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ABSTRACT Big data, which is being explosively generated in various areas, is considered as a new growth
engine for diverse industries. In recent years, analysis of big data has attracted attention because it exhibits the
potential to generate high value. In addition, with the advent of the IoT era, wherein each object is connected
to all the others in a system, the importance of big data is likely to continue to be emphasized, due to the
availability of data generated from diverse devices. With the increasing importance of indoor space in which
most city dwellers spend over 80% of daily life, big data containing users’ indoor positioning information is
a critical asset for understanding the indoor behavior pattern of users, such as the shopping behavior pattern
of customers in a large department store. However, there is also a risk of leakage of personal information,
because it is feasible to infer the users’ sensitive information by tracking and analyzing the users’ indoor
positions. Local differential privacy (LDP) is the state-of-the-art approach that is used to protect individual
privacy in the process of data collection. LDP ensures that the privacy of the data contributor is protected
by perturbing her/his original data at the data contributor’s side; thus, the data collector cannot access the
original data, but is still able to obtain population statistics. This paper focuses on the application of LDP to
the collection of indoor positioning data. In particular, we experimentally evaluated the utilization of indoor
positioning big data collected by leveraging LDP for estimating the density of the specified indoor area.
Experimental results with both synthetic and actual data sets demonstrate that LDP is well applicable to the
collection of indoor positioning data for the purpose of inferring population statistics.

INDEX TERMS Indoor positioning, local differential privacy, big data privacy.

I. INTRODUCTION
Today, with the wide proliferation of smartphones andmobile
devices and the increasing importance of indoor space in
whichmost city dwellers spend over 80%of daily life, various
types of indoor-location-based services have attracted consid-
erable attention. In the case of large complex buildings such
as shopping malls, transportation transfer centers, and large
museums, which are characterized as wide indoor spaces as
well as maze-like passages, it is highly common to provide a
smartphone-based service to visitors in order to aid them in
identifying feasible routes to move around the site. In order
to make such indoor location-based service possible, it is
essential to accurately estimate the indoor position of a user;
thus, related technologies have been actively studied over the
last decade [13], [14], [19], [26].

Big data, which is being explosively generated in various
areas, is considered as a new growth engine for diverse

industries. In recent years, the analysis of big data has
attracted attention because it exhibits the potential to generate
high value. In addition, with the advent of the IoT era, wherein
each object is connected to the others in a system, the impor-
tance of big data is likely to continue to be emphasized owing
to the availability of data generated from diverse devices.
Big data composed of users’ indoor location information can
also be used as a critical asset for understanding the indoor
behavior pattern of users. For example, in order to analyze
the shopping behavior pattern of customers, a large depart-
ment store may collect the indoor movement data of each
customer by tracking the wireless internet signals generated
by a customer’s mobile device. In addition, by analyzing the
customer’s indoor movement big data, it is feasible to reduce
the bottleneck in the store and the waiting time for customers
by placing popular products in a significantly less-crowded
place.
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As there is a growing interest in utilizing big data for
decision-making, the risk of personal information leakage
is also increasing. For example, Netflix, a video stream-
ing company, released 100 million movie evaluation data
of 500 000 users in a contest held in order to improve the
accuracy of the movie recommendation algorithm. Notwith-
standing the fact that Netflix released the data after remov-
ing personal identifiers, the researchers at the University of
Texas were successful in re-identifying sensitive personal
information from the released Netflix data by using other
movie evaluation data available on online movie sites [25].
As the collection and utilization of big data increases, the risk
of leakage of personal information also increases; thus, it is
necessary to prevent the leakage of sensitive information of
individuals in big data [15], [30].

In the case of collection of users’ indoor position informa-
tion, there is also a risk of leakage of personal information,
because it is possible to infer the user’s sensitive informa-
tion by tracking and analyzing the user’s indoor position.
For example, by tracking indoor location information, it is
feasible to determine which hospitals a specific user visits
and thus infer what disease she/he is suffering from. Further-
more, indoor location information can reveal the products of
interest in shopping malls where customers visited, the films
of interest that customers watched in complex theaters, and
artifacts of interest in large museums. Therefore, most users
are reluctant to provide their own indoor location informa-
tion to companies and organizations that desire to collect
and analyze indoor location data in order to improve prod-
ucts or services. Hence, the utilization of the user’s indoor
location information big data for decision-making is highly
limited in the real world.

A. CONTRIBUTIONS OF THIS PAPER
In recent years, research on privacy preserving indoor posi-
tioning technologies, which aim to protect user’s privacy
when using user’s indoor location information, has been
actively conducted. Most of the existing approaches rely
on a centralized trusted server located between the user
mobile device and the big data collection server. That is,
a user transmits her/his indoor location information to the
centralized trusted server, which in turn perturbs the user’s
precise indoor location information to satisfy the privacy
requirements and transmits it to the big data collection
server [10]–[12], [24], [36]. However, this approach is dis-
advantageous in that the risk of personal information leakage
is very high because the exact indoor location information of
a user should be transmitted to the trust server. An adversary
is likely to intercept the data being transmitted from a user
mobile device to a trusted server. In addition, an adversary
can hack a centralized trusted server to obtain precise indoor
location information of the user.

Local differential privacy (LDP) is the state-of-the-art
approach that is used to protect individual privacy in the
process of data collection [6]. The main concept of LDP is
that the user first perturbs her/his original data by adding

carefully designed random noises and then directly transmits
the noisy data to the data collection server without relying on
the centralized trusted server. Then, a data collector is able to
compute population statistics. LDP ensures that the privacy
of data users is protected because the data collector cannot
access to the original user data. In real-world environments,
LDP-based data collection is first implemented in Google
Chrome browser to collect and track client-side information
such as users’ browser configuration. Although LDP is a
method exhibiting high potential in collecting client-side data
without concerns on the privacy leakage of data contributors,
it is a more or less new technology; thus, to date, its appli-
cation in real-world scenario is limited to the specific appli-
cation domain [6], [7], [29]. Therefore, this paper explores
the application of LDP to the collection of indoor positioning
data:

• To our knowledge, this is the first study to apply LDP to
the domain of indoor positioning systems, which has a
growing number of applications.

• We experimentally evaluate the utilization of indoor
location big data collected by leveraging LDP for the
most common task in indoor location-based services:
estimation of the density of the specified indoor location.

The rest of this paper is structured as follows: In Section II,
we provide background information. Section III presents the
method to apply LDP to the domain of indoor positioning sys-
tems. In Section IV, we experimentally evaluate the proposed
approach using real and synthetic data sets. In Section V,
we present the related work not already covered in the paper,
and the conclusions are presented in Section VI.

II. BACKGROUND
A. RANDOMIZED RESPONSE
Randomized response is a survey technique to reduce errors
caused by false answers of respondents in the case of sensitive
questions [32]. Essentially, the randomized response tech-
nique is a survey method, which aims to eliminate or reduce
the concerns of respondents by providing them an opportunity
to select a question at a certain probability. That is, given
a sensitive survey question whose answer is either ‘‘Yes’’or
‘‘No’’ (such as ‘‘Did you cheat during tests at school?’’),
a survey respondent is asked to flip a fair coin in secret.
If the coin comes up heads, the respondent answers the
survey question truthfully. Otherwise (if the coin comes up
tails), the respondent flips another coin in secret, and answers
‘‘Yes’’ (if the coin comes up a head) or ‘‘No’’ (if the coin
comes up a tail). Through this method, the survey respondent
has a very strong denial for the ‘‘Yes’’ or ‘‘No’’ answer
of a sensitive question. Random response technique enables
effective estimation of population proportion for sensitive
questions, while providing sufficient protection for the pri-
vacy of respondents. For example, in the above example,
the proportion of survey respondents whose truthful answer is
‘‘Yes’’ is estimated as 2× (N

′

N −0.25). Here, N and N ′ denote
the total number of survey respondents and the number of
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‘‘Yes’’ answers including both the truthful ‘‘Yes’’ and random
‘‘Yes’’ answers, respectively.

B. DIFFERENTIAL PRIVACY
Differential privacy ensures that an adversary cannot infer
with high confidence whether a particular individual is par-
ticipating in the query result or not. Formally, a randomized
function A satisfies ε-differential privacy, if and only if for
(1) all database tables D and D′ differing by at most one
tuple and (2) any output O of A, the following equation
holds [4], [5]:

Pr[A(D) = O]
Pr[A(D′) = O]

≤ eε

Intuitively, given any output of A, an adversary is not able to
distinguish with high confidence (controlled by the privacy
parameter ε) whether the input of A is D or D′; this provides
a strong denial for individuals included in the data sets. The
common mechanism to achieve ε-differential privacy is to
add the random noise generated from a Laplace distribution
to the true result. A smaller value of the privacy parameter ε
enforces a stronger privacy guarantee, but introduces larger
noise to the true result.

C. LOCAL DIFFERENTIAL PRIVACY
Differential privacy was originally designed for the data-
sharing scenario in which a trusted data curator who can
access the individual data in a database perturbs the true
query result computed based on the actual data in a database
and sends the perturbed result to a user. On the other hands,
the concept of LDP is proposed for the setting in which data
contributors are asked to report their local data (to which
carefully designed random noise is added such that any data
contributor’s information cannot be inferred with high confi-
dence) to a data collector. Specifically, in LDP, a randomized
algorithm A satisfies ε-differential privacy, if and only if for
(1) all pairs of data contributor’s data vi and vj, and (2) any
output O of A, the following equation holds [6]:

Pr[A(vi) = O]
Pr[A(vj) = O]

≤ eε

Intuitively, the above equation implies that irrespective of the
data that a collector receives from a contributor, the collector
cannot infer with high confidence whether the contributor has
sent vi or vj.
In real-world environments, an LDP-based privacy pre-

serving data collection mechanism, RAPPOR (Randomized
Aggregatable Privacy-Preserving Ordinal Response), is first
implemented in Google Chrome browser to collect and track
the client-side data [6]. RAPPOR obfuscates the client-side
data by leveraging randomized response mechanism (which
will be described in detail later).

III. LDP-BASED PRIVACY-PRESERVING INDOOR
POSITIONING DATA COLLECTION AND ITS APPLICATION
In this section, we first present a detailed description of
the implementation of the privacy-preserving data collection

FIGURE 1. Overview of privacy-preserving indoor positioning data
collection based on LDP.

mechanism for individuals’ indoor positioning data by lever-
aging LDP. Then, we describe the application of collected
indoor positioning data for estimating the density of the
specified indoor location.

A. PRIVACY-PRESERVING INDOOR POSITIONING
DATA COLLECTION
Figure 1 shows an overview of the implementation of privacy-
preserving indoor positioning data collection by using LDP.
The method developed in this paper consists of two compo-
nents: a client-side component, which is executed on amobile
device of the data contributors, and a server-side component,
which operates on a data collector’s server.

1) CLIENT SIDE
As described in Section I, over the last decade, there have
been extensive efforts to estimate a user’s indoor posi-
tion. Although accurate and sophisticated methods that yield
highly precise estimates of the user’s indoor position are
available, in this paper, we employ a straightforward beacon-
based approach to estimate the indoor location of a user. This
is because the purpose of this research is to approximately
compute the distribution of users in the indoor space rather
than precisely determine users’ indoor locations. We now
explain the client-side component in detail:

1) Let B = {b1, b2, · · · bn} be a set of beacons installed
in the indoor space, where each subscript represents
a unique beacon ID. Here, n represents the number
of beacons. For easy explanation, in this paper, we
assume that the beacon IDs are from 1 to n. Received
signal strength indicators from beacons are measured
and sorted in descending order, and the beacon ID with
the strongest signal is selected as the user’s current
indoor position. Let i (1 ≤ i ≤ n) be the beacon ID
with the strongest signal. Then, a n-bit array, L (which
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denotes the current indoor location of a specific user)
is defined as

Lk =

{
1, k = i
0, otherwise

Here, Lk represents the value of the k-th bit in L.
In other words, the bit corresponding to the beacon ID
with the strongest signal is set to 1, while the others are
set to 0.

2) The next step is to perturb L, which is obtained from
the previous step, by using the mechanism introduced
by RAPPOR [6]. Each bit in L is first perturbed by
randomized response as follows:

Uk =


1, with probability

1
2
f

0, with probability
1
2
f

Lk , with probability 1− f

Here, f (whose possible value is between 0 and 1) is
a system parameter that controls the level of privacy
guarantee. That is, values close to 1 enforce a stronger
privacy guarantee. In RAPPOR, this noisyU is referred
to as the permanent randomized response, because it is
used for all future noisy bit string of this specific L.

3) Then, RAPPOR adds another randomness by perturb-
ing each bit in the permanent randomized response U
as follows:

P(Sk = 1) =

{
q, if Uk = 1
p, if Uk = 0

That is, the probability of setting the k-th bit in S
(which is referred to as the instantaneous randomized
response in RAPPOR) to 1 is controlled by a system
parameter q (or p) and the value of Uk . According to
RAPPOR, the above random encodingmethod satisfies
ε-differential privacy guarantee.

4) The instantaneous randomized response, S, is transmit-
ted to the data collector server.

We note that user indoor location data (i.e., the instantaneous
randomized response S) is periodically transmitted to the data
collector server either at fixed time intervals or when a user
moves from one location to another, which can be determined
by the data collector’s requirement.

2) SERVER SIDE
Upon receiving user indoor location data, the data collector
server stores it in a database for future analysis. Let R(pos, ts)
be a table in the database where pos is a current indoor
location and ts denotes a current timestamp. Upon receiving
the indoor location data S at a timestamp tscur , the data
collection server inserts a record corresponding to (S, tscur )
into the table R(pos, ts).

B. ESTIMATING THE DENSITY OF THE SPECIFIED
INDOOR LOCATION
In this subsection, we explain the application of indoor posi-
tioning big data collected according to the process described
in Subsection III-A, to estimate the density of the specified
indoor location, which is one of the most significant tasks
in indoor location-based services. Particularly, in this paper,
we first present a straightforward statistic-based approach and
then introduce an EM-based approach.

1) STATISTIC-BASED APPROACH
Let us assume that we wish to estimate the density of a
specific indoor area associated with the i-th beacon, bi, in the
time interval between tsstart and tsend . Let set(S) be a set of
instantaneous randomized responses that the data collection
server received in the time interval between tsstart and tsend
from the data contributors. Given set(S), let us assume that
set(U ) and set(L) are the corresponding sets of the permanent
randomized responses and the original location bit arrays,
respectively. Let us further assume that |set(S)| denotes the
number of elements in set(S). Similarly, |set(U )| and |set(L)|
are defined. Then, apparently, we have |set(S)| = |set(U )| =
|set(L)|.
First, based on step 3 in Subsection III-A, the number of

the instantaneous randomized responses of which the i-th bit
is expected to be set to 1, num(Si), is estimated as follows:

ˆnum(Si) = q× num(Ui)+ p× (|set(U )| − num(Ui)),

where num(Ui) represents the actual number of permanent
randomized responses in set(U ) whose i-th bit is set to 1. Note
that in general, the hat-notation, ,̂ is used to denote that the
value is estimated and thus, to distinguish an estimate from
the true value.

Similarly, based on step 2 in Subsection III-A, num(Ui) is
estimated as follows:

ˆnum(Ui) = (1− f )× num(Li)+
1
2
f × |set(L)|,

where num(Li) represents the actual number of the original
location bit arrays in set(L) of which the i-th bit is set to 1.
By substituting an actual value of num(Ui) in the first

equation with the estimated one (i.e., ˆnum(Ui)) in the second
formula, num(Li) can be reexpressed as

num(Li) =
1

1−f
× (

ˆnum(Si)− p× |set(S)|
q− p

−
f × |set(S)|

2
).

Note that in the above equation, |set(U )| and |set(L)| are sub-
stituted by |set(S)| because |set(S)| = |set(U )| = |set(L)|.
Then, by using the actual values, which can be directly
obtained from the data collection server, the estimator of
num(Li) is formulated as follows:

ˆnum(Li) =
1

1− f
× (

Ni − p× Ntotal
q− p

−
f × Ntotal

2
).

Here, Ntotal is the total number of instantaneous randomized
responses, S, that the data collection server received from
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the data contributors in the time interval between tsstart and
tsend and thus, it is equal to |set(S)|. We note that Ntotal is
directly obtained by examining the values of the attributes
ts (i.e., counting the number of records in the table R whose
ts attribute’s value is between tsstart and tsend ). Furthermore,
Ni denotes the total number of instantaneous randomized
responses, S, of which the i-bit is set to 1 as well as which
is received between tsstart and tsend . Similar to the case of
Ntotal , Ni can be computed by scanning the values of the two
attributes ts and pos.
Then, the density of an indoor location associated with the

beacon, bi, is estimated as follows:

Densityest (bi) =
ˆnum(Li)∑n

y=1
ˆnum(Ly)

,

where n represents the number of beacons as defined in
Subsection III-A.

2) EM-BASED APPROACH
In this subsection, we introduce the method to estimate the
density of the specified indoor location by leveraging the EM
algorithm, which is a highly popular method to obtain param-
eter estimates when a few of the data are missing or incom-
plete. Let us consider the indoor position associated with the
i-th beacon, bi. Let xi be the corresponding representation
of the n-bit array L for that indoor position (i.e., the i-th
bit of xi is set to 1, and the others are set to 0). Let us
assume that N records with ts values between tsstart and tsend
are present in the table R. Let further assume that POS =
{pos1, pos2, · · · , posN } is the set of values of the attribute
pos of the records in the table R whose ts attribute values lie
between tsstart and tsend . Then, given the r-th observed value
posr , the probability that posr is generated from L = xi is
computed by Bayes’ theorem as follows:

P(L = xi|posr ) =
P(L = xi)× P(posr |L = xi)

P(posr )

=
P(L = xi)× P(posr |L = xi)∑n
y=1 P(L = xy)× P(posr |L = xy)

,

where n represents the number of beacons as defined in Sub-
section III-A. In this subsection, we intend to estimate P(L =
xi) (where 1 ≤ i ≤ n), based on POS which corresponds to a
set of the N observed values of the attribute pos.
The likelihood P(posr |L = xi) is calculated as following:

Based on step 2 in Subsection III-A, given L, the probabilities
that the k-th bit of the corresponding permanent randomized
response, U , sets to 1 and 0 are respectively computed as
follows:

P(Uk = 1|Lk = 1) = 1−
1
2
f , P(Uk = 1|Lk = 0) =

1
2
f .

P(Uk = 0|Lk = 1) =
1
2
f , P(Uk = 0|Lk = 0) = 1−

1
2
f .

Furthermore, based on step 3 in Subsection III-A, given
Lk = 1, the probabilities that the k-th bit of the instantaneous

randomized response, S, sets to 1 and 0 are respectively
computed as follows:

P(Sk = 1|Lk = 1) = P(Uk = 1|Lk = 1)× q

+P(Uk = 0|Lk = 1)× p

= (1−
1
2
f )q+

1
2
fp

P(Sk = 0|Lk = 1) = P(Uk = 1|Lk = 1)× (1− q)

+P(Uk = 0|Lk = 1)× (1− p)

= (1−
1
2
f )(1− q)+

1
2
f (1− p)

Similarly, given Lk = 0, the probabilities that the k-th bit of
the instantaneous randomized response, S, sets to 1 and 0 are
respectively computed as follows:

P(Sk = 1|Lk = 0) = P(Uk = 1|Lk = 0)× q

+P(Uk = 0|Lk = 0)× p

=
1
2
fq+ (1−

1
2
f )p

P(Sk = 0|Lk = 0) = P(Uk = 1|Lk = 0)× (1− q)

+P(Uk = 0|Lk = 0)× (1− p)

=
1
2
f (1− q)+ (1−

1
2
f )(1− p)

Given the r-th observed value posr , let us assume that posr,u
denote the value of the u-th bit of posr (note that posr,u is
either 0 or 1 and 1 ≤ r ≤ n). Then, given xi, in which the i-th
bit of xi is set to 1 and the others are set to 0, the likelihood
P(posr |L = xi) is defined as follows:

P(posr |L = xi)

=

(
P(S1 = 1|L1 = 0)posr,1 × P(S1 = 0|L1 = 0)(1−posr,1)

)
×

(
P(S2 = 1|L2 = 0)posr,2×P(S2 = 0|L2 = 0)(1−posr,2)

)
× · · · · · · · · ·

×

(
P(Si = 1|Li = 1)posr,i×P(Si = 0|Li = 1)(1−posr,i)

)
× · · · · · · · · ·

×

(
P(Sn = 1|Ln = 0)posr,n×P(Sn = 0|Ln = 0)(1−posr,n)

)

Example 1: Let posr = 0101 and L = x2 = 0100. Then,
the likelihood P(posr |L = x2) is computed as follows;

P(posr |L = x2)

=

(
P(S1 = 1|L1 = 0)posr,1 × P(S1 = 0|L1 = 0)(1−posr,1)

)
×

(
P(S2 = 1|L2 = 1)posr,2×P(S2 = 0|L2 = 1)(1−posr,2)

)
×

(
P(S3 = 1|L3 = 0)posr,3×P(S3 = 0|L3 = 0)(1−posr,3)

)
×

(
P(S4 = 1|L4 = 0)posr,4×P(S4 = 0|L4 = 0)(1−posr,4)

)
4280 VOLUME 6, 2018
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FIGURE 2. Three different distributions of density used in the experiments with synthetic data: in the case of skewed data sets, the distribution is skewed
toward the lower-left corner. (a) Uniform distribution. (b) Medium-skewed distribution. (c) High-skewed distribution.

Since posr,1 = 0, posr,2 = 1, posr,3 = 0 and posr,4 = 1,
the above equation is rewritten as

P(posr |L = x2)

= P(S1 = 0|L1 = 0)× P(S2 = 1|L2 = 1)

×P(S3 = 0|L3 = 0)× P(S4 = 1|L4 = 0)

Let further assume that f = 0, q = 0.75, and p = 0.25. Then,
the likelihood P(posr |L = x2) is computed as

P(posr |L = x2)

= (1− p)× q× (1− p)× p

= (1− 0.25)× 0.75× (1− 0.25)× 0.25 = 0.105
The EM algorithm that computes P(L = xi), 1 ≤ i ≤ n

proceeds as follows:
1) Initialization: Specify an initial parameter θi(0) as fol-

lows:

θi
(0)
= P(L = xi)(0) =

1
n
, 1 ≤ i ≤ n

2) E-step: Compute the posterior probability P(L =
xi|posr ) using the current parameter

P(L = xi|posr ; θi(t))

=
P(L = xi)× P(posr |L = xi)∑n
y=1 P(L = xy)× P(posr |L = xy)

=
θi
(t)
× P(posr |L = xi)∑n

y=1 θy
(t)
× P(posr |L = xy)

,

Here, the likelihood P(posr |L = xi), 1 ≤ i ≤ n is
computed as explained earlier.

3) M -step: Update θi as follows:

θ
(t+1)
i =

1
N
×

N∑
r=1

(
P(L = xi|posr ; θi(t))

)
4) Iteration: step 2 and step 3 are repeated until the

changes in parameters arewithin a predefined threshold
as follows:

maxi|θ
(t+1)
i − θ

(t)
i | < γ.

Finally, the density of a specific indoor area associated with
the beacon bi is estimated as follows:

Densityest (bi) = θ
(t+1)
i

We note that [7] also uses the EM algorithm to estimate
the joint probability between multiple variables based on
the noised data collected by LDP. However, the approach
presented in [7] exhibits a limitation in that it assumes the
value of f to be equals to 0.

IV. EXPERIMENTAL EVALUATION
In this section, we describe the experiments we carried out to
evaluate the effectiveness of the proposed approach. In order
to evaluate the approach presented in Section III in a con-
trolled manner, we first generated a large number of synthetic
data sets with varying parameters and used these data in our
initial experimental evaluation. Secondly, we also collected
and used a real data set to verify the practical utility of the
proposed method. In the experiments, we report the results
for the statistic-based approach in Subsection III-B.1 and the
EM-based approach in Subsection III-B.2. To compare these
two schemes, we measure the error rate as follows:

error rate =
1
n
×

n∑
i=1

|Densityactual(bi)− Densityest (bi)|.

Here, n represents the number of beacons, andDensityactual(bi)
and Densityest (bi) correspond to the actual and estimated
density, respectively, of the indoor area associated with the
i-th beacon.

A. EXPERIMENTS WITH SYNTHETIC DATA
We first evaluated the proposed approach with synthetic data
sets. For our experiments, we generated synthetic indoor
positioning data sets as follows: We first fix the number of
beacons to 100 and assume that each beacon is located at
each grid of a 10×10 unit square of grids. In order to evaluate
the proposed approach in various environments, we generated
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FIGURE 3. Error rate versus data size (with f = 0, q = 0.75 and p = 0.25). (a) Uniform distribution. (b) Medium-skewed distribution. (c) High-skewed
distribution.

FIGURE 4. The estimated density distribution for the dataset of medium-skewed distribution in Figure 2(b). (a) Statistic-based approach (0.01M).
(b) Statistic-based approach (0.1M). (c) Statistic-based approach (1M). (d) EM-based approach (0.01M). (e) EM-based approach (0.1M). (f) EM-based
approach (1M).

three distributions of density: uniform distribution, medium-
skewed distribution and high-skewed distribution (Figure 2).
As can be seen in Figure 2 (b) and (c), in the case of skewed
data sets, the distribution is skewed toward the lower-left
corner. That is, the density of the skewed data sets becomes
denser as one shifts toward the lower-left corner, while it
becomes sparser as one shifts toward the upper-right corner.
For each distribution, we generated 0.01M, 0.1M, and 1M
synthetic data sets.

Figure 3 shows the error rate for varying data sizes. In this
figure, the x-axis and y-axis represent the data size and the
error rate, respectively. In this experiment, f , q and p are

set to 0, 0.75 and 0.25 respectively, which corresponds to
ε = ln(9). As can be seen in the figure, for all the data dis-
tributions, the error rate decreases as the data size increases.
The error rate becomes closer to 0 as the data size increases,
which verifies that LDP is adequately applicable to the col-
lection of indoor positioning data. The EM-based approach
outperforms the statistic-based approach in terms of error
rates. However, the performance gaps between the statistic-
and the EM-based schemes decreases as the size of data
increases.

In order to further investigate the effect of size of data
on the estimation accuracy, we plot (as shown in Figure 4)
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FIGURE 5. Error rate versus f (with q = 0.75 and p = 0.25). (a) Uniform distribution (0.01M). (b) Uniform distribution (0.1M). (c) Uniform distribution (1M).
(d) Medium-skewed distribution (0.01M). (e) Medium-skewed distribution (0.1M). (f) Medium-skewed distribution (1M). (g) High-skewed distribution
(0.01M). (h) High-skewed distribution (0.1M). (i) High-skewed distribution (1M).

the estimated density distribution of both approaches for the
data set of medium-skewed distribution that corresponds to
Figure 2(b). As observed in the figure, with the small data
sets (i.e., data size = 0.01M, 0.1M), the estimation accu-
racy is not high. In these cases, it is observed that the EM-
based approach generates significantly better results than
the statistic-based approach. Moreover, with the large data
set (i.e., 1M), the estimated density distributions of both
approaches become highly similar to that in Figure 2(b).
The experimental results in Figure 3 and 4 indicate that the
EM-based approach achieves higher precision in the density
estimation than the statistic-based approach does, particularly
when the data size is small.

Figure 5 shows the error rate for varying f in which the
x-axis and y-axis represent f and the error rate respectively.
In this experiment, q and p are set to 0.75 and 0.25 respec-
tively, while f varies from 0.0 to 0.4 in increments of 0.1,
which provides a level of privacy from ε = ln(3.449) to
ε = ln(9). The key observations based on Figures 5 can be
summarized as follows: First of all, as expected, the error
rate decreases for all the data distributions as the data size

increases. As can be seen in the figure, as f increases, the error
rate increases. This is because as f increases, the random
noise added by step 2 in Subsection III-A increases, which
results in high estimation error, while ensuring high pri-
vacy level. The effect of f on the error rate of the EM-
based approach is relatively marginal compared with that of
the statistic-based approach. For most of the experiments,
it is observed that as f increases, and thus the level of pri-
vacy increases, the performance gaps between the statistic-
and the EM-based approaches become larger, which implies
that the EM-based approach is suitable for applications that
require high level of privacy. Furthermore, Figure 5 shows
that as the degree of skewness increases, the performance
gaps between the statistic- and the EM-based approaches
increase.

Finally, Figure 6 shows the error rate for varying q and
p. In this experiment, f is set to 0.2, while the values of
(q, p) vary among (0.95,0.05), (0.85,0.15), (0.75,0.25) and
(0.65,0.35), which provides a level of privacy from ε =

ln(2.66) to ε = ln(37.73). The key observations based on
Figures 6 can be summarized as follows: Once again, the error
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FIGURE 6. Error rate versus q and p (with f = 0.2). (a) Uniform distribution (0.01M). (b) Uniform distribution (0.1M). (c) Uniform distribution (1M).
(d) Medium-skewed distribution (0.01M). (e) Medium-skewed distribution (0.1M). (f) Medium-skewed distribution (1M). (g) High-skewed distribution
(0.01M). (h) High-skewed distribution (0.1M). (i) High-skewed distribution (1M).

rate decreases for all the data distributions as the data size
increases; this is consistent with the previous experimental
results. As p increases and q decreases (which is the scenario
wherein the random noise added by step 3 in Subsection III-
A increases), the error rate increases. As shown in the figure,
the performance gaps between the statistic- and the EM-based
approaches get larger, as the random noise added by step 3 in
Subsection III-A increases; this indicates that the EM-based
scheme is more robust against noises than the statistic-based
method. Figure 6 also shows that as the degree of skewness
increases, the performance variations between the statistic-
and the EM-based approaches exhibit increasing trends.

In summary, the experimental results with the synthetic
data sets indicate that the LDP is well applicable to the col-
lection of indoor positioning data for the purpose of inferring
population statistics. Among the two alternative methods that
estimate the density of a specific indoor location based on the
indoor positioning data sets collected by LDP, the EM-based
approach is more robust for the privacy level, degree of data
skewness, and size of collected data than the statistic-based
approach.

B. EXPERIMENTS WITH REAL DATA
In this subsection, we evaluate the usefulness of the proposed
method in a real-world environment setting. In order to collect
real indoor positioning data in an LDP manner, we imple-
mented the algorithm presented in Subsection III-A on the
Android platform. Then, we installed 18 beacons at the Com-
puter ScienceDepartment building of SangmyungUniversity,
which consists of classrooms and laboratories, and collected
74008 indoor positioning data. In this experiment, f , q and
p are set to 0.2, 0.75 and 0.25 respectively, which provides
ε = ln(5.44) differential privacy.

Figure 7 shows the estimated densities of the indoor loca-
tions, which are associated with the beacon IDs, by the
statistic- and EM-based approaches. In this figure, the x-axis
and y-axis represent the beacon ID and the estimated den-
sity, respectively. Furthermore, for the comparison purpose,
we plot the actual densities that are obtained from the origi-
nal, and thus non-noisy indoor positioning data in Figure 7.
As can be seen in the figure, a reasonable estimate of the
densities can be obtained by both the approaches. Between
the two alternative methods, the EM-based method yields
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FIGURE 7. The estimated densities by the statistic- and EM-based approaches: for the comparison purpose, the actual densities that are obtained from
the original indoor positioning data are plotted in the graph.

a more effective estimate of the densities than the statistic-
based approach does, particularly as shown in the indoor
locations associated with beacons 7 and 14. The experiment
results with real data set verify that LDP is well applicable
to the collection of indoor positioning data for the purpose of
inferring population statistics.

V. RELATED WORK
Differential privacy [4], which is the strongest scheme for
protecting individuals’ privacy in released data, has been
extensively studied in diverse areas, including data min-
ing and medical analysis. Differential privacy ensures that
an attacker cannot know whether a specific individual is
included in the released data, regardless of any background
knowledge attack. Differential privacy can be used in two
different setting. The first one is offline setting where a
statistical summary, such as histograms or a set of synthetic
data that mimic the original data, is released for public use [5],
[17], [21], [34]. The second one is online setting where the
client issues a statistical query to the original database, and
then a perturbed version of the query result is returned to
the client [22], [27], [35]. Differential privacy can be applied
to the domain of spatial data. Private Spatial Decomposi-
tion (PSD) releases differentially private spatial histograms
which are generated by partitioning a spatial domain into
several regions and adding carefully designed random noises
to the number of objects belonging to each region in a DP-
compliant manner [3], [28], [33].

Extensive studies have been conducted in the area of
privacy-preserving data publishing (PPDP). The most pop-
ular anonymization algorithm, k-anonymity, was first for-
mulated in [30]. Various algorithms have been proposed to
achieve k-anonymity requirement. LeFevre et al. finds full-
domain optimal k-anonymous generalizations with a bottom-
up pruning approach [15]. Wang et al. proposed a bottom-up
generalization algorithm to find a minimal k-anonymization

for classification [31]. Fung et al. presented the top-down
specialization scheme in which the specialization process ter-
minates if further specialization on quasi-identifier attribute
values violates k-anonymity requirement [8]. Mondrian [16]
is a multidimensional generalization model that anonymizes
data by recursively partitioning the space across the dimen-
sion. Clustering-based methods have been proposed to effec-
tively find k-anonymous table. For example, [1], [2] group
k similar records into a cluster and generalize each cluster
to achieve k-anonymity. Besides k-anonymity, many privacy
metrics have been proposed in the literature. Reference [20]
introduced l-diversity that requires that each equivalence has
at least l well represented values of a sensitive attribute.
Li et al. proposed t-closeness that requires that the distribu-
tion of a sensitive attribute in each equivalence class is similar
to the distribution of the entire table [18]. A comprehensive
survey of privacy-preserving data publishing can be found
in [9] and [23].

VI. CONCLUSION
LDP is the state-of-the-art approach that is used to protect
individual privacy in the process of data collection. LDP
ensures that the privacy of the data contributor is protected by
perturbing her/his original data at the data contributor’s side;
thus, the data collector cannot access to the original data of
the contributors. In this paper, we explored the application
of LDP to the collection of indoor positioning data. Espe-
cially, we experimentally evaluated the utilization of indoor
location big data collected by leveraging LDP for estimating
the density of the specified indoor area. Experimental results
with both synthetic and real data sets verify that LDP is well
applicable to the collection of indoor positioning data for the
purpose of inferring population statistics.

REFERENCES
[1] G. Aggarwal et al., ‘‘Achieving anonymity via clustering,’’ ACM Trans.

Algorithms, vol. 6, no. 3, Jun. 2010, Art. no. 49.

VOLUME 6, 2018 4285



J. W. Kim et al.: Application of LDP to Collection of Indoor Positioning Data

[2] J.-W. Byun, A. Kamra, E. Bertino, and N. Li, ‘‘Efficient k-anonymization
using clustering techniques,’’ Advances in Databases: Concepts, Systems
and Applications. Berlin, Germany: Springer, 2007, pp. 188–200.

[3] G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu, ‘‘Differen-
tially private spatial decompositions,’’ in Proc. IEEE Int. Conf. Data Eng.,
Apr. 2012, pp. 20–31.

[4] C. Dwork, ‘‘Differential privacy,’’ in Proc. 33rd Int. Conf. Automata, Lang.
Programm., 2006, pp. 1–12.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith, ‘‘Calibrating noise to
sensitivity in private data analysis,’’ in Proc. 3rd Conf. Theory Cryptogr.,
2006, pp. 265–284.

[6] U. Erlingsson, V. Pihur, and A. Korolova, ‘‘RAPPOR: Randomized aggre-
gatable privacy-preserving ordinal response,’’ in Proc. ACM SIGSACConf.
Comput. Commun. Secur., 2014, pp. 1054–1067.

[7] G. Fanti, V. Pihur, and U. Erlingsson, ‘‘Building a RAPPOR with the
unknown: Privacy-preserving learning of associations and data dictionar-
ies,’’ in Proc. Privacy Enhancing Technol. Symp., 2016, pp. 41–61.

[8] B. C. M. Fung, K. Wang, and P. S. Yu, ‘‘Top-down specialization for
information and privacy preservation,’’ in Proc. IEEE Int. Conf. Data Eng.,
Apr. 2005, pp. 205–216.

[9] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, ‘‘Privacy-preserving
data publishing: A survey of recent developments,’’ ACM Comput. Surv.,
vol. 42, no. 4, Jun. 2010, Art. no. 14.

[10] B. Gedik and L. Liu, ‘‘Location privacy in mobile systems: A personalized
anonymization model,’’ in Proc. 25th IEEE Int. Conf. Distrib. Comput.
Syst., Jun. 2005, pp. 620–629.

[11] A. Gkoulalas-Divanis, V. S. Verykios, and M. F. Mokbel, ‘‘Identifying
unsafe routes for network-based trajectory privacy,’’ in Proc. SIAM Int.
Conf. Data Mining, 2009, p. 12.

[12] A. Gkoulalas-Divanis, P. Kalnis, and V. S. Verykios, ‘‘Providing
k-anonymity in location based services,’’ ACM SIGKDD Explorations
Newslett., vol. 12, no. 1, pp. 3–10, 2010.

[13] R. Harle, ‘‘A survey of indoor inertial positioning systems for pedes-
trians,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1281–1293,
3rd Quart., 2013.

[14] J. Hightower and G. Borriello, ‘‘Location systems for ubiquitous comput-
ing,’’ Comput., vol. 34, no. 8, pp. 57–66, 2001.

[15] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, ‘‘Incognito: Efficient full-
domain k-anonymity,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2005, pp. 49–60.

[16] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, ‘‘Mondrian multidimen-
sional k-anonymity,’’ in Proc. IEEE Int. Conf. Data Eng., Apr. 2006, p. 25.

[17] H. Li, L. Xiong, L. Zhang, and X. Jiang, ‘‘DPSynthesizer: Differentially
private data synthesizer for privacy preserving data sharing,’’ Proc. VLDB
Endowment, vol. 7, no. 3, pp. 1677–1680, 2014.

[18] N. Li, T. Li, and S. Venkatasubramanian, ‘‘t-closeness: Privacy beyond
k-anonymity and l-diversity,’’ in Proc. Int. Conf. Data Eng., Apr. 2007,
pp. 106–115.

[19] H. Liu, H. Darabi, P. Banerjee, and J. Liu, ‘‘Survey of wireless indoor
positioning techniques and systems,’’ IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 37, no. 6, pp. 1067–1080, Nov. 2007.

[20] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
‘‘l-diversity: Privacy beyond k-anonymity,’’ACMTrans. Knowl. Discovery
Data, vol. 1, no. 1, 2007, Art. no. 3.

[21] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber,
‘‘Privacy: Theory meets practice on the map,’’ in Proc. IEEE Int. Conf.
Data Eng., Apr. 2008, pp. 277–286.

[22] F. D. McSherry, ‘‘Privacy integrated queries: An extensible platform for
privacy-preserving data analysis,’’ in Proc. ACM SIGMOD Int. Conf. Man-
age. Data, 2009, pp. 19–30.

[23] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C. K. Lee, ‘‘Central-
ized and distributed anonymization for high-dimensional healthcare data,’’
ACM Trans. Knowl. Discovery Data, vol. 4, no. 4, Oct. 2010, Art. no. 18.

[24] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, ‘‘The new casper: Query
processing for location services without compromising privacy,’’ in Proc.
32nd Int. Conf. Very Large Data Bases, 2006, pp. 763–774.

[25] A. Narayanan and V. Shmatikov, ‘‘Robust de-anonymization of large
sparse datasets,’’ in Proc. IEEE Symp. Security Privacy, May 2008,
pp. 111–125.

[26] K. Pahlavan, X. Li, and J. P. Makela, ‘‘Indoor geolocation science and
technology,’’ IEEE Commun. Mag., vol. 40, no. 2, pp. 112–118, Feb. 2002.

[27] S. Peng, Y. Yang, Z. Zhang, M. Winslett, and Y. Yu, ‘‘Query optimization
for differentially private data management systems,’’ in Proc. IEEE Int.
Conf. Data Eng., Apr. 2013, pp. 1093–1104.

[28] W. Qardaji, W. Yang, and N. Li, ‘‘Differentially private grids for geospatial
data,’’ in Proc. IEEE Int. Conf. Data Eng., Apr. 2013, pp. 757–768.

[29] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren, ‘‘Heavy hitter
estimation over set-valued data with local differential privacy,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 192–203.

[30] L. Sweeney, ‘‘k-anonymity: Amodel for protecting privacy,’’ Int. J. Uncer-
tainty, Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570, 2002.

[31] K. Wang, P. S. Yu, and S. Chakraborty, ‘‘Bottom-up generalization: A data
mining solution to privacy protection,’’ in Proc. IEEE Int. Conf. Data
Mining, Nov. 2004, pp. 249–256.

[32] S. L. Warner, ‘‘Randomized response: A survey technique for eliminating
evasive answer bias,’’ J. Amer. Statist. Assoc., vol. 60, no. 309, pp. 63–69,
1965.

[33] Y. Xiao, L. Xiong, and C. Yua, ‘‘Differentially private data release
through multidimensional partitioning,’’ in Proc. VLDB Conf. Secure Data
Manage., 2010, pp. 150–168.

[34] X. Xiao, G. Wang, and J. Gehrke, ‘‘Differential privacy via wavelet trans-
forms,’’ IEEE Trans. Knowl. Data Eng., vol. 23, no. 8, pp. 1200–1214,
Aug. 2011.

[35] X. Xiao, G. Bender, M. Hay, and J. Gehrke, ‘‘iReduct: Differential privacy
with reduced relative errors,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2014, pp. 229–240.

[36] P. Zacharouli, A. Gkoulalas-Divanis, and V. S. Verykios, ‘‘A k-anonymity
model for spatio-temporal data,’’ inProc. IEEEWorkshop Spatio-Temporal
Data Mining, Apr. 2007, pp. 555–564.

JONG WOOK KIM (M’17) received the
Ph.D. degree from the Computer Science Depart-
ment, Arizona State University, in 2009. He was
a Software Engineer with the Query Optimization
Group at Teradata, from 2010 to 2013. He is cur-
rently an Assistant Professor of computer science
with Sangmyung University. His primary research
interest is in the area of data privacy, distributed
databases, and query optimization. He is a member
of the ACM.

DAE-HO KIM received the B.S. degree in com-
puter science fromSangmyungUniversity in 2017,
where he is currently pursuing the master’s degree
with the Department of Computer Science. His
research mainly focuses on data privacy and big
data processing.

BEAKCHEOL JANG received the B.S. degree
from Yonsei University in 2001, the M.S. degree
from the Korea Advanced Institute of Science and
Technology in 2002, and the Ph.D. degree from
North Carolina State University in 2009, all in
computer science. He is currently an Assistant
Professor with the Department of Computer Sci-
ence, SangmyungUniversity. His primary research
interest is in wireless networking with an empha-
sis on ad-hoc networking, wireless local area net-

works, and mobile network technologies.

4286 VOLUME 6, 2018


	INTRODUCTION
	CONTRIBUTIONS OF THIS PAPER

	BACKGROUND
	RANDOMIZED RESPONSE
	DIFFERENTIAL PRIVACY
	LOCAL DIFFERENTIAL PRIVACY

	LDP-BASED PRIVACY-PRESERVING INDOOR POSITIONING DATA COLLECTION AND ITS APPLICATION
	PRIVACY-PRESERVING INDOOR POSITIONING DATA COLLECTION
	CLIENT SIDE
	SERVER SIDE

	ESTIMATING THE DENSITY OF THE SPECIFIED INDOOR LOCATION
	STATISTIC-BASED APPROACH
	EM-BASED APPROACH


	EXPERIMENTAL EVALUATION
	EXPERIMENTS WITH SYNTHETIC DATA
	EXPERIMENTS WITH REAL DATA

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	JONG WOOK KIM
	DAE-HO KIM
	BEAKCHEOL JANG


