer computation time.

For SGD NN, the cost function is as:

J (W,b; x, y) = min
W,b

1
2
‖h(xi)− yi‖2 (3)

It is found that the SGD only uses one training point to
calculates the cost function. Hence it costs less time to update
neural network. However, its cost function deviates from the
real one easily when the training data have noise.
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Hence, the MGD algorithm is proposed in [40] and [41].
The training set is randomly divided intoM batches, and each
batches have the same size Nb. Then the cost function can
described as:

J1(W,b; x, y) = min
W,b

Nb∑
j=1

1
2

∥∥h(xbi,j)− ybi,j
∥∥2 (4)

where i = 1, 2, · · ·M ,
∑
bi = N ,

⋃M
i
⋃bi

j xbi,j =
⋃N

i xi,⋃M
i
⋃bi

j ybi,j =
⋃N

i yi. The cost function of MGD is related
to sub-training sets. This means it costs less computation time
than BGD and has higher precision and more computation
stability than SGD.

C. REGULARIZATION STRATEGY
Generalization ability, which means how to make NN per-
form well not only on the training set, but also on the testing
set (or new input), is a very important index for evaluat-
ing some kind of NN. With a L2 parameter regularization,
the Eq.(4) for MGD NN is rewritten as:

J (W,b; x, y)

= min
W,b

Nb∑
j=1

1
2

∥∥h(xbi,j)− ybi,j
∥∥2 + λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

W l
ji (5)

where sl is the number of l-th layer note. The second term of
Eq. (5) is called a weight decay term that tends to decrease
the magnitude of the weights and helps to prevent from over-
fitting. λ is a decay parameter that modulates weights of cost
function.

D. BACK-PROPAGATION ALGORITHM
Back-propagation is actually a propagated gradient descent
algorithm, which is efficient to compute the gradients of
the weights and bias changes. One iteration to update the
parameters W,b is expressed as follows:

W l
ij = W l

ij + α∇W
l
ij (6)

bli = bli + α∇b
l
i (7)

where α is the learning rate, it can decrease as iterations
increase. Using themomentum technology,∇W l

ij and∇b
l
i can

be updated as follows:

∇W l
ij ← η∇W l

ij + (1− η)
∂J (W,b; x, y)

∂W l
ij

(8)

∇bli ← η∇bli + (1− η)
∂J (W,b; x, y)

∂bli
(9)

where η is momentum factor.
For the output layer nl , set

δnl =
∂J (W,b; x, y)

∂hnl
(10)

For l = nl − 1, nl − 2, · · · , 2, set

δl =
[
Wl
]T
δl
[
σ l
]′

(11)

Computing the desired partial derivatives, which are
given as:

∂J (W,b; x, y)

∂W l
ij

= hljδ
l+1
j (12)

∂J (W,b; x, y)

∂blj
= δl+1j (13)

To train MGD NN, the above steps of gradient descent can
be repeatedly taken to reduce cost function.

III. SIMULATION PLATFORM
Nowadays, every engine has its benchmark model to vali-
date its controls and design model based controls [35]. The
simulation object here is a bench mark model of a validated
two spool turbo-fan engine (as shown in Fig. 1). This model
is established by CLM (Component Level Model) method.
The CLM consists of sub-component models of inlet, fan,
compressor, combustion chamber, high compressor turbine,
low compressor turbine and nozzle. And these sub compo-
nents are modeled on the basis of basic thermal dynamics,
cooperating with balances of flow, pressure and power. The
station numbers for their location are stated in Tab.1.

FIGURE 1. Structure of the turbo-fan engine.

TABLE 1. Engine reference stations.

For more details of the CLM, some references can refer
to [5] and [42].

The total thermodynamic parameters, air flow and bypass
ratio are computed by the engine CLM as:

[P2,T2,P22,T22,P3,T4,P4,P42,T42,P6, qm, bp]T

=

{
fen(H ,Ma,Wfb,A8, αc), open loop
fen(H ,Ma,PLA), closed loop

where bp is bypass ratio, P2 and T2are the total pressure
and total temperature at fan entry, P22 and T22 are the total
pressure and total temperature at fan exit, P3 is the total
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pressure at combustion chamber entry, P4 and T4 are the
total pressure and total temperature at high pressure turbine
entry respectively, P42 and T42 are the total pressure and total
temperature at high pressure turbine exit respectively, P6 is
total pressure a low pressure turbine exit, qm is the engine air
flow, PLA represents power level angle in the engine closed
loop operation.

IV. ON-BOARD REAL-TIME ADAPTIVE DYNAMIC MODEL
In order to embody the engine dynamic characteristics com-
pletely, the inputs and outputs of the on-board dynamic adap-
tive turbofan engine model are set carefully as follows.

The inputs consist of current and past values ofH ,Ma,Wfb,
A8, the degradations of fan air flow 1Wa2c , compressor air
flow 1Wa25c , combustor efficiency 1ηcomb , high pressure tur-
bine efficiency1ηHturb low pressure turbine efficiency1ηLturb
and past values of F, Nf , Nc, Smf , Smc, T4. The outputs
contain the current value of F, Nf , Nc, Smf , Smc and T4. Then,
the on-board real-time adaptive dynamic model of turbofan
engine is formulated as:

y = fMGDNN (x)

×



x = [H (k),H (k − 1), . . . ,H (k − m1);

Ma(k),Ma(k − 1), . . . ,Ma (k − m2);

Wfb(k),Wfb(k − 1), . . . ,Wfb (k − m3);

A8(k),A8(k − 1), . . . ,A8 (k − m4);

1Wa2c (k),1Wa2c (k − 1), · · ·. . . 1Wa2c (k − m5);

1Wa25c (k),1Wa25c (k − 1), · · ·. . . , 1Wa25c (k − m6);

1ηcomb (k),1ηcomb (k − 1), · · ·. . . , 1ηcomb (k − m7);

1ηHturb (k),1ηHturb (k − 1), · · ·. . . , 1ηHturb (k − m8);

1ηLturb (k),1ηLturb (k − 1), · · ·. . . , 1ηLturb (k − m9);

F(k − 1),F(k − 2), · · · . . . ,F (k − m10);

Nf (k − 1),Nf (k − 2), · · · ,Nf (k − m11);

Nc(k − 1),Nc(k − 2), · · ·. . . ,Nc (k − m12);

Smf (k − 1), Smf (k − 2), . . .· · · , Smf (k − m13);

Smc(k − 1), Smc(k − 2), . . .· · · , Smc (k − m14);

T4(k − 1),T4(k − 2), · · ·. . . ,T4 (k − m15)]
y = [F(k),Nf (k),Nc(k), Smf (k), Smc(k),T4(k)]T

(14)

where m1,m2, · · · ,m15 is chosen by trial and error, fMGDNN
is the nonlinear mapping of MGD NN to express the engine
dynamics.

V. MGD NN MODELING AND SIMULATIONS
To verify the effectiveness of the proposed method, an
on-board adaptive dynamic model of turbofan engine with
a large flight envelope is set up and validated. Moreover,
the performance of the engine is bound to degrade during
its service time. Hence, it’s necessary to simulate the process
while engine under degradation, and the above CLM has the
functions to simulate component degradations. For compar-
ison, the same simulation of the popular modeling method

SVR [18] will also be utilized with a same data samples set
herein.

The super-sonic cruise envelope is H (9km∼13km),
Ma(1.2∼1.6), PLA (65◦∼75◦). The degradations of engine
are choose 1Wa2c , 1Wa25c , 1ηcomb , 1ηHturb and 1ηLturb . They
are all set as 0∼5%. The training data of the MGD NN
is obtained when the engine CLM is sufficiently excited in
the super-sonic cruise envelope under engine degradation.
As shown in Fig. 2, the numbers of the training data are more
than 1.5 million.

FIGURE 2. The training errors of engine parameters using MGD NN.

FIGURE 3. The Testing errors of engine parameters using MGD NN and
SVR (H (10km∼11km), Ma (1.4∼1.5) and PLA (65◦∼75◦)). a.The testing
error of F . b.The testing error of Smf . c.The testing error of Nf . d.The
testing error of T4. e.The testing error of Smc . f. The testing error of Nc .

Whereas for SVR method [18], the same huge data can not
be trained for modeling. Therefore, the SVR usually needs
to establish enough sub models for the super-sonic cruise
envelope. The envelope is divided into 16 sub-envelopes here
to establish a SVR engine model.
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FIGURE 4. The test of the on-board real-time adaptive dynamic model (in the whole super-sonic cruise
envelope). a. The change of H . b. The change of Ma. c. The control variable of Wfb. d. The control variable
of A8 e. The change of 1Wa2c

. f. The change of 1Wa25c
. g. The change of 1ηcomb . h. The change of

1ηHturb . i. The change of 1ηLturb . j. The response of T4. k. The response of F . l. The response of Nf .
m. The response of Nc . n. The response of Smf . o. The response of Smc .

A. MODEL PRECISION VALIDATION
The training errors of the MGD NN are shown in figure 2.
It is clearly shows that the errors of Nf , Nc are all within 8%,
and the others are less than 3%. For the testing errors, the pro-
posed method is compared with the SVRmodeling method at
the sub envelope H (10km∼11km), Ma (1.4∼1.5) and PLA
(65◦∼75◦). The testing errors of MGD NN and SVR are
respectively shown in figure 3. It can be seen that the pro-
posedmethod hasmuch higher precision than SVR. Themain
reason is that the proposed method is established based on a
huge data, which can dramatically improve the generalization
performance. On the contrary, the training effect of the SVR
is significantly limited on the huge data.

Though debugging, the structure of MGD-NN is chosen
as [6], [54], [70]. The min-batch number is chosen as
3000. The decay parameter is λ = 10−5. Learning rate
is α = 0.001. Momentum factor is η = 0.5. The
SVR has 1000 support vectors and m1,m2, · · · ,m15 are
set to 3.

Fig. 4 shows the predictive ability of the proposed method
in the super-sonic cruise envelope. The value of F, Nf , Nc,
Smf , Smc and T4 have been normalized. Fig. 4 (a∼i) show the
changes of the engine model inputs. Fig. 4 (j∼o) show the
model predictive ability of the engine model outputs. It shows
clear that the dynamic model has high precision for the whole
super-sonic cruise envelope.
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B. MODEL REAL-TIME PERFORMANCE VALIDATION
Tab.2 gives the data storage, computation complexity and
average testing time of SVR and the proposed method.

TABLE 2. Comparison for MGD NN and SVR.

The data storage of SVR is 960,096 (1000 support vec-
tors × 54 dimensions + (1000 support vectors × 6 output)
weight +1 bias×6 output) × 16 sub envelope).
The data storage of the proposed method is 4,276

((54 dimension + 1 bias) × 70 numbers of hidden layer
nodes + (70 numbers of hidden layer nodes +1 bias) ×
6 output).

The computation complexity of SVR is 61,006 ((54 ×
1000 + 1000) kernel support vector + (1000 weights +
1 bias)× 6) output (((54 dimension+ 1 bias)× 1000 support
vectors +1 bias) × 6 output).

And the computation complexity of MGD NN is 8,476
((54 product+54 plus+1bias) × 70 numbers of hidden layer
nodes + (70 product + 70 plus + 1bias) × 6output).
The testing environments of these two programs are

entirely the same as: the operating system is Windows 7 Ulti-
mate with Service Pack 1 (x64); the Central Processing
Unit (CPU) is Intel(R) Core(TM) i5-4590 and its main
frequency is 3.30GHz; the random-access memory (RAM)
is 8G. The testing time of the SVR and the proposed method
are 1.8 millisecond and 0.31 millisecond respectively.

Therefore, compared with the SVR, the proposed method
not only has much higher testing precision, but also has less
data storage, calculating amount and testing time. All of these
performance indexes are the most importance indexes that
decide whether it can be applied to become the on-board
model or not. Hence, the proposed method can be applied as
on-board real-time adaptive dynamic model.

VI. CONCLUSIONS
Through the simulation tests of on-board adaptive dynamic
model of turbofan engine with the MGD NN and SVR
method, some conclusions are followed by:

(1) The proposed method can be applied to a much larger
envelope and has better generalization performance than the
popular SVR. It is caused by the improvement of the opti-
mization technology (min-batch gradient descent) and some
adopted regularization technologies. The MGD NN could be
established based on the huge data. The more training data
is, the generalization performance is. Therefore, the proposed
method can be applied to a bigger flight envelope with huge
modeling data samples.

(2) Compared with the SVR, the proposed method has less
data storage, computation complexity and testing time which
are the main indexes for an on-board dynamic model. There-
fore, the simulation results show that the proposed method is
more suitable for establishing an on-board dynamic turbofan
engine adaptive model.

The increasement of the hidden layers would greatly
enhance the nonlinear fitting capacity and improve the model
precious with less nodes of hidden layer [41]. Therefore,
the future research works of the authors will concentrate on
the deep neural network.

APPENDIX
NOMENCLATURE
Symbol Explanation
H Height
Ma Mach number
PLA Power level angle
Wfb Fuel flow
A8 Exhaust nozzle throat area
1Wa2c The degradation of fan air flow
1Wa25c The degradation of compressor air flow
1ηcomb The degradation of combustor efficiency
1ηHturb The degradation of high pressure

turbine efficiency
1ηLturb The degradation of low pressure

turbine efficiency
F Engine thrust
T4 High pressure turbine inlet temperature
Nf Fan rotor speed
Nc Compressor rotor speed
Smf Fan surge margin
Smc Compressor surge marge
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