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ABSTRACT In this paper, we propose fast Fourier transform networks for object tracking, called FFTNet.
FFTNet is a correlation filter (CF)-based tracker that integrates two main components of CF, i.e., auto
correlation and cross correlation between the features of two images. Thus, FFTNet takes full advantage
of CF: 1) Auto correlation and cross correlation of CF are efficiently computed by FFT so that FFTNet
achieves high computational efficiency and 2) FFTNet successfully performs displacement detection even
in similar signals so that it achieves good tracking performance. Moreover, FFTNet combines the advantage
of CF with convolutional neural networks so that it has strong capabilities of learning feature representation
and matching function. FFTNet is trained end-to-end in an off-line manner. First, we input two-input patches
of target object and search region into shared convolutional layers to get their features. Then, we calculate
auto correlation and cross correlation from two features. Next, we concatenate the results of auto correlation
and cross correlation, and put them into another subnetwork to learn a matching function. Finally, we get
a response map whose values represent the probability of each pixel belonging to the target. Experimental
results demonstrate that FFTNet outperforms state-of-the-arts in both tracking accuracy and computational
efficiency.

INDEX TERMS Object tracking, auto correlation, cross correlation, convolutional neural networks, corre-
lation filter, fast Fourier transform.

I. INTRODUCTION
Object tracking aims at estimating the location and size of
the target in an image sequence for a given query, which is
one of the most challenging topics in computer vision. It has
been applied in many applications such as robotic, video
surveillance, human motion analysis, and human-computer
interaction (HCI). Although much progress has been made
in the past decade, many challenges still exist in designing
a robust tracker to handle significant appearance changes,
pose variations, severe occlusions, and background clutter.
Tracking-by-detection is to build a discriminative classifier
that distinguishes the target from the surrounding back-
ground. Typically, it captures the target position by detecting
the best matching position using a classifier. In recent years,
many tracking-by-detection methods have been proposed and
demonstrated excellent tracking performance. Online boost-
ing methods [2] were proposed to update the discriminative
model in online manner. Multiple instance learning (MIL) [6]
and tracking-learning-detection (TLD) [10] were proposed
to update tracking models robust to the noise. Struck [5]

minimized the structured output objective for localization,
which achieved good tracking performance with an elegant
formulation. However, their computation costs limit the num-
ber of features and training samples.

A. CORRELATION FILTER TRACKERS
Correlation filter (CF)-based trackers [7], [13], [19] have
attracted much attention due to the computational efficiency
and competitive performance. They learn CF in the Fourier
domain to have low computational load. Bolme et al. [4]
proposed the minimum output sum of squared error
(MOSSE) filter, while Henriques et al. [19] proposed ker-
nelized correlation filters (KCF) with multi-channel features.
Danelljan et al. [15] added scale regression for accurate
scale estimation. Staple [26] incorporated color statistics-
based model to achieve complementary traits for CF tracking.
Hong et al. [23] proposed MUlti-Store Tracker (MUSTer)
based on short- and long-term memory to process target
appearance memories. Choi et al. [27] proposed an inte-
grated tracker with various CFs weighted by a spatially
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attentional weight map. Danelljan et al. [24] developed a
regularized CF which extended the training region for CF by
applying spatially regularized weights to the suppression of
the background. However, there are two main drawbacks in
CF tracking: One is to use hand-crafted features which are
incapable of capturing semantic information of the target,
and the other is the deficiency of training data and thus
has inherently a limit in the generality. To overcome the
insufficient representation of the hand-crafted features, deep
convolutional features were utilized in CF [21], [22] which
achieved the state-of-the-art performance. Ma et al. [21] esti-
mated the position of the target by fusing the response maps
obtained from the hierarchical convolution features of various
resolutions in a coarse-to-fine scheme. Danelljan et al. [22]
extended the regularized CF using deep convolution features.
Danelljan et al. [28] also proposed a novel CF to find the
target position in the continuous spatial domain, while incor-
porated features of various resolutions. Qi et al. [30] tracked
the target based on adaptive hedge which was applied to
the response maps from deep convolution features. Although
CF trackers based on CNN features [21], [22] significantly
improve the robustness against geometric and photometric
variations, extracting CNN features from each frame and
training/updating CF trackers over high dimensional deep
features is computationally expensive. Thus, this makes it
difficult to achieve real-time tracking performance.

B. CNN-BASED TRACKERS
Driven by the emergence of large-scale visual data sets
and fast development of computation power, CNN with
their strong capabilities of learning feature representations
has shown an extraordinary performance in many com-
puter vision tasks, e.g. image classification [8], object detec-
tion [14], and semantic segmentation [20]. CNN-based track-
ers [11], [17], [18], [25], [29], [31] have been proposed
to learn the tracking models. Early attempts were suffering
from the data deficiency for training networks. To solve the
insufficient data, transferring methods were proposed by uti-
lizing pre-trained CNN on a large-scale classification dataset
such as ImageNet. Wang et al. [17] proposed a framework
which fused shallow convolutional layers with deep convolu-
tional ones to simultaneously consider detailed and contex-
tual information of the target. Nam and Han [29] introduced
a multi-domain CNN which determined the target location
from a large set of candidate patches. Tao et al. [25] utilized
a siamese network to estimate the similarities between the
target and the candidate patches. Wang et al. [32] proposed
a sequential training method of CNN for object tracking
based on an ensemble strategy to prevent overfitting in the
network. However, since these trackers tried to adapt the
appearance change of the target, the networks need online
fine-tuning which is slow and prevents real-time tracking.
However, these methods still have a limitation due to the
gap between the object classification and tracking. Recently,
researchers have tried to overcome the gap between them
by training their network with a large amount of tracking

FIGURE 1. Displacement between two original signals is in line with the
displacement between their auto correlation and cross correlation.
Left: Two sine signals with Gaussian noise. Right: Their auto correlation
and cross correlation.

video datasets. Held et al. [33] proposed the tracking method
which captured the target’s location with deep regression
networks. Bertinetto et al. [31] proposed a tracker based on a
fully-convolutional Siamese network which was trained end-
to-end on the ILSVRC15 dataset for object detection. They
demonstrated competitive tracking accuracy over state-of-
art methods while running at 88.8 frame/second (FPS). For
reference, most CNN-based trackers run lower than 10 FPS.

C. MOTIVATIONS
In this paper, we proposeFFTNet for object tracking based on
CF. FFTNet integrates two main components of CF, i.e. auto
correlation and cross correlation. The reasons of introducing
auto correlation and cross coreelation into FFTNet are as
follows: (1) They are computed by fast fourier transform
(FFT) so that FFTNet achieves high execution efficiency
(nearly 90 FPS); (2) They are useful to detect displacement
in similar signals so that FFTNet achieves good tracking
performance. As shown in Fig. 1, there are two similar signals
of x and y with small displacement in the left figure, while
auto correlation of x and cross correlation between x and y are
shown in the right figure. It can be observed that the displace-
ment between two signals is consistent with the displace-
ment between their auto correlation and cross correlation.
Thus, we integrate auto correlation and cross correlation into
FFTNet which are efficiently computed by FFT. Moreover,
FFTNet is an end-to-end network, which does not need online
training. First, we input the target object and the search region
into shared convolutional layers to get feature maps that
capture semantic information from inputs. Then, we calculate
the cross correlation and auto correlation from two feature
maps. Next, we concatenate the results of auto correlation
and cross correlation, and put them into another subnetwork
that consists convolutional layers and fully connected layers.
Finally, we produce a response map whose values represent
the probability of each pixel belonging to the target. FFTNet
elaborately combines the advantage of CF with CNN, and
thus both feature representation and matching function in
FFTNet cooperate with each other to achieve outstanding
performance in object tracking.

The rest of this paper is as follows. In Section II, we explain
the proposed method in detail. Experimental results and their
corresponding analysis are provided in Section III, while
conclusions are made in Section IV.
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FIGURE 2. Network architecture of the proposed FFTNet. ConvNets1: Shared convolutional layers. ∗: Conjugate operator.
�: Element-wise product.

II. PROPOSED METHOD
A. CORRELATION FILTER
A typical correlation tracker [4], [7], [19] learns a discrimi-
native classifier and estimates the translation of target objects
by searching for the maximum value of correlation response
map. For notational simplicity, we use single-channel sig-
nals, which can be generalized for multi-channel data, i.e.
images, in a straightforward way. Denote f as the training
signal of size M × N (the current frame). We consider all
circular shifts of f as training samples. Each shifted sample
fm,n, (m, n) ∈ {0, 1, . . . ,M − 1} × {0, 1, . . . ,N − 1} has a

Gaussian function label g(m, n) = e−
(m−M/2)2+(n−N/2)2

2σ2 , where
σ is the kernel scale. Then, a correlation filter hwith the same
size of f is learned by solving the following minimization
problem:

min
h
‖h⊗ f − g‖2 + λ‖h‖2 (1)

where ⊗ is the circular convolution operator and λ is a regu-
larization parameter. This objective can be solved efficiently
in Fourier domain by Fast Fourier Transform (FFT), and its
learned CF is written as follows:

H∗ =
G� F∗

F � F∗ + λ
(2)

where the capital letters are the corresponding Fourier trans-
formed signals, i.e. H = F(h),F = F(f ),G = F(g),
and ∗ represents the conjugate operator. When a new test
image z comes (the next frame), the response map y is
calculated by:

y = F−1
(
H∗ � Z

)
(3)

By substituting (2) into (3), we get:

y = F−1
(

G� F∗

F � F∗ + λ
� Z

)
= F−1

(
G� (F∗ � Z )
F � F∗ + λ

)
(4)

where F∗ � Z and F � F∗ are the Fourier representation of
the cross correlation between f and z and the auto correlation

of f , respectively. Thus, it can be observed that the output is
only determined by F∗ � Z and F � F∗. As shown in Fig. 1,
they are very useful for displacement detection between two
similar signals. Therefore, we introduce them into CNN to
train an end-to-end network for object tracking.

B. FFTNet
We formulate object tracking as a matching problem by
training a generic target matching network off-line for direct
tracking without online training. By inputting two patches
of target and search regions to this network, we produce a
response map whose values represent the probability of each
pixel belonging to the target. The network architecture of
FFTNet is illustrated in Fig. 2. In FFTNet, we input the
target object and the search region into shared convolutional
layers of ConvNets1. The output of convolutional layers is a
set of feature maps that capture semantic information from
the image. After applying the same convolutional feature
transformation to both input patches, we calculate the cross
correlation and auto correlation of the two features maps.
In the figure, ∗ represents the conjugate operator and � is
the element-wise product. Then, we concatenate them and
add three convolutional layers and two fully connected layers.
After that, we reshape the output of FC2 and add a deconvo-
lution layer for upsampling. Finally, we get a response map
with size 81 × 81. The leaky rectified linear unit (LReLU)
is used after each convolutional layer as the non-linear acti-
vation function. After performing LReLU, there is a batch
normalization layer. The detailed parameters of the network
are shown in Table 1.

C. BACK PROPAGATION THROUGH FFT AND IFFT
Neural networks are trained by back propagation, which
requires that the forward function is differentiable or piece-
wise differentiable. In this section, we show that FFT and
IFFT are differentiable functions and provide their gradients.
We analyze them in 2D case, which can be easily generalized
into other dimensions. We formulate FFT in a matrix form,
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FIGURE 3. Precision and success plots of one-pass evaluation (OPE) on OTB50 dataset. The performance score for each
tracker is described in the legend. For precision plots the score is the precision value at the threshold 20, while for success
plots the score is the area under the curve (AUC) score.

TABLE 1. Details of FFTNet.

and define an N × N FFT matrix as follows:

WN =


ω0·0
N ω0·1

N . . . ω
0·(N−1)
N

ω1·0
N ω1·1

N . . . ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N . . . ω

(N−1)·(N−1)
N

 (5)

where ωN = e−2π i/N . Then, based on the definition of FFT
and IFFT, we get:

X̂ = WNXWM (6)

X = W∗N X̂W
∗
M (7)

where X is an N × M image, and X̂ means F(X). It is
obvious that (6) and (7) are differentiable. Their gradients are
computed as follows:

∂X̂i,j

∂X
= WN [i,:]WT

M [:,j] (8)

∂Xi,j

∂X̂
= W∗N [i,:]W

∗T
M [:,j] (9)

whereW[i,:] andW[:,j] is ith row and jth column ofW respec-
tively. Since FFT and IFFT are differentiable, the whole
network can be trained end-to-end.

D. TRAINING ON ALOV++ AND VOC2012
We set the amount of context to be half of themean dimension
p = (w + h)/4. Then, we resize the cropped image to the
network input size (103 × 103). To find the target in the
current frame, we assume that the movement of the target

is smooth and thus crop a search region in a similar way
to the current frame centered on the previous prediction.
We train our network with a combination of videos from
ALOV++ data set and still images from VOC2012 object
detection dataset. ALOV++ is an object tracking dataset
which collects a total of 314 videos. These videos cover
diverse circumstances. In this data set, approximately every
5-th frame of each video has been labeled with the location of
some objects being tracked.We remove 11 videos that overlap
with the testing data set of OTB50 [12] leaving 303 videos for
training. Two successive annotated frames for each video are
used to form a sample pair. To make the proposed network
learn a more diverse set of objects and prevent overfitting
to the objects in training videos, we employ still images
from VOC2012 dataset for training. We also filter out these
too big or too small objects. To train our tracker from an
image, we first crop the target centered on the ground-truth
bounding box, and then take random crops of the image by
translation and scale change as search regions. We use these
crops because they are taken from different frames of a video.
Similar to [33], we use Laplace sampling to represent the
smooth movement of the targets. To be specific, we model
the center of the bounding box in the current frame

(
c′x , c

′
y

)
relative to the center of the bounding box in the previous
frame

(
cx , cy

)
as follows:

c′x = cx + w ·1x

c′y = cy + h ·1y (10)

where w and h are the width and height of the bound-
ing box of the previous frame. The terms 1x and 1y are
random variables that capture the change in the position
of the bounding box relative to its size. In our set-
ting, 1x and 1y are modeled with a Laplace distribu-
tion with a mean of 0. Similarly, we changes the model
size by:

w′ = w · γw
h′ = h · γh (11)
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where w′ and h′ are the current width and height of the
bounding box, respectively; and w and h are the previous
width and height of the bounding box, respectively. The terms
γw and γh are random variables that capture the size change
of the bounding box. We model γw and γh by a Laplace dis-
tribution with a mean of 1. The scale parameters for Laplace
distribution are bx = 1/5 for the motion of the bounding box
center and bs = 1/15 for the change in bounding box size.
We constrain the random crop such that it should contain at
least half of the target object in each dimension. We also limit
the size changes such that γw, γh ∈ {0.7, 1.3} to avoid over-
stretching or over-shrinking the bounding box in a way that
would be difficult for the network to learn.

We adopt an element-wise logistic loss for the loss function
as follows:

L (y, v) =
1

81× 81

81∑
i=1

81∑
j=1

log
(
1+ e−y(i,j)v(i,j)

)
(12)

where v is network’s prediction and y ∈ {1,−1} is its ground-
truth label which represents the pixel in the search image
belongs to target or background. The elements of the response
map are considered to be a positive example if they are within
radius R of the center.

E. TRACKING
In testing, we first initialize the target with the ground-truth
of the first frame. When a new frame comes, we crop the
search region at the previous estimated position, then feed the
target image and search region into FFTNet and get a score
map. Since the score map may contain noise, we process it
with Gaussian filtering. To find the most probable location,
we calculate the weighted average of all positions whose
score is larger than a threshold, i.e. we define this threshold
as 0.9× the maximum value. The formula is described as
follows:

i∗ =

∑81
i=1

∑81
j=1 v(i, j) · i · I {v(i, j) > 0.9vmax}∑81

i=1
∑81

j=1 v(i, j) · I {v(i, j) > 0.9vmax}

j∗ =

∑81
i=1

∑81
j=1 v(i, j) · j · I {v(i, j) > 0.9vmax}∑81

i=1
∑81

j=1 v(i, j) · I {v(i, j) > 0.9vmax}
(13)

where I {·} is an indicator function. After estimating the opti-
mal position, the position relative to the probability map’s
center is the displacement. Finally, we need to convert this
displacement to the original search region. Similar to [4],
we also adopt Peak to Sidelobe Ratio (PSR) as a measure
of the confidence of the tracking results. To compute PSR,
the response map v is split into the peak which is the maxi-
mum value and the side-lobe which is the rest of the pixels
excluding an 5×5 window around the peak. The PSR is then
defined as vmax−usl

σsl
where vmax is the peak values and usl and

σsl are the mean and standard deviation of the side-lobe. For
scale estimation, we search for the object over three scales
{0.98, 1.0, 1.02}. We select the appropriate scale by PSR and
update the scale by linear interpolation with a factor of 0.65.

TABLE 2. Average runtime comparison between different methods on the
OTB50 (Unit: FPS).

Since only the bounding box from the first frame is accurate,
updating the target by the previous prediction may introduce
errors, resulting in the tracker drifting. Hence, we do not
update the target image.

III. EXPERIMENTAL RESULTS
We perform experiments with a PC with ubuntu 14.04 LTS
operating system and a single Titan X GPU. We implement
FFTNet using Theano and Lasagne, and utilize FFT function
from CUDA library for parallel computing. The parameters
are optimized by an adaptive stochastic gradient descent
(SGD) algorithm, i.e. Adam. The initial learning rate is set to
be 0.001. We also use the weight decaying rate as a regular-
ization term, and we set the weight decaying rate to 0.00005.
The initial values of the parameters follow a Gaussian distri-
bution, which are scaled according to the improved Xavier
method [3]. Total 40 epochs are trained and 12,000 sample
pairs are used at each epoch. The size of mini-batches is 128.
For tests, we use the Visual Tracker Benchmark (OTB50) [12]
which contains 50 videos with 51 fully annotated sequences
and covers a variety of challenging scenarios such as illumi-
nation variation, scale variation, occlusion, and deformation.
We use two performance measures: Success plot and preci-
sion plot. Specifically, for a given overlap threshold in [0, 1],
a tracker is considered successful in a frame if its overlap rate
exceeds the threshold. The success rate for a video measures
the percentage of successful frames over the entire video.
By varying the threshold gradually from 0 to 1, it gives a
plot of the success rate against the overlap threshold for each
tracker. A similar performance measure called precision plot
is defined for the central pixel error which measures the
distance in pixels between the centers of the bounding boxes
for the groundtruth and the prediction. The difference is that
the precision at threshold 20 is used for the performance
score instead of the area under the curve (AUC) score as
in the success plots. We compare FFTNet with 10 trackers:
OAB [1], LOT [16], ALSA [9], CSK [7], TLD [10], MIL [6],
Struck [5], KCF [19], DSST [15], siamFC [31]. The overall
success and precision plots are shown in Fig. 3. For each
tracker, we obtain the curve by averaging over those for all
51 test sequences.

A. PERFORMANCE EVALUATION
In terms of precision, FFTNet outperforms the tracking
methods reported in [12], which is better than KCF, i.e. an
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FIGURE 4. Tracking results on 10 test sequences: Jogging-1, David3, Shaking, Sylvester, Jumping, Deer, CarScale, Car4,
David1, Dog1.

advanced CF-based tracker. In terms of success rate, FFT-
Net outperforms most trackers, which is only a little worse
than siamFC [31]. For visual comparison, we provide some
tracking results in Fig. 4. From Fig. 4, it can be observed
that the proposed tracker performs well in Jogging-1 and
David3 with short-term occlusion, Shaking and Sylvester
with illumination variation (IV), Deer and Jumping with
fast motion (FM) and motion blur (MB), carScale, Car4,
David1 andDog1with scale variation (SV). The experimental
results verify that FFTNet is robust to short-term occlusion,
illumination variation, fast motion, and scale variation. All
videos in OTB50 are annotated with 11 different attributes.

We also provide the experimental results under differ-
ent attributes in Fig. 5. In most challenging conditions
such as occlusion (OCC), motion blur (MB), fast motion
(FM), out-of-plane rotation (OPR), background clutters (BC),
siamFC [31] achieves the best performance, while DSST [15]

is the most robust to illumination variation (IV). FFTNet
is very effective in handling the deformation of the target
objects (DEF). Compared to other discriminative methods,
e.g. DSST, KCF, and Struck, FFTNet is trained end-to-end
on large supervised datasets (VOC2012 and ALOV++) in
an off-line manner, and generally outperforms them in most
challenging conditions. This is because FFTNet is based on
deep neural networks which have strong ability of feature
representation.

B. RUNTIME COMPARISON
For runtime comparison, we provide average frame/second
(FPS) of different trackers on all OTB50 videos in Table 2.
We use two versions of the proposed method: FFTNet and
FFTNet+S, i.e. FFTNet with scale estimation. FFTNet runs
at 88.8 FPS on average of all 50 videos, which much exceeds
real-time requirements. Also, FFTNet+S achieves very high
execution efficiency, which runs at average 49 FPS on all
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FIGURE 5. Attribute-based analysis of different trackers on OTB50 dataset. Attributes from top to down, from left to right are
illumination variation (IV), scale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane
rotation (IPR), out-of-plane (OPR), out-of-view (OV), background clutter (BC), and low resolution (LR).

videos, even with scale estimation. This is because FFTNet
does not need on-line fine-tuning and detection proposals.
For tests, FFTNet only needs two input patches, i.e. target
and search region, and finally produces the response map to
determine the tracking result.

IV. CONCLUSION
In this paper, we have proposed FFTNet for object track-
ing based on CF. We have taken full advantage of
CF, i.e. high computational efficiency and competitive

performance, into FFTNet. Moreover, FFTNet is based on
deep neural networks so that it has strong capabilities of
learning feature representation and matching function. FFT-
Net is trained end-to-end in an off-line manner instead of
online fine-tuning. Thus, FFTNet performs object track-
ing feed-forwardly from target-search pairs to generate the
response map, and achieves high execution efficiency of
nearly 89 FPS. Experimental results demonstrate thatFFTNet
is more robust to short-term occlusion, illumination variation,

6600 VOLUME 6, 2018



Z. He et al.: FFTNets for Object Tracking Based on CF

fast motion and scale variation than state-of-the-art real-time
trackers.
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