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ABSTRACT An improved Gaussian Filter (GF) is designed for nonlinear Dynamic Positioning (DP) ships
with cross-correlated colored noises and random measurements loss. For the actual nonlinear Dynamic
Position System (DPS), the state noises and measurement noises do not satisfy the assumption of Gaussian
white noises and the loss of measurements may occur randomly. Therefore, the following circumstances
are considered: the state noises and measurement noises are cross-correlated colored noises at the same and
adjacent sampling moments; the measurement loss occurs randomly for the data transmission between the
sensor units and the estimator units. In order to get the estimator for nonlinear DP ships with cross-correlated
colored noises and random measurements loss, a GF framework based on Bayesian theory is proposed, and
then the Cubature Mix Kalman Filter based on spherical-radial method is obtained. In the end, the simulation
results show that the proposed algorithm has better estimation performance than Unscented Kalman Filter
with Measurements Loss and standard Cubature Kalman Filter.

INDEX TERMS Colored noise, filtering algorithms, nonlinear systems, noise measurement, loss
measurement.

NOMENCLATURE
The abbreviations used in this article are as follows:

DP Dynamic Positioning
DPS Dynamic Position System
DGPS Differential Global Positioning System
TWS Taut Wire System
IMU Inertial Measurement Unit
NED North-East-Down
3-DOF 3-Degrees of Freedom
GF Gaussian Filter
CMKF Cubature Mix Kalman Filter
CKF Cubature Kalman Filter
KF Kalman Filter
EKF Extended Kalman Filter
UT Unscented Transform
UKF Unscented Kalman Filter
UKF-PL Unscented Kalman Filter with Measurements

Loss

I. INTRODUCTION
Recently, Dynamic Positioning (DP) ships have been
widely used in offshore oil and gas exploration, submarine

pipe-laying, ships platform operation and other fields [1], [2].
Dynamic Positioning System (DPS) are typically equipped
with redundant position reference system, such as Differ-
ential Global Positioning System(DGPS), Inertial Measure-
ment Unit (IMU), Hydro-acoustic reference system, Taut
Wire System (TWS), Gyrocompass, Microwave and Laser
position reference system [3]. The accurate system state esti-
mation affects the control performance of DP ships directly.
However, due to the impact of the environmental interfer-
ence, the state feedback measurement signals to controller
are imprecise. Therefore, an estimator should be adopted to
obtain accurate state information.

For DP ships, the system noises generally do not meet
the assumption of Gaussian white noises. And because of
the uncertain interference and other factors, the received
measured data may also have random measurements loss.
Thus, the following circumstances are considered: 1) The
state noises and measurement noises are colored noises and
there are auto-correlation at the adjacent sampling moments.
2) The measurement noises and the state noises are cross-
correlated at the same and adjacent sampling moments.
3) The measurements loss occur randomly during the com-
munication from sensor units to estimator units. Therefore,

6620
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-3437-007X


X. Lin et al.: Improved GF for DP Ships With Colored Noises and Random Measurements Loss

it has great practical application values for studying of non-
linear estimator for DP ships with cross-correlated colored
noises and random measurements loss.

The Bayesian theory has been widely used for general non-
linear systems[4]. The Bayesian estimator is obtained based
on posteriori probability density function and the current
measurements, which provides a basic state prediction and
state update framework. A variety of different filters have
been developed based on Bayesian theory. Such as, the linear
optimal Kalman Filter (KF) for linear system is deduced
directly[5], the Extended Kalman Filter (EKF) for nonlin-
ear system is obtained by first-order Taylor expansion[6].
EKF has a similar filtering structure with KF in essentially,
but EKF needs to calculate the Jacobi matrix of nonlinear
system. So the error of EKF is greater than KF, and even
diverges for strong nonlinear system. In order to improve
the estimation accuracy of nonlinear system, the Unscented
Kalman Filter (UKF) is proposed which approximate
posterior probability density function by Unscented Trans-
form (UT)[7]. The UKF does not need to calculate system
Jacobi matrix which reduces the linearization error. And the
UKF has third-order Taylor accuracy in theory. But, the UT
on which UKF relies has numerical instability and is prone
to dimensional curse for high-dimensional nonlinear system.
Therefore, the Cubature Kalman Filter (CKF) was proposed
which approximates the posterior probability density func-
tion by spherical-radial method [8]. The CKF has better
numerical stability and higher estimation accuracy.

However, the proposed filtering algorithms above are valid
only for ideal model. Namely, the state noises and the mea-
surement noises should satisfy the assumption of Gaussian
white noises, and all measurements should arrive at esti-
mator timely and accurately. In practice, these assumptions
are generally difficult to satisfy. Therefore, some improved
filters have been proposed for the non-standard Gaussian
models. Such as, several Kalman filters and fusion algorithms
were designed for non-standard models with random param-
eter matrix [9], correlated noises [10], [11], measurements
delay[12], [13] or measurements loss[14], [15]. But these
improved algorithms are all based on standard KF frame,
and also required the system to be linear in generally. There-
fore, it does not be applied to nonlinear DP ships directly.
On the other hand, several improved nonlinear state estima-
tors have been studied for nonlinear system with measure-
ments delay [16], measurements loss [17]–[19] or correlated
noises[20]–[23]. But there are still some shortcomings for
these algorithms, e.g. it is only assumed that there is a syn-
chronous correlation between the state noises and measure-
ment noises, and without considering the cross-correlate at
the adjacent sampling moments. In addition, no consideration
is given to the fact that the state noise and the measurement
noise are colored noise. Therefore, the noises studied in this
paper which mainly refers to that the state noises and mea-
surement noises are auto-correlated at the adjacent sampling
moments. And there are cross-correlations at the same and
adjacent sampling moments.

In this paper, a recursive filter is proposed for nonlin-
ear system with cross-correlation colored noises and ran-
dom measurements loss. First of all, the following cases are
considered: The state noises and measurement noises are
colored noises and also have cross-correlation at the same
and adjacent sampling moments; the measurements loss may
occur randomly during the communication between sensor
units and estimator units. Secondly, a recursive Gaussian
Filter (GF) is designed based on Bayesian theory, and the
Cubature Mix Kalman Filter (CMKF) is proposed based on
spherical-radial method.

The main contributions are: 1) the nonlinear kinematic
model and measurement model are built for ships with cross-
correlated colored noises and random measurements loss.
2) A recursive GF framework based on Bayesian theory
is proposed for nonlinear system with cross-correlated col-
ored noises and random measurements loss. 3) A CMKF
algorithm is obtained by spherical-radial method and the
simulation results show the effectiveness of the proposed
algorithm.

The remainder of this paper is structured as following:
The second part is model and problem formation. The third
part is the proposed estimator. The simulations results are
shown in fourth section and the conclusions are given in
the end.

II. MODEL AND PROBLEM FORMATION
The ships state is generally described by kinematic model [1].
So, the 3-Degrees of Freedom (3-DOF) nonlinear kinematic
model and measurement model for ships is established.

A. THE 3-DOF KINEMATIC MODEL
In order to describe the motion of DP ships, the North-
East-Down (NED) coordinate system n = (xn, yn, zn) with
origin is defined [24], where,the xn axis points towards the
North, the yn axis points towards the East, and the zn axis
points downwards the centre of the Earth. Newton’s law still
holds for local area motion in NED coordinate system as
the {n} coordinate system is inertial coordinate system [1].
At the same time, the body fixed coordinate system
{b} = (xb, yb, zb) is defined; the coordinate origin ob is
located at the centre of mass or centroid of ships and move
with the ships. The coordinate is shown as Fig. 1.

The surge, sway and yaw for ships under low sea conditions
is considered, and 3-DOF kinematic model is built as:

η̇ = J (ψ)υ. (1)

Where, the vector η = [xN , yE , ψ]T represents the north,
east and heading, the [•]T represents the transpose of [•].
The symbol η̇ is the first derivative of vector η. The vector
υ = [u, v, r]T represents the velocity of surge, sway and yaw.
The transition matrix J (ψ) is expressed as :

J (ψ) =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1
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FIGURE 1. Coordinate system description.

The surface ships have the characteristics of low speed and
weak manoeuvrability [3]. So a continuous noises accelera-
tion model as (2) is established:

η̈ = ξ. (2)

Where, ξ expresses zero-mean Gaussian noises. The sym-
bol η̈(t) is the second derivative of η. So the kinematic model
for ships is rewrite as:[

η̇

η̈

]
=

[
0 I
0 0

] [
η

η̇

]
+

[
0
I

]
ξ. (3)

Next, by Euler method, the discrete form is obtained as (4):

xk = fk−1(xk−1)+ ωk−1. (4)

xk = [xN ,k , yE,k , ψk , uk , vk , rk ]T represents position and
velocity, ωk denotes state noises. Due to the recursive rela-
tionship between states, there is a correlation between the
discrete state noise at time k and the noise at time k − 1,
so the following colored noise model is built to describe the
discretization state noise ωk :

ωk = 0k−1ωk−1 + ζk - 1. (5)

0k−1 is state matrix of state colored noise. The symbol ζk - 1
is zero-mean Gaussian noise. The symbol T is sampling time.
Then the discrete state space function is shown as:

fk−1(xk−1) =


xN ,k−1 0 0

0 yE,k−1 0
0 0 ψk−1
0 0 0
0 0 0
0 0 0

• ••

Tuk−1 cosψk−1 −Tvk−1 sinψk−1 0
Tuk−1 sinψk−1 Tvk−1 cosψk−1 0

0 0 Trk−1
uk−1 0 0
0 vk−1 0
0 0 rk−1



B. MEASUREMENT MODEL
Let x1,k = [xN ,k , yE,k , uk , vk ]T represents the actual north,
east, surge, and sway, the z1,k represents the corresponding
measurements by DGPS. Let x2,k = [ψk , rk ]T represents the
actual heading and yaw, the z2,k represents the corresponding
measurements by Gyrocompass. Thus, the discrete measure-
ment equations are established as equations (6) and (7), e1,k
and e2,k represent measurements noises:

z1,k = h1,k (x1,k )+ e1,k . (6)

z2,k = h2,k (x2,k )+ e2,k . (7)

For conveniently, the discrete model is expressed as:

z′k = hk (xk )+ ek . (8)

where, z′k = [z1,k, z2,k]T , ek = [e1,k , e2,k ]T , hk (xk ) =
[h1,k (x1,k ), h2,k (x2,k )]T . The measurements are obtained by
states, so the measurement noise ek can be modelled as the
following colored noises:

ek = 8k−1ek−1 + εk−1. (9)

the symbol 8k−1 is state matrix of measurement colored
noise, and εk−1 denotes zero-mean Gaussian noises.
The state noises ωk and the measurement noises ek

are cross-correlated at the same sampling moment as the
ships and measurement units working in the same environ-
ment [11], i.e. E[ωkeTk ] 6= 0. At the same time, considering
of (4) and (8) [11], there is correlation between the measured
noise ek and state noise ωk−1, i.e. E[ωk−1eTk ] 6= 0.
On the other hand, due to the impact of unstable inter-

ference, there exists random measurements loss when the
measurements are transmitted from sensor units to estimator
units. And the Bernoulli distribution is adopted to describe
the phenomenon of random measurements loss [15]. It is
assumed that the sensor measurements loss parameter is γk ,
and zk is received measurements, then the measurement
model is rewritten as (10):

zk = γkhk (xk )+ ek . (10)

If γk ≡ I , it means all measurements arrive at estimator,
namely there is no measurements loss in transmit process.
And the measurements equation (10) is simplified to (8).
If γk ≡ 0, it means that all measurements loss occurs, namely
the information received by estimator contains only noises
term, and the measurement model is rewrite as:

zk = ek . (11)

C. PROBLEM FORMATION
The main objective is to design the corresponding recur-
sive nonlinear filter for nonlinear system (4) and (10) with
cross-correlated colored noises and random measurements
loss, then the performance of proposed algorithm is verified
through several simulation experiments. For the convenience
of problem description and algorithm derivation, the follow-
ing Assumptions are given:
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Assumption 1: the state noises and measurement noises
are zero-mean cross-correlation colored noises at the same
and adjacent sampling moments. I.e. the following statistical
characteristics are satisfied:

E[ωkωTm] = Qk,mδk−m + Qk,m−1δk−m+1

E[ekeTm] = Rk,mδk−m + Rk,m−1δk−m+1

E[ωkeTm] = Sk,mδk−m + Sk,m−1δk−m+1

E[ωk ] = 0, E[ek ] = 0. (12)

where, the symbol E represents expectation, the symbol δk−m
represents Dirac function, i.e.δk−m = 1, when m = k;
δk−m = 0 when m 6= k . The state noises covariance and
measurement noises covariance are denoted asQk,k and Rk,k ,
respectively. The auto-correlation covariance of state noises
and auto-correlation covariance of measurement noises are
Qk,k−1 and Rk,k−1. The cross-covariance of state noises
and measurement noises at the same and adjacent sampling
moments are Sk,k and Sk,k−1, respectively.
Assumption 2: The Bernoulli distribution γk as following

is used to describe the loss of measurements:

γk =

{
1,
0,

γ̄k
1− γ̄k .

The γ̄k represents probability of parameter γk = 1. The
1 − γ̄k represents the probability of parameter γk = 0.
The measurement signal arrives at estimator timely when
γk = 1; while γk = 0 means measurements loss occurs. The
parameter γk is independent with states and noises, and the
following statistical characteristics are obtained:

E[γk ] = γ̄k , E[γkγ Tk ] = γ̄k (1− γ̄k ),

E[γkxTm] = 0, E[γkωTm] = 0, E[γkeTm] = 0. (13)

By Assumption 2, the expectation of measurements is:

E[zk] = γ̄kzk,(γk=1) + (1− γ̄k )zk,(γk=0)
= γ̄k (hk (xk )+ ek )+ (1 - γ̄k )ek
= γ̄khk (xk )+ ek . (14)

The initial state x0 is independent with other signals, and
satisfies Gaussian distribution with initial values x̄0|0 and
initial error covariance P0|0 = E[(x0 − x̄0|0)(x0 − x̄0|0)T ].
The joint distributions of system noises andmeasurements are
p(ωk , zk ) and p(ek , zk ) which obey Gaussian distribution, and
conditional probability densities p(ωk |zk ) and p(ek |zk ) obey
Gaussian distribution.
The correlation terms caused by noises are E[hk−1(xk−1)

eTk−1|Z1:k−1] and E[fk−1(xk−1)ωTk−1|Z1:k−1]. The symbol
Z1:k - 1 represents measurements from z1 to z2, namely
Z1:k - 1 = {z1, z2 . . . zk−1}. As the noises interference is gen-
erally smaller than state, the correlation noises terms above-
mentioned are calculated by local linearization:

fk−1(xk−1) = Fk−1xk−1, hk−1(xk−1) = Hk−1xk−1. (15)

where, Fk−1 andHk−1 represent Jacobi matrices of nonlinear
system which are calculated as:

fk−1(xk−1) = Fk−1xk−1
hk−1(xk−1) = Hk−1xk−1. (16)

The state prediction value x̂k|k−1 is calculated as:

x̂k|k - 1 = E[xk |Z1:k - 1] =
∫
Rnx

xkp(xk |Z1:k - 1)dxk . (17)

Define the state prediction error x̃k|k - 1 = xk − x̂k|k - 1,
the innovation z̃k|k−1 = zk−ẑk|k−1, the measurement residual
z̃k−1|k−1 = zk−1 − ẑk−1|k−1. And the state prediction error
covariance Pxxk|k−1 is calculated as:

Pxxk|k−1 = E[x̃k|k - 1x̃Tk|k - 1|Z1:k−1]. (18)

so, the measurement predictive value ẑk|k−1, predictive error
cross-covariance Pxzk|k−1 and measurement predictive error
covariance Pzzk|k−1 are calculated as following, respectively:

ẑk|k−1 = E[zk |xk ,Z1:k−1]. (19)

Pxzk|k−1 = E[x̃k|k - 1z̃Tk|k - 1|Z1:k−1]. (20)

Pzzk|k−1 = E[z̃k|k - 1z̃Tk|k - 1|xk ,Z1:k−1]. (21)

The cross-covariance of state noises and measurements is
defined as Pωzk−1|k−1, and the measurement estimation error
cross-covariance is defined as Pzzk−1|k−1, which are calculated
as following:

Pωzk−1|k−1 = E[ωk - 1zTk−1|Z1:k−1]. (22)

Pzzk−1|k−1 = E[z̃k−1|k−1z̃Tk−1|k−1|Z1:k−1]. (23)

Then the recursive GF will be given in the next section.

III. DESIGN OF THE GAUSSIAN FILTER
The nonlinear system (4) and (10) with cross-correlated col-
ored noises and random measurements loss are considered
here. Then a recursive GF framework is designed and a
CMKF algorithm is obtained by spherical-radial method.

A. RECURSIVE GAUSSIAN FILTERING FRAMEWORK
The designed GF is shown as Theorem 1, which consists of
state prediction and state update.
Theorem 1: The GF framework is designed as following 1)

and 2) for the nonlinear system described by (4) and (10).
1) State prediction:

x̂k|k−1=
∫
fk−1(xk−1)p(xk−1|Z1:k−1)dxk−1

+ (Sk−1 + γ̄k−1Qk−1,k−2Hk−1)(P
zz
k−1|k−1)

−1

(zk−1 − γ̄k−1hk−1(x̂k−1|k−1)). (24)

Pxxk|k−1=
∫
fk−1(xk−1)f Tk−1(xk−1)p(xk−1|Z1:k−1)dxk−1

− x̂k|k−1x̂Tk|k−1 + Qk - 1 + Fk−1Qk−2,k−1

+QTk−2,k−1F
T
k−1 − (Sk−1 + QTk−1,k−2H

T
k−1γ̄

T
k−1)

(Pzzk−1|k−1)
−1(Sk−1+QTk−1,k−2H

T
k−1γ̄

T
k−1)

T . (25)
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where,

Pzzk−1|k−1 =
∫
γk−1hk - 1(xk−1)hTk−1(xk−1)γ

T
k−1

p(xk−1|Z1:k−1)dxk−1 + Rk−1
− γ̄k−1hk - 1(x̂k−1|k−1)hTk−1(x̂k−1|k−1)γ̄

T
k−1

+ γ̄k−1Hk−1Sk−2,k−1 + STk−2,k−1H
T
k−1γ̄

T
k−1.

(26)

2) State update:

x̂k|k = x̂k|k−1 + Kk (zk − ẑk|k−1). (27)

Pxxk|k = Pxxk|k−1 − P
xz
k|k−1(P

zz
k|k−1)

−1(Pxzk|k−1)
T . (28)

Kk = Pxzk|k−1(P
zz
k|k−1)

−1. (29)

where,

ẑk|k−1 = γ̄k

∫
Rnx

hk (xk )p(xk |Z1:k−1)dxk + Rk,k−1

(Pzzk−1|k−1)
−1(zk−1 − γ̄k−1hk - 1(x̂k−1|k−1)). (30)

Pxzk|k−1 =
∫
xkhTk (xk )γ

T
k p(xk |Z1:k−1)dxk

− x̂k|k−1ẑTk|k−1 + Sk,k−1. (31)

Pzzk|k−1 =
∫
Rnx

γkhk (xk )hTk (xk )γ
T
k p(xk |Z1:k−1)dxk

− ẑk|k−1ẑTk|k−1+Rk + γ̄kHkSk,k−1+S
T
k,k−1H

T
k γ̄

T
k

−Rk,k−1(P
zz
k−1|k−1)

−1RTk,k−1. (32)

Proof: the state noises and measurement noises are
cross-correlated colored noises and the following formulas
are established by Assumption 1:

E[ωk−2eTk−1] = Sk−2,k−1, E[ωk−1eTk−1] = Sk−1
E[ωk−2ωTk−1] = Qk−2,k−1, E[ωk−1ωTk−1] = Qk−1
E[ek−2eTk−1] = Rk−2,k−1, E[ek−1eTk−1] = Rk−1. (33)

Then, (34) is obtained by (22):

Pωzk−1|k−1 = E[ωk - 1(γk−1hk−1(xk−1)+ ek−1)T |Z1:k−1]

= Sk−1 + QTk−1,k−2H
T
k−1γ̄

T
k−1. (34)

And, the (12), (15), and (16) are rewrite as:

E[hk−1(xk−1)eTk−1|Z1:k−1] = Hk−1Sk−1,k−2. (35)

E[fk−1(xk−1)ωTk−1|Z1:k−1] = Fk−1Qk−2,k−1. (36)

E[hk (xk )ωTk−1|Z1:k−1] = HkFk−1Qk−2,k−1
+HkQk−1. (37)

The measurement cross-covariance Pzzk−1|k−1 is obtained
as (38) by (10), and (23).

Pzzk−1|k−1
= E[(zk - 1 − ẑk - 1|k - 1)(zk - 1 − ẑk - 1|k - 1)T |Z1:k−1]

= E[(γk−1hk−1(xk−1)hTk−1(xk−1)γ
T
k−1

+ γk−1hk−1(xk−1)eTk−1 − (γk−1hk−1(xk−1)

+ ek−1)hTk−1(x̂k−1|k−1)γ̄
T
k−1 + ek−1h

T
k−1(xk−1)γ

T
k−1

+ ek−1eTk−1 − γ̄k−1hk−1(x̂k−1|k−1)(γk−1hk−1(xk−1)

+ ek−1)T + γ̄k−1hk−1(x̂k−1|k−1)

hTk−1(x̂k−1|k−1)γ̄
T
k−1|Z1:k−1. (38)

where,

E[(γk−1hk−1(xk−1)+ ek−1)

× hTk−1(x̂k−1|k−1)γ̄
T
k−1|Z1:k−1]

= E[γ̄k−1hk−1(x̂k−1|k−1)hTk−1(x̂k−1|k−1)γ̄
T
k−1]. (39)

Considering that E[γk−1hk−1(xk−1)eTk−1|Z1:k−1]=E[ek−1
hTk−1(xk−1)γ

T
k−1|Z1:k−1] and substituting (35), and (39)

into (38), then (26) is proved.
As the joint distribution of state noises and measurements

obeys Gaussian distribution, namely:

p(ωk−1, zk−1) = N
[(
ωk−1
zk−1

)
;

(
0

γ̄k−1hk−1(x̂k−1|k−1)

)
,(

Qk−1 Pωzk−1|k−1
Pωzk−1|k−1

T Pzzk−1|k−1

)]
. (40)

As the state noises ωk−1 and measurements zk−2 are
uncorrelated, so p(ωk−1,Z1:k−1) = p(ωk−1, zk−1), and the
conditional probability density satisfies following Gaussian
distribution by joint distribution [25]:

p(ωk−1|Z1:k−1)

= N(Pωzk−1|k−1(P
zz
k−1|k−1)

−1(zk−1 − γ̄k−1hk−1(x̂k−1|k−1)),

Qk−1 − P
ωz
k−1|k−1(P

zz
k−1|k−1)

−1(Pωzk−1|k−1)
T ). (41)

similarly, the joint distribution of measurement noises ek and
measurements zk−1 also satisfies Gaussian distribution, i.e.

p(ek , zk−1) = N
[(

ek
zk−1

)
;

(
0

γ̄k−1hk−1(x̂k−1|k−1)

)
,

(
Rk Rk,k−1

RTk,k−1 Pzzk−1|k−1

)]
. (42)

Considering that measurement noises ek and measure-
ments zk−2 are uncorrelated. So, the probability densities
p(ek ,Z1:k−1) = p(ek , zk−1), and the conditional probability
density of ek satisfies following Gaussian distribution:

p(ek |Z1:k−1)

= N(Rk,k−1(P
zz
k−1|k−1)

−1(zk−1 − γ̄k−1hk−1(x̂k−1|k−1)),

Rk − Rk,k−1(P
zz
k−1|k−1)

−1RTk,k−1). (43)

And state prediction x̂k|k−1 can be expressed as (44) :

x̂k|k−1 = E[xk |Z1:k−1]

= E[fk−1(xk−1)|Z1:k−1]+ E[ωk−1|Z1:k−1]. (44)

Then, substituting (34), and (41) into (44), then (24) is
proved.
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And the state prediction error covariance (18) can be
expressed as (45):

Pxxk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T |Z1:k−1]

= E
[
(fk−1(xk−1)+ ωk−1 − x̂k|k−1)(fk−1(xk−1)+
ωk−1 − x̂k|k−1)T |Z1:k−1

]

= E


fk−1(xk−1)f Tk−1(xk−1)+ fk−1(xk−1)ω

T
k−1−

(fk−1(xk−1)+ ωk−1)x̂Tk|k−1 + ωk−1ω
T
k−1+

ωk−1f Tk−1(xk−1)− x̂k|k−1(fk−1(xk−1)+
ωk−1)T + x̂k|k−1x̂Tk|k−1|Z1:k−1

.
(45)

Substituting (34), (36), and (41) into (45), then the predic-
tion error cross-covariance (25) is proved.

As the joint distribution of states and measurements satis-
fies following Gaussian distribution:

p(xk , zk |Z1:k−1)

= N
[(
xk
zk

)
;

(
x̂k|k−1
ẑk|k−1

)
,

(
Pxxk|k−1 Pxzk|k−1
Pxzk|k−1

T Pzzk|k−1

)]
. (46)

with

p(zk |Z1:k−1) = p(zk |zk−1) = N (zk ; ẑk|k−1,P
zz
k|k−1). (47)

And, the posterior probability density of states is calculated
as (48) by Bayesian theory [4]:

p(xk |Z1:k ) =
p(xk , zk |Z1:k−1)
p(zk |Z1:k−1)

= N (xk ; x̂k|k ,Pxxk|k ). (48)

Then, (27)-(29) are established.
The measurement prediction value ẑk|k−1 defined by (19)

is calculated as:

ẑk|k−1 = E[zk |Z1:k−1] = E[γkhk (xk )+ ek |Z1:k−1]

= E[γkhk (xk )|Z1:k−1]+ E[ek |Z1:k−1]. (49)

Substituting (33), and (43) into (49), then (30) is proved.
The prediction error cross-covariance is calculated as (50) by
the definition (20):

Pxzk|k−1=E[(xk − x̂k|k−1)(zk − ẑk|k−1)
T
|Z1:k−1]

=E[(xk − x̂k|k−1)(γkhk (xk )+ ek − ẑk|k−1)T |Z1:k−1]

=E
[
xkhTk (xk )γ

T
k + xke

T
k − xk ẑ

T
k|k−1−

x̂k|k−1(γkhk (xk )+ ek )T+x̂k|k−1ẑTk|k−1|Z1:k−1

]
.

(50)

Then, (31) is proved by (33) and (50). And similar to the
derivation of state prediction error covariance Pxxk|k−1, the
measurement prediction error covariance (32) is also set up.
Thus, the proposed GF framework for nonlinear system

with cross-correlated colored noises and random measure-
ments loss is obtained as Theorem 1.

B. CUBATURE MIXING KALMAN FILTER (CMKF)
The implementation of the above recursive GF is finally
transformed into the realization of nonlinear integral. There
are two common approaches: one method is to linearize the
nonlinear system, for example, EKF algorithm. The other

method is sigma point approaches, such as, UKF by UT and
CKF by spherical-radial method.
UKF does not need to calculate Jacobin matrix of nonlin-

ear system compared with EKF, and estimation accuracy is
higher than EKF. However, in the development of integration
rule used for UKF, it required the solution of 2nx + 1 simul-
taneous equations [7]. In the spherical-radial method of CKF,
the number of simultaneous equations is reduced to two by
taking advantage of fully symmetric nature of the Gaussian-
weighted integrals [8]. And CKF is a simplified form of
UKF after removing the sigma point at the origin. There-
fore, the spherical-radial method is adopted in this paper for
the implementation of recursive GF algorithm. The standard
Gaussian weighted integral is calculated as following by
spherical-radial cubature rules:

IN(f ) =
∫
f (x)N (x; 0, I ) dx ≈

M∑
i=1

wif (ξi).

ξi =
√
M/2[1]i,wi = 1/M , i = 1, 2 . . .M = 2n.

where, wi is weight corresponding to spatial cubature point.
[1]i is vector point generator for initial cubature point.
The probability density functions satisfy the Gaussian dis-

tribution, namely:

p(xk |Z1:k ) = N (xk ; x̂k|k,Pxxk|k ).

p(xk |Z1:k−1) = N (xk ; x̂k|k−1,Pxxk|k−1).

Then a CMKF with cross-correlated colored noises and
measurements loss is given as Step (a)-Step (b) by Gaussian
weighted integral and spherical-radial method.
Step (a): state prediction
1) Calculate the Cholesky factorization lk−1|k−1 of state

estimation error covariance Pxxk−1|k−1:

lk−1|k−1 = chol(Pxxk−1|k−1). (51)

2) The initial cubature points :

χi,k−1|k−1 = lk−1|k−1ξi + x̂k−1|k−1
ξi = [1]i

√
M/2 i = 1, 2 . . . ,M = 2n. (52)

3) The transmit cubature points:

χ∗i,k|k−1 = fk (χi,k−1|k−1). (53)

χ*∗
i,k−1|k−1 = γ̄k−1hk−1(χi,k−1|k−1). (54)

4) The measurement estimated error covariance Pzzk−1|k−1:

Pzzk−1|k−1

=
1
M

M∑
i=1

χ*∗
i,k−1|k−1χ

*∗
i,k−1|k−1

T

− γ̄k−1hk - 1(x̂k−1|k−1)hTk−1(x̂k−1|k−1)γ̄
T
k−1

+Rk−1 + γ̄k−1Hk−1Sk−2,k−1 + STk−2,k−1H
T
k−1γ̄

T
k−1.

(55)
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5) The state prediction :

x̂k|k−1

=
1
M

M∑
i=1

χ∗i,k|k−1 + (Sk−1 + γ̄k−1Qk−1.k−2Hk−1)

(Pzzk−1|k−1)
−1(zk−1 − γ̄k−1hk−1(x̂k−1|k−1)). (56)

6) The state prediction error covariance Pxxk|k−1:

Pxxk|k−1 =
1
M

M∑
i=1

χ∗i,k|k−1χ
∗

i,k|k−1
T
− x̂k|k−1x̂Tk|k−1

+Qk - 1 + Fk−1Qk−2,k−1 + QTk−2,k−1F
T
k−1

− (Sk−1 + QTk−1,k−2H
T
k−1γ̄

T
k−1)(P

zz
k−1|k−1)

−1

(Sk−1 + QTk−1,k−2H
T
k−1γ̄

T
k−1)

T . (57)

Step (b): state update
1) Calculate the Cholesky factorization lk|k−1 of state pre-

diction error covariance Pxxk|k−1:

lk|k−1 = chol(Pxxk|k−1). (58)

2) The prediction cubature points χ ′i,k|k−1:

χ ′i,k|k−1 = lk|k−1ξi + x̂k|k−1. (59)

3) The transmit cubature points Zi,k|k−1:

Zi,k|k−1 = γ̄khk (χ ′i,k|k−1). (60)

4) The measurement prediction ẑk|k−1:

ẑk|k−1 =
1
M

M∑
i=1

Zi,k|k−1

+Rk,k−1(P
zz
k−1|k−1)

−1(zk−1−γ̄k−1hk - 1(x̂k−1|k−1)).

(61)

5) The measurement prediction error covariance Pzzk|k−1:

Pzzk|k−1 =
1
M

M∑
i=1

Zi,k|k−1ZTi,k|k−1 − ẑk|k−1ẑ
T
k|k−1

+Rk + γ̄kHkSk,k−1 + STk,k−1H
T
k γ̄

T
k

−Rk,k−1(P
zz
k−1|k−1)

−1RTk,k−1. (62)

6) The prediction error cross-covariance Pxzk|k−1:

Pxzk|k−1 =
1
M

M∑
i=1

χ ′i,k|k−1Z
T
i,k|k−1 − x̂k|k−1ẑ

T
k|k−1 + Sk,k−1.

(63)

7) The state and covariance update by (27)-(29).
In order to facilitate description, a brief flow for proposed

CMKF algorithm is given: Firstly, calculate state prediction
x̂k|k−1, state prediction error covariance Pxxk|k−1, measure-
ment prediction error covariance Pzzk|k−1 and prediction error

cross-covariance Pxzk|k−1 by (56), (57), and (62)-(63), respec-
tively. Then, calculate measurement estimated error covari-
ance Pzzk−1|k−1, state update x̂k|k , estimation error covariance
Pxxk|k and state gain Kk by (55), and (27)-(29).
Remark 1: If all measurements arrive at estimator, the pro-

posed CMKF algorithm is simplified to cubature Kalman
filter with cross-correlated colored noises (CKF-CN).
Remark 2: If the system noises are independent Gaus-

sian noises and all measurements arrive at estimator timely,
namely Skk−1 = Sk−1k−1 = 0, Qk−1,k−2 = Rk−1,k−2 = 0
and parameter γk ≡ 1. By substituting these parameters into
Step (a) and Step (b) in Section III.B, then proposed CMKF
is simplified to standard CKF as reference [8].

IV. SIMULATION EXPERIMENTS
The proposed algorithm is implemented by nonlinear system
(4) and (10). In order to verify the effectiveness of CMKF: (1)
The comparative simulations of CMKF, and CKF in [8] are
performed in Scenario 1 under condition of cross-correlated
colored noises; (2) The comparative simulations of CMKF,
CKF, and UKF-PL algorithm in [19] are carried out in Sce-
nario 2 under the condition of cross-correlate colored noises
and random measurements loss.

The initial state x̂0|0 = [10, 20, 10, 1, 1.5, 0.1]T , the initial
error covariance pxx0|0 = diag[1, 1, 1, 1.5, 1.5, 0.5], the mea-
sure matrix hk (•) = diag[1, 1, 1, 1, 1, 1], the state noises
covariance Qk,k = diag[20, 20, 20, 20, 20, 20], the correla-
tion covariance Qk,k−1 = diag[0.3, 0.3, 0.3, 0.3, 0.3, 0.3],
the measurement noises covariance Rk,k = diag[1, 1, 1,
1, 1, 1], the measurement noises correlation covariance
Rk,k−1 = 0.02 diag[1, 1, 1, 1, 1, 1], the cross-covariance
between state noises and measurement noises at same and
adjacent sampling moments are Sk,k = diag[5, 5, 5, 5, 5, 5]
and Sk,k−1 = 0.07diag[1, 1, 1, 1, 1, 1], respectively.

The Root-mean-square error (RMSE) is chosen as perfor-
mance index for algorithms, where, x̃ ik|k (j) = x ik (j) − x̂

i
k|k (j)

denotes the estimation error of i−th parameters in j-Monte
Carlo simulation experiments. Here, 100-Monte Carlo simu-
lation experiments were made, namely N = 100.

RMSE : x̃ ik|k =

√√√√√ 1
N

N∑
j=1

[x̃ ik|k (j)]
2
.

A. SCENARIO 1
In this case, it is assumed that all measurements reach esti-
mator, i.e. γ̄k ≡ 1. The RMSEs of north, east, heading, surge,
sway, and yaw under 100-Monte Carlo simulation experi-
ments by CKF and CMKF are shown as Fig. 2 and Fig. 3,
respectively. The RMSE of CKF is represented by black line
and the RMSE of CMKF is represented by red line.

It is shown that the RMSE of CMKF is smaller than
CKF. So, CMKF is effectively for DP ships with cross-
correlated colored noises, and the estimation performance is
better than CKF. On the other hand, the numerical results
are presented in Table 1 for the average RMSE, which
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FIGURE 2. The RMSEs of North-East-heading.

FIGURE 3. The RMSEs of Surge-Sway-Yaw.

shows that the accuracy of CMKF is higher than CKF
further.

TABLE 1. Average RMSEs of states by different algorithms.

B. SCENARIO 2
In this section, the parameter γ̄k = 0.8, the other parameters
are the same as Scenario 1, and the effectiveness of CMKF is

further illustrated by comparison experiments with CKF, and
UKF-PL in [19]. The RMSEs of CKF, UKF-PL, and CMKF
are represented by Fig. 4 - Fig. 5, respectively.

FIGURE 4. The RMSE of North-East-heading.

FIGURE 5. The RMSEs of Surge-Sway-Yaw.

It shows that the traditional CKF is no longer applica-
ble after several steps. At the same time, the accuracy of
CMKF is higher than UKF-PL because the cross-correlated
colored noises and measurements loss are taken into account
in CMKF. And the average RMSEs of UKF-PL and CMKF
in different measurements loss probability are given as
Table 2 and Table 3, respectively.
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TABLE 2. Average RMSEs of UKF-PL for differentγ̄k .

TABLE 3. Average RMSEs of CMKF for differentγ̄k .

For γ̄k = 1, the CMKF in this section is simplified to
CMKF in Scenario 1, so it has equal average RMSEs as
Table 1 and Table 3. At the same time, the UKF-PL is sim-
plified to UKF in Table 2. It shows that UKF and CKF have
the similar estimation accuracy, and are lower than CMKF
because the influence of cross-correlated colored noises is not
taken into account for UKF and CKF.

And the average RMSEs of UKF-PL and CMKF are
decreasing along with the increasing of γ̄k ; the average
RMSEs of CMKF is smaller than UKF-PL for the same γ̄k .
The estimation accuracy of CMKF changes little with the
increasing of measured data loss, and the average RMSE of
u, v and r is almost the same(the values are equal when two
bits of valid numbers are retained here).

FIGURE 6. Average RMSEs along with the increasing ofγ̄k .

The Fig. 6 shows the North average RMSEs as the
increasing of γ̄k which further demonstrates the CMKF out-
performs UKF-PL. Meanwhile, the CMKF in this paper
considers the cross-correlated colored noises and random
measurements loss simultaneously, so the computational cost
of the CMKF is larger than that of the CKF and UKF-PL
algorithms.

V. CONCLUSIONS
An alternative GF framework for nonlinear Dynamic Posi-
tioning ships with cross-correlated colored noises and ran-
domly measurements loss is proposed based on Bayesian
theory. And then a CMKF algorithm is obtained by spherical-
radial method for DP ships. In the end, the simulation results
show that the proposed CMKF is effectiveness for DP ships
with cross-correlated colored noises and measurements loss
simultaneously, and CMKF has better estimation accuracy
than UKF-PL and CKF. So, the application range of nonlinear
GF is extended, and the proposed CMKF could be used as an
alternative state estimation method for DP ships.
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