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ABSTRACT Unmanned aerial vehicle (UAV) communication has gained increasing interests from the
industry and academia as UAV has a variety of emerging applications, such as aerial sensors, flying base
stations, and mobile relays. Generally, UAVs are manipulated by remote ground control center. Thus one
critical issue is that UAVs must correctly receive the control signal before following the instructions.
However, the control signal quality at UAV receivers is very susceptible due to the variation of channel
conditions and the effect of adjacent channel interference. To tackle these challenges, this paper investigates
the issue of how to simultaneously ensure the reliability of the remote control signal for multiple UAVs. The
problem is formulated as a mixed-integer programming with the goal of maximizing the minimum signal
to interference-plus-noise ratio of all UAVs by jointly scheduling the time–frequency resource blocks and
optimizing the power allocation. To make the problem tractable, we perform equivalent transformations
via leveraging the inherent property of the formulated problem. Next, based on the decoupled constraints
on different variables, we propose a low complexity block coordinate descent-based method. Furthermore,
to offer better system performance, we leverage the smooth approximation theory and develop a gradient
projection-based method. Finally, extensive simulation results demonstrate the effectiveness of the proposed
methods under various parameter configurations.

INDEX TERMS Unmanned aerial vehicle communications, adjacent channel interference, time-frequency
scheduling, power optimization.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Unmanned aerial vehicles (UAVs) aided wireless
communication is a promising approach complementing
to the terrestrial mobile communication systems that are
largely dependent on the fixed infrastructure. Due to
its flexible deployment and stable maneuverability, the
UAV platform equipped with machine-type communica-
tions (MTCs) devices can support a variety of communication
systems [1]–[3]. On one hand, UAVs could act as flying base
stations (BSs) to serve ground targets when the terrestrial
infrastructure is damaged by natural disasters or overloaded
in hotpot areas; on the other hand, the UAV aided mobile
relaying system can offer connectivity opportunities for

distant communication nodes and promote the system per-
formance by leveraging its mobility [4], [5].

To effectively accomplish the above mentioned tasks,
UAVs require specific high-level coordination support,
especially in highly dynamic, heterogeneous environ-
ments [2]. Multiple-UAV operations introduces many non-
trivial problems. One critical technical challenge is that
the safety and stability of UAV communications require
the robustness of control signals, whereas the quality
of the control signal is sensitive to channel variation
and interference. Another challenge is that the avail-
able resources for communications are usually limited,
which may aggravate the potential mutual interference.
Those observations motivate us to investigate the issue that
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how to promote the reliability of control signals received by
UAVs in this paper.

B. RELATED WORK AND CONTRIBUTION
Recently, extensive studies have been devoted to the
UAV-based wireless communications; those efforts mainly
focus on a number of technical issues such as modeling
air-ground channel [6], [7], performance analysis [4], [8],
resource management [9]–[11], UAV deployment and trajec-
tory optimization [12]–[15].

Resource optimization provides effective ways to improve
the system performance of the UAV-aided wireless com-
munications. Zhang and Zhang [9] have investigated the
three-dimensional (3D) drone small cells (DSCs) network
sharing the underlying spectrum with the cellular networks,
and considered to maximize the DSCs network throughput
while satisfying the cellular network efficiency constraint.
By considering the UAVs’ endurance time, the work in [10]
studied UAVs as flying BSs, and proposed a framework for
optimizing the data service delivered to the users. The work
in [11] investigated the problem of synthesizing communica-
tion networks of UAVs, which considered to maximize the
connectivity subject to the cost of operation in the presence
of resource constraints. In [13], the throughput of a point-
to-point mobile relaying system is maximized by optimizing
the source/relay transmit power and the trajectory of the
relaying UAV. Due to that the resource scheduling problems
for multiple UAVs usually involve the difficult discrete vari-
able optimization, there are few related studies. The work
in [15] jointly considered multiuser scheduling, user associ-
ation, UAVs’ transmit power and trajectory, which aimed to
achieve the fair performance among users. In [15], to handle
the discrete UAV scheduling problem, the discrete variables
are directly relaxed into continuous optimization variables
without considering their properties, which can not be applied
to this work, and we explain the peculiar phenomenon in
Section V.

However, none of those prior studies have investigated
multiple UAVs coordinations for the reliable control sig-
nal reception. Many existing works explicitly or implicitly
assume that the UAV can be perfectly controlled by the
control center. Nevertheless, in practice the control signal
reception of UAV is not only affected by the link quality
of the communication channel, but also very susceptible to
the potential interference. Hence, the maintenance of control
links between the control center and UAVs is an important
but tough job. The situation could be more challenging when
the resource such as spectrum resource and transmit power
are constrained.

In this paper, we focus on a multiple UAVs enabled uplink
communication system, where the control center connects
to a ground base station, which is referred to as the control
BS or BS hereinafter. To effectively carry out the target mis-
sions, the UAVs have to correctly receive the control signal
and follow the instructions wherein to adjust the response,
but the number of available frequency bands is not sufficient

to schedule all UAVs. In addition, due to the hardware lim-
itations, UAVs that are occupying adjacent channels simul-
taneously would suffer from the interference leaked from
other channels. This phenomenon can be rather serious
when the near-far effect exists between UAVs. To tackle
these challenges inherent in the reliable control signal recep-
tion of multiple UAVs, this paper makes the following
contributions:
• We formulate a novel max-min-fairness problem for
optimizing the quality of the control signal received at
UAVs under the effect of adjacent channel interference.
This formulation can fairly guarantee the reliable control
signal reception of UAVs by jointly considering the
time-frequency scheduling of UAVs and the transmit
power allocation of the BS. However, this problem is an
intractable Mixed-Integer Nonlinear Program (MINLP).

• We perform transformation for the formulated challeng-
ing optimization problem. By introducing the definition
of the resource blocks assignment matrix, we derive
a more tractable formulation. To further simplify the
form of the problem, we leverage the rank-one prop-
erty to reduce the scale of the optimization variables.
In addition, we decouple the variables from the coupling
constraints by exploiting the property of the objective
function.

• We develop two algorithms for the maximization of
the lowest signal-to-interference plus noise ratio (SINR)
at UAVs. The first one is the low complexity, block coor-
dinate descent (BCD) based method, which is designed
based on the property that the constraints are separable
across the variables. The second algorithm is proposed
to approximate the best system performance, which is
based on the concept of smooth approximation and gra-
dient projection.

• We provide in-depth simulations under various parame-
ter configurations. The results clearly show the conver-
gence behaviors of the proposed methods, the effect on
the system performance of various parameters, and the
insights of a typical example. Moreover, the comparison
results demonstrate the superior performance of the pro-
posed methods.

C. ORGANIZATION AND NOTATIONS
The rest of this paper is organized as follows. In the next
section, we describe the system model and state the prob-
lem formulation. The problem transformation is presented
in III. Section IV proposes a block coordinated descend based
method. The smooth approximation and the gradient projec-
tion based method are discussed in Section V. Simulation
results are provided in Section VI, and the conclusions are
drawn in Section VII.
Notations: Scalars, vectors and matrices are respectively

denoted by lower case, boldface lower case and boldface
upper case letters. For a square matrix A, AT , A−1 and
λmax(A) denote its transpose, inverse, and the maximum
eigenvalue, respectively. RM×N denotes the space of the
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M × N -dimensional real-valued matrix and E denotes the
matrix with 1 in all entries.

II. SYSTEM MODEL AND PROBLEM STATEMENT
As shown in Fig. 1, we consider the uplink scenario where
a number of UAVs are controlled by a control BS to carry
out certain tasks, and the control BS needs to frequently send
control messages to the UAVs. However, the mutual inter-
ference occurs between different UAVs on adjacent chan-
nels. The adjacent channel interference (ACI) may become
more serious when UAVs have relatively large differences
with respect to the distance to the BS. For example, two
UAVs u1 and u2 receive their control signals on adjacent
channels, du1,bs and du2,bs are their distance to the BS.
If du1,bs � du2,bs, due to the ACI, the high power sig-
nal transmitted to UAV u1 would leak into the channel of
UAV u2 and block the communication between UAV u2 and
the BS.

FIGURE 1. Scenario illustration of multiple UAVs enabled uplink control
system.

Let M , {1, ...,M} denote the set of UAVs, N ,
{1, ...,N } and J , {1, ..., J} are the set of available fre-
quency bands and time slots, respectively, thus the num-
ber of available resource blocks (RBs) of time-frequency
is NJ . The time slot length is chosen sufficiently small
such that the UAV’s location can be regarded as constant
within each slot, while different time slots represent the
communication window of different periods. UAVs period-
ically send back their information, and a central process-
ing unit at the control BS has the knowledge of all the
UAVs’ state information, including their flying 3D coordi-
nates and channel state information (CSI). The objective of
the BS is to alleviate the ACI effect and improve the qual-
ity of control signal for all the UAVs, by assigning UAVs
the proper resource blocks and optimizing the transmission
power of the BS to each UAV. For this purpose, an opti-
mization framework is required. In the sequel, before stating
the problem formulation, we first present the AG channel
model, and then give an explicit definition to quantify the
ACI effect.

A. AIR-GROUND CHANNEL MODELING
According to [6] and [7], the air-ground (AG) communication
link between a UAV and BS is mainly dominated by the
line-of-sight (LoS) and non-line-of-sight (NLoS) occurrence
probabilities. One typical modeling for the LoS probabil-
ity between UAV k and the BS at the j-th slot is given
by [4], [6], [7]:

Prk,jLoS =
1

1+ Ce

[
−B

(
θ
j
k−C

)] (1)

where the constants B and C are dependent on the environ-
ment type (such as rural, urban, or dense urban), and θ jk is
the elevation angle from the BS’ view towards UAV k at

the j-th slot. Definitely, θ jk =
180
π
× sin−1

(
hjk
d jk,bs

)
, where

d jk,bs =

√(
x jk − xbs

)2
+

(
yjk − y

j
bs

)2
+

(
hjk
)2

is distance

between the coordinate of UAV k
(
x jk , y

j
k , h

j
k

)
and the BS

(xbs, ybs, 0) at slot j. Clearly, the probability of NLoS link

is Prk,jNLoS = 1− Prk,jLoS .
Based on the free space propagation model [16], the path

loss for LoS and NLoS links between UAV k and the BS at
slot j is written as

PL jk,bs =


20 lg(F + f jk )+ 20 lg(d jk,bs)+ 32.4

+ηLoS , LoS link,
20 lg(F + f jk )+ 20 lg(d jk,bs)+ 32.4

+ηNLoS , NLoS link,

(2)

where F is the baseline carrier frequency, f jk ∈

{
a
f1, . . . ,

a
fN } denotes the interval between the channel

frequency that UAV k occupies at the j-th slot and F . ηLoS
and ηNLoS are the additional attenuation factors for LoS and
NLoS connections, respectively. Therefore, at the j-th slot,
the channel gain between UAV k and the BS can be expressed
as

gjk,bs
(
d jk,bs, f

j
k

)
=

1

PL jk,bs
= C j

k (F + f
j
k )
−2, (3)

where

C j
k =

{
10−32.4−ηLoS × (d jk,bs)

−2, LoS link

10−32.4−ηNLoS × (d jk,bs)
−2, NLoS link

is the location dependent channel gain.

B. ADJACENT CHANNEL INTERFERENCE
To fully utilize the scarce spectrum resources, the avail-
able frequency bands for allocation are tightly segmented.
The aggregate ACI cannot be neglected as multiple wire-
less devices are operating on adjacent channels simul-
taneously [17]. The existence of ACI effect is mainly
ascribed to two reasons: on one hand, the terminal devices’
receiver filters have limited performance; on the other hand,
the side lobe effect of the BS’ antenna may cause undesired
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interference to terminal devices on the adjacent channels.
Consider that the UAVs have the same type, and are equipped
with the receiver filters that have similar properties. For any
two UAVs u1 and u2, let f1 and f2 be the frequencies of
their control channels, both the channels would suffer from
the ACI. To quantify the effect of ACI leakage, we define a
mapping function 9 : f1, f2 7→ µf1,f2 for f1 and f2, where
µf1,f2 is the ACI coefficient. Theoretically, µf1,f2 satisfies the
following properties:

0 ≤ µf1,f2 ≤ 1,
µf1,f2 = µf2,f1
µf1,f2 = 1, if |f1 − f2| = 0,
µf1,f2 → 0, if |f1 − f2| → ∞,
0 < µf1,f2 < 1, if 0 < |f1 − f2| <∞.

(4)

When |f1 − f2| = 0, which means u1 and u2 use the
co-channel; |f1 − f2| → ∞ represents that f1 and f2 are
separated relatively far apart, hence the ACI is very weak.
Notice that in practical system, µf1,f2 can be determined by
measurements.

C. PROBLEM FORMULATION
Without loss of generality, we consider a practical case that
the time-frequency resources are limited, and only with the
available channels or time slots alone are not sufficient for the
communications between all the UAVs and the BS. To sup-
port the control signal reception of all the UAVs, the number
of time-frequency RBs should not be less than the UAVs’
number. Note that M , N and J represent the number of
UAVs, available frequency bands and time slots, respectively,
we have the following basic assumptions:{

M > max{N , J},
M ≤ N ∗ J .

(5)

We define the matrix S ,
{
sjk = {0, 1}

}
∈ RM×J to

indicate whether UAV k occupies a RB at slot j. If sjk = 1,
which means UAV k takes a RB at the j-th slot; other-
wise sjk = 0. Given the available time-frequency RBs, two
actual constraints are considered: 1) Each UAV only occupies
one RB; 2) Each RB can be assigned to at most one UAV.
Mathematically, these constraints can be written as

J∑
j=1

sjk = 1, ∀k ∈M,

f jk 6= f jm, k 6= m, ∀j ∈ J , ∀k,m ∈M.

(6)

On the UAVs side, the SINR level is used to measure the
quality of the control signal. Based on the above definitions,
at the j-th time slot, for UAV k , we formulate the SINR of the
control signal at the receiver as followsl

γ
j
k =

pkC
j
ks
j
k

(
F + f jk

)−2
∑
m6=k

µf jk ,f
j
m
pmC

j
ks
j
m

(
F + f jm

)−2
+ σ 2

k

, (7)

where p , {pk} ∈ RM×1 is the transmit power vec-
tor of the BS for each UAV, the aggregate ACI on the
channel of UAV k at the same time slot is represented by∑
m 6=k

µf jk ,f
j
m
pmC

j
ks
j
m

(
F + f jm

)−2
, and σ 2

k is the power of addi-

tive white Gaussian noise (AWGN). When sjk = 1, the BS
transmits signal to UAV k at slot j, hence γ jk > 0; whereas
γ
j
k = 0 when sjk = 0. Since UAV k only occupies one

time slot, the SINR of the control signal it received can be
represented by

γk =

J∑
j=1

γ
j
k . (8)

In general, the higher SINR of the control signal at a UAV,
the more reliable information it might get from the BS.
To improve the reliability of the control signal for all the
UAVs, the corresponding SINR levels at UAVs should be
promoted as far as possible. To this end, in this paper we adopt
the max-min-fairness index among the SINR levels of UAVs,
thus the objective value is determined by the UAV who has
the lowest SINR level, and our goal is to maximize the lowest
SINR by optimizing the time-frequency RBs assignment and
the BS transmit power allocation. The problem of interest is
formulated as

max{
sjk ,f

j
k ,pk

} min
k


pkC

j
ks
j
k

(
F+f jk

)−2
∑
m 6=k

µf jk ,f
j
m
pmC

j
ks
j
m

(
F+f jm

)−2
+ σ 2

k

 (9a)

s.t.
J∑
j=1

sjk = 1, ∀k ∈M, (9b)

f jk 6= f jm, k 6= m, ∀j ∈ J , ∀k,m ∈M, (9c)

sjk ∈ {0, 1}, ∀j ∈ J , ∀k ∈M, (9d)

f jk ∈ {
i

f1, . . . ,
i

fN }, ∀j ∈ J , ∀k ∈M, (9e)

M∑
k=1

pk ≤ Pmax, (9f)

0 ≤ pk , ∀k ∈M, (9g)

wherein (9f) means the maximum power constraint that the
control BS can allocate to all the UAVs. Problem (9) is
a Mixed-Integer Nonlinear Program (MINLP), which gen-
erally falls into the NP-hard category. Moreover, (9) is
intractable for the typical optimization methods, because the
optimization variables appears in the subscript (e.g., the
variables {f jk }).

III. PROBLEM TRANSFORMATION
In this section, we firstly transform the difficult problem into
a more tractable formulation, then we further leverage the
rank-one property to further transform the problem into an
equivalent but simpler form.
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A. EQUIVALENT TRANSFORMATION VIA THE
RB ASSIGNMENT MATRIX A
To make problem (9) tractable, we introduce the RB assign-
ment matrix A ,

{
aki,j |i ∈ N , j ∈ J , k ∈M

}
∈ RN×J×M .

For each UAV k , the matrix Ak = [ak1, . . . , a
k
J ] is

defined to represent its RB occupancy pattern, where akj =
[ak1,j, . . . , a

k
N ,j]

T . Specifically, aki,j = 1 means the RB with
respect to frequency band i and time slot j is assigned to
UAV k , and aki,j = 0 otherwise; when akj = 0, UAV k doesn’t

occupy the RB at slot j. Define f ,
[a

f1, . . . ,
a
fN
]T , and

store the ACI coefficients in the symmetric matrixW, namely
Wi,n , µfi,fn , we have the following proposition.
Proposition 1: Problem (9) can be equivalently trans-

formed as (10), as shown at the bottom of this page, where
ej is a unit column vector with the j-th element equals to 1.

Proof: According to the definitions, we have the follow-
ing equivalent transformations:

sjk = 1T akj = 1TAkej,

f jk = f T akj = f TAkej, (11)

and the ACI coefficient between the channels of UAV k and
m at slot j is formulated as

µf jk ,f
j
m
= (akj )

TWamj = (Akej)TWAmej. (12)

As a direct result, problem (9) is transformed into (10),
wherein the constraints (10b) and (10c) correspond to (9b)
and (9c), respectively; constraint (10d) corresponds to (9d)
and (9e), and other constraints remain unchanged.

Note that although problem (10) is still aMINLP, its form is
more concise and tractable than (9), and we can directly deal
with problem (10), later we will show that problem (10) could

be further transformed into another equivalent form, which is
very suitable for efficient algorithms design.

B. EQUIVALENT TRANSFORMATION VIA THE CHANNEL
OCCUPANCY MATRIX X AND THE SLOT
OCCUPANCY MATRIX Y
From (10), it is observed that Ak , k = {1, . . . ,M} are
coupling in constraint (10c), which makes it difficult to
design efficient algorithms. Another drawback of (10) is that
matrix A contains NJM elements, with so many optimization
variables it would be challenging to find low complexity
algorithms.

We notice that matrix Ak ,∀k ∈ M contains only one
nonzero element, hence each Ak satisfies the rank-one prop-
erty, which implies that each Ak can be substituted by low
dimensional vectors. Based on this idea, we can represent
problem (10) in a simpler form. We try to reach this target by
introducing two key matrices: the channel occupancy matrix
X ,

[
x1, . . . , xM

]
∈ RN×M and the slot occupancy matrix

Y ,
[
y1, . . . , yM

]
∈ RJ×M , where xk =

[
xk1 , . . . , x

k
n
]T

and
yk =

[
yk1, . . . , y

k
n
]T
. For X, the element xki = 1 indicates

that UAV k occupies the channel i, otherwise xki = 0; for Y,
ykj = 1 indicates that UAV k occupies the slot j, otherwise

ykj = 0.
Moreover, we hope that the constraint (10c) can be decou-

pled, meanwhile different UAVs are forced to occupy differ-
ent RBs. We consider to achieve this effect via adapting the
ACI coefficient matrix W, then we can obtain the following
proposition.
Proposition 2: Define the matrices X and Y, and let the

diagonal elements of W be sufficiently large, then prob-
lem (10) can be simplified as (13), as shown at the bottom
of this page.

max
{Ak ,pk }

min
k

J∑
j=1

pkC
j
k1

TAkej
(
F + f TAkej

)−2
M∑
m 6=k

(
Amej

)T WAkejpmC
j
k1

TAmej
(
F + f TAmej

)−2
+ σ 2

k

(10a)

s.t. 1TAk1 = 1, ∀k ∈M, (10b)
M∑
k=1

Ak ≤ EN×J , (10c)

aki,j ∈ {0, 1}, ∀i ∈ N , ∀j ∈ J ,∀k ∈M, (10d)
(9f), (9g). (10e)

max
{xk ,yk ,pk }

min
k

J∑
j=1

pkC
j
ke
T
j y

k
(
F + f T xkeTj y

k
)−2

M∑
m6=k

pmC
j
ke
T
j y

m (xm)T WxkeTj y
k
(
F + f T xmeTj y

m
)−2
+ σ 2

k

(13a)

s.t. 1T xk = 1, ∀k ∈M, (13b)
1T yk = 1, ∀k ∈M, (13c)
xki ∈ {0, 1}, ∀i ∈ N , ∀k ∈M, (13d)
ykj ∈ {0, 1}, ∀j ∈ J , ∀k ∈M, (13e)
(9f), (9g). (13f)
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Proof: Based on the definitions of X and Y, we have
1T xk = 1T yk = 1, and Ak , xk

(
yk
)T for ∀k ∈M, as well

as the following equivalent transformations:

1TAkej = eTj y
k ,

Akej = xkeTj y
k ,

f TAkej = f T xkeTj y
k . (14)

Because eTj y
m
= {0, 1} =

(
eTj y

m
)2
, we can represent the

aggregate ACI by
M∑
m 6=k

pmC
j
ke
T
j y

m (xm)T WxkeTj y
k
(
F + f T xmeTj y

m
)−2

,

(15)

If the diagonal elements of W are getting large, then the
term (akj )

TWamj increases for akj = amj , thus the co-channel
interference would be stronger, consequently UAVs tend to
occupy different RBs for higher SINR levels, therefore the
constraints (10c) can be decoupled.

As a result, problem (10) can be simplified as (13), where
constraints (13b) and (13c) correspond to (10b), the coupling
constraint (10c) is replaced by setting sufficiently large value
for W’s diagonal elements in (13a), the constraints (13d)
and (13e) correspond to (10d), and the constraints with
respect to p are unchanged.

Proposition 1 and 2 suggest that the optimal solution
to problem (9) can be obtained by solving problem (13),
hence the main task of the rest paper is to solve prob-
lem (13). In (13), we observe that the constraints are sep-
arable across the variables X and Y. Moreover, the total
number of elements in X and Y is M (N + J ), which is
much less than that of A. In the sequel, to solve (13),
we first propose a low complexity method based on the BCD
method in Section IV; then, to approximate the best system
performance, we further propose an optimization method
based on smooth approximation and gradient projection
in Section V.

IV. BLOCK COORDINATE DESCENT BASED METHOD
Since the constraints of (13) are separable across the variables
X, Y and p, we can use the BCD method to optimize the RBs
assignment and BS transmit power iteratively. The proposed
BCD-based method alternately updates the X,Y block and
p block, one at a time with the other being fixed. In the
following, we first propose a BCD-based method to update
X and Y,1 then use the eigenvalue decomposition method to
update p.

A. UPDATE X and Y VIA THE BCD-BASED METHOD
The optimization of X and Y with p fixed is a combinational
problem, because the constraints are separable over X and Y,

1Need to mention that the proposed BCD-based method for updating X
andY does not regard the matricesX andY as two independent blocks. Each
time, given any UAV index, i.e.m, it is that the corresponding vectors xm and
ym in X and Y are optimized in the BCD manner.

Algorithm 1 Block Coordinate Descent Based Method for
Updating X and Y

1: Initialize X(0) and Y(0), and define the maximum itera-
tion number T1,max, set t = 0.

2: repeat
3: Set X = X(t), Y = Y(t), generate a random permu-

tation 2(t) containing the integers from 1 to M , set
k = 0.

4: repeat
5: Set k = k + 1, and m = 2(t)(k).
6: Fix Y and X−m, update xm = eI , where

I = argmax
i∈{1,...,N }

f ((X−m, ei) ,Y, p) . (16)

7: Fix X and Y−m, update ym = eK , where

K = argmax
j∈{1,...,J}

f
(
X,
(
Y−m, ej

)
, p
)
. (17)

8: until k = M .
9: Set t = t + 1, and X(t)

= X, Y(t)
= Y.

10: until the objective value is unchanged, or maximum
iteration number is reached.

we can also alternatively optimize X and Y. Our main idea
is to locally optimize each UAV via coordinate descent. For
a UAV k , we can find the best xk and yk while keeping
{xm, ym},∀m 6= k fixed, and then repeat the same step to
optimize other UAVs. Accordingly, the proposed BCD-based
method for updating X and Y is summarized in Algorithm 1.
Specifically, the initial values of X and Y in Algorithm 1
are provided by the outer algorithm. Each time we select
a UAV from the random permutation vector 2(t) in turn,
whose elements represent the index of all the UAVs. Define
X , (X−k , xk ), and Y , (Y−k , yk ), where X−k and Y−k
are the columns of matrices X and Y except the k-th column,
respectively. Denote f (X,Y, p) as the objective value of (13),
for the selected UAV index m, we first find the best xm by
fixingY andX−m in Step 6, then the best ym is found in Step 7.
Through these steps, the objective value of (13) keeps increas-
ing iteratively. For the complexity of this method, according
to (16) and (17), each chosen UAV needs to evaluate the
objective value at most N + J times one iteration. Given
the required iterations number T1, Algorithm 1 needs at most
T1 M (N + J ) evaluations.

B. UPDATE p VIA THE EIGENVALUE DECOMPOSITION
METHOD
Given the values of X and Y, we can rewrite (13) as the
following power optimization problem

max
{pk }

min
k


pkbk,k

M∑
m 6=k

pmbk,m + σ 2
k

 (18a)
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s.t.
M∑
k=1

pk ≤ Pmax, (18b)

0 ≤ pk , ∀k ∈M, (18c)

where bk,m,∀k,m ∈ M are constant coefficients, which
are determined by X and Y. Although (18) is non-convex,
we can solve problems of this form efficiently based on
the conclusion in [18]. Define z = [p1, . . . , pM , 1]T , γ =

pkbk,k
M∑
m6=k

pmbk,m+σ 2k

,∀k , and

C =
[
IM×M 0M×1
11×M −Pmax

]
, B =

[
RM×M h
01×M 0

]
,

where

R =


bk,m
bk,k

, k 6= m

0, k = m
, h =

[
σ 2
1

b1,1
, . . . ,

σ 2
M

bM ,M

]T
.

Whenever constraint (18b) holdswith strict inequality, we can
scale {pk} proportionally to improve the objective value
of (18), so (18b) could be written as an equality constraint.
Based on the above definitions, we can represent the con-
straint of (18) as

Cz = γBz, (19)

equivalently, we have 1
γ
z = C−1Bz, therefore 1

γ
is the

eigenvalue of the non-negative matrixC−1B, and z is the cor-
responding eigenvector. According to [18] and the property of
non-negative matrix, for C−1B, the eigenvalue of the largest
norm is positive, and its corresponding eigenvector can be
chosen to be non-negative. The optimal value of (18) is the
reciprocal of the largest eigenvalue of C−1B, which is given
by

γ = 1/λmax(C−1B), (20)

and this result implies that all the UAVs would obtain the
equal SINR levels. Let z be the eigenvector with respect to
the largest eigenvalue, we can scale this vector such that the
last element is 1, then the first M elements offer the optimal
solution of (18).

To sum up, we present the proposed BCD-based method
for solving (13) in Algorithm 2. The initial value of p can
be simply set as pk =

Pmax
M ,∀k , while the values of X

and Y could be initialized in a random manner considering
their constraints. When T1,max = 1, Algorithm 2 only opti-
mize X, Y and p once each time; whereas when T1,max is
large, which meansX andY are optimized thoroughly before
optimizing p.

V. SMOOTH APPROXIMATION AND GRADIENT
PROJECTION BASED METHOD
In general, the BCD optimization algorithm is effectively
applied to continuous problems. For the discrete cases,
the BCD method might be trapped into the local points.
In addition, the global optimum of such kind of problem is

Algorithm 2 Block Coordinate Descent Based Method for
Solving problem (13)
1: Initialize p, X, Y, and define the maximum iteration

number T2,max.
2: repeat
3: Fix p, use Algorithm 1 to update X and Y.
4: Fix X and Y, update p by using (19) to solve problem

(18).
5: until the objective value converges, or the maximum

iteration number is reached.

hardly to achieve, for this reason, we hope to approximate the
best performance of problem (13) by continuous optimization
methods. Therefore, we consider to relax the binary variables
X and Y into continuous variables, then solve this relaxed
continuous problem. Ultimately, X and Y can be determined
by rounding the optimization results. If the elements of the
optimizedX andY don’t have evident tendency toward 0 or 1,
we can strengthen this effect by adding proper penalty term to
the objective function. Nevertheless, for problem (13), after
relaxing X and Y into the variables within [0, 1], we observe
a peculiar phenomenon: when the value of numerator in the
objective function is very small, we have eTj y

k
� 1, which

indicates that UAV k won’t occupy the RBs at the j-th slot, and
the corresponding SINR should be low. However, due to the
joint effects of eTj y

m and eTj y
k , the denominator is much less

than the numerator in the objective function, consequently
the SINR level for UAV k at slot j is very large instead.
This phenomenon doesn’t get improved even if the penalty
term is added. Hence, we couldn’t obtain the desirable RBs
assignment by directly optimizing the relaxed formulation
of (13).

The above analyses explain that the relaxation of the term
eTj y

k for (13) will be counterproductive. The reason behind

is that in the expression of SINR, when the value of {eTj y
k
}

decreases, the denominator will experience faster attenuation
than the numerator. We hope to avoid this phenomenon after
relaxation, while not changing the physical meaning of the
objective function of (13). We know that the value of eTj y

k is
either 0 or 1 before relaxation, hence(

eTj y
k
)n
= eTj y

k , n ≥ 1. (21)

If n is sufficiently large, in the objective function of (13), after
relaxation the numerator will be attenuating much faster than
the denominator as eTj y

k decreases, thus we can overcome
the challenge that the numerator is very small, but the corre-
sponding SINR is large. To see the effect of the exponential
coefficient n, the authors may refer to the detailed simulation
results in Section VI-B. According to the analyses, we can
equivalently write (13) as (22), as shown at the bottom of the
next page.

In the following, for (22), we approximate this noncontin-
uous problem as a smooth one, and then propose a gradient
projection (GP) based method to solve it.
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A. SMOOTH APPROXIMATION
We first give a smooth approximation for the objective of the
problem (23), by using the following lemma.
Lemma 1: According to [19], the following inequality

holds

max{x1, . . . , xn} ≤ f (x) ≤ max{x1, . . . , xn} + µ log n,

(23)

where

f (x) = µ log
(
exp

(
x1
µ

)
+ · · · + exp

(
xn
µ

))
, µ > 0,

(24)

when µ is sufficiently small, we can approximate

f (x) ≈ max{x1, . . . , xn}. (25)

According to Lemma 1, we define fk (X,Y, p) as the
expression in (26), as shown at the bottom of this
page.

Then we have

fµ(X,Y, p) = µ log
M∑
k=1

exp
(
fk (X,Y, p)

µ

)
≈ max {f1(X,Y, p), . . . , fM (X,Y, p)} , (27)

with a small µ. Hence problem (13) can be approximated as
the following problem

− min
{xk ,yk ,pk }

fµ(X,Y, p)

s.t. (9f), (9g), (13b)-(13e). (28)

We further relax the binary integer variables X and Y,
then problem (28) is transformed into a continuous
problem

min
{xk ,yk ,pk }

fµ(X,Y, p) (29a)

s.t. 1T xk = 1,∀k ∈M, (29b)

1T yk = 1, ∀k ∈M, (29c)

0 ≤ xki , ∀i ∈ N , ∀k ∈M, (29d)

0 ≤ ykj , ∀j ∈ J , ∀k ∈M, (29e)

(9f), (9g). (29f)

Algorithm 3 Gradient Projection Based Method for Solving
Problem (22)
1: Initialize p, X, Y. Define the tolerance of accuracy ε3

and the maximum iteration number T3,max.
2: repeat
3: Calculate the gradients:

`
X fµ(X,Y, p),`

Y fµ(X,Y, p) and
`
p fµ(X,Y, p).

4: Calculate the projections:

Xproj = P�X

(
X−

h

X

fµ(X,Y, p)

)
,

Yproj = P�Y

(
Y−

h

Y

fµ(X,Y, p)

)
,

pproj = P�p

p−h

p

fµ(X,Y, p)

 .
5: Update X, Y and p according to (30)X

Y
p

←−
X
Y
p

+ α
Xproj − X
Yproj − Y
pproj − p

 . (30)

6: until the objective value of fµ(X,Y, p) converges, or the
maximum iteration number is reached.

7: Round the elements of X and Y into 0-1 integers.
8: Put X and Y into (22), and optimize p by the eigenvalue

decomposition method.

B. PROPOSED GRADIENT PROJECTION BASED METHOD
Note that the objective function of problem (29) is continu-
ous and differentiable with respect to X, Y and p, we also
observe that the constraints of X, Y, p are independent prob-
ability simplex. Since the projection of any point onto the
probability simplex is simple to compute by sophisticated
methods [20], [21], we can easily apply the gradient
projection method to solve problem (29). After obtain-
ing the solution of (29), we can determine the ulti-
mate value of X, Y, p accordingly, the detailed steps
for solving (22) based on GP method is summarized
in Algorithm 3.

max
{xk ,yk ,pk }

min
k

J∑
j=1

pkC
j
k

(
eTj y

k
)n (

F + f T xkeTj y
k
)−2

M∑
m6=k

pmC
j
ke
T
j y

m (xm)T WxkeTj y
k
(
F + f T xmeTj y

m
)−2
+ σ 2

k

s.t. (9f), (9g), (13b)-(13e). (22)

fk (X,Y, p) , −
J∑
j=1

pkC
j
k

(
eTj y

k
)n (

F + f T xkeTj y
k
)−2

M∑
m6=k

pmC
j
ke
T
j y

m (xm)T WxkeTj y
k
(
F + f T xmeTj y

m
)−2
+ σ 2

k

(26)
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Let X ∈ �X, Y ∈ �Y and p ∈ �p,
where �X ,

{
1T xk = 1, xki ∈ [0, 1],∀i, k

}
, �Y ,{

1T yk = 1, ykj ∈ [0, 1],∀j, k
}
and �p ,

{
M∑
k=1

pk = Pmax,

0 ≤ pk ,∀k
}
. In the first step of Algorithm 3, we randomly

initialize the elements ofX andY, and p. For any givenmatrix
X̄ ∈ RN×M , the projection of X̄ onto the simplex �X is to
solve the minimization problem

X = argmin
X∈�X

‖X− X̄‖, (31)

we denote this projection problem as P�X

(
X̄
)
, the nota-

tions of P�Y (·) and P�p (·) are expressed similarly. In step 3,
the gradients point out a descending direction for the objec-
tive function, whereas Step 4 projects a point onto the feasible
set of (29). In Step 5, α ≥ 0 is a judiciously chosen step size,
which can be determined based on the Armijo’s rule [22]. The
objective value of fµ(X,Y, p) is monotonically decreasing
through the iterations from Step 3 to Step 5, but problem (29)
doesn’t need to be thoroughly optimized, the iterations can
be terminated as long as the elements in X and Y are already
shown evident tendency toward 0 or 1. Once the iterations
of gradient projection are finished, the ultimate values of X
and Y can be determined by simply rounding their elements
into 0-1 integers, then the problem (22) with respect to p
is reduced to problem (18), which could be solved by the
eigenvalue decomposition method. To speed up the conver-
gence for the gradient projection iterations from Step 3 to
Step 6, we can also introduce a penalty term in the objective
function (29a). Following [23], we use the binary nature of
X orY to enforce xki = (xki )

2 or ykj = (ykj )
2, then (29a) can be

substituted by the new objective function, which is defined as

Lµ,λ(X,Y, p) , fµ(X,Y, p)+ λ
M∑
k=1

N∑
i=1

[
xki − (xki )

2
]
,

(32)

where λ ≥ 0 is a constant penalty factor, which signifies the
relative importance of recovering binary values forX over the
minimization of fµ(X,Y, p).

VI. SIMULATION RESULTS
In this section, simulation results are presented to validate
the performance of the proposed algorithms. We consider
a system that the UAVs are flying in a 3D space, and the
projection plane onto ground is a 2D area of 5 × 5 km2,
where the control BS is located in the center. The UAV’s
flying altitude is permitted to range from 100 m to 2.5 km,
while the minimum height corresponds to the minimum
altitude required in moderate mountains area. Considering
the high speed fixed-wing or hybrid fixed-and-rotary-wing
UAVs, the maximum UAV velocity is Vmax = 50 m/s [13].
To determine the UAV’ trajectory coordinates in a specified
time period, the central processing unit at the control BS
could plan in advance or calculate by the UAV’ current state

TABLE 1. Simulation parameters.

FIGURE 2. The minimum SINR levels of UAVs versus the average running
time.

information. Given the UAVs’ initial coordinates, their flying
velocity vectors and the time interval between different time
slots, then the trajectory coordinates of UAVs over each slots
are deduced. The channel gains between UAVs and the BS
are generated based on the model from (1) to (3) while
considering the LoS and NLoS occurrence probabilities. For
simplicity, we assume the interval between each channel is
the same, and the noise powers at the UAVs’ receivers are
identical and given by σ 2

1 = . . . = σ 2
M , σ 2. For the ACI

coefficients, we refer to the measurement results of [24] for
the modeling of matrixW. The related simulation parameters
are listed in Table 1, part of them are set based on the typical
values as those in [4] and [14].

A. CONVERGENCE EVALUATION
In this subsection, we examine the convergence of the pro-
posed algorithms by setting the number of available channels
and time slots asN = 5 and J = 5. Both these two algorithms
are implemented with the Core i7, 2.6 GHz CPUs. Fig. 2
and Fig. 3 show the convergence behaviors of the proposed
BCD-based method and GP-based method, respectively. For
the BCD-based method, to avoid the algorithm converg-
ing to the undesired local points prematurely, we set the
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FIGURE 3. The objective function value versus the algorithm running
time.

maximum iteration number in Algorithm 1 as T1,max = 10,
which is sufficient for the convergence of Algorithm 1. Fig. 2
presents the averaged results of multiple independent run-
ning of Algorithm 2 for solving (13). Since the computation
complexity of p with the eigenvalue decomposition method
is trivial, the total computation complexity of Algorithm 2
equals to the complexity of Algorithm 1.When the number of
UAVs is M = 6, Algorithm 1 converges very fast, therefore
Algorithm 2 can converge in 1.3 seconds; when M = 12,
Algorithm 2 needs 17.4 seconds to converge, which is due to
that in Algorithm 1, more UAVs are needed to evaluate, and
the convergence needs more iterations.

Fig. 3 plots the objective function value against the run-
ning times of the gradient projection iterations from the
Step 3 to Step 6 in Algorithm 3. The objective function
Lµ,λ(X,Y, p) is optimized with Algorithm 3 for solving (29)
under the setting of µ = 1 and λ = 1

5MN , and γ represents
the objective function value of (22). Based on the smooth
approximation theory in Section V-A and the definition of
Lµ,λ(X,Y, p), −Lµ,λ(X,Y, p) serves as the lower bound
for the objective function of (22). In Fig. 3, we see that
Algorithm 3 needs more running time to converge compared
with Algorithm 2, both Lµ,λ(X,Y, p) and γ converges in
about 6 seconds when M = 6, and about 30 seconds when
M = 12. As seen, −Lµ,λ(X,Y, p) is monotonically increas-
ing until the algorithm converges, and the approximation
gap between −Lµ,λ(X,Y, p) and γ increases as the UAV’s
number changes from 6 to 12. The convergence results of
Fig. 2 and Fig. 3 imply that the algorithms running times
are greatly affected by the UAV’s number, for large numbers
of UAVs, we can divide the UAVs and available RBs into
multiple small scale parts, thus each independent part can be
efficiently optimized by the proposed methods.

B. SYSTEM PERFORMANCE
The system performance of the proposed algorithms is evalu-
ated in this subsection. We start by analyzing the effect of the

FIGURE 4. Impact of the exponential coefficient n on the system
performance (M = 6, N = 5, J = 5).

exponential coefficient nwhich is introduced in (22), then we
study the simulation results of a typical example, followed by
the performance comparison of different methods.

1) IMPACT OF EXPONENTIAL COEFFICIENT n
As discussed in Section IV, n is a key factor for the relaxation
of the problem (13). We investigate the relationship between
the ultimate minimum SINR levels of UAVs and the expo-
nential coefficient n with Algorithm 3, the averaged results
by multiple independent running are illustrated in Fig. 4. For
n = 1, problem (22) is exactly (13), and the corresponding
system performance is the poorest as expected; for n > 1,
the system performance is significantly improved. In addi-
tion, the exponential coefficient n should not be chosen too
large to avoid the stringent conditioning property of the opti-
mization problem. As seen from Fig. 4, the system perfor-
mance keeps stable for 2 ≤ n ≤ 8, and begins to decrease
slightly when n > 8. For simulations, the exponential coeffi-
cient is simply taken as n = 6 in the following.

2) A SIMULATION EXAMPLE
In this example, we study a typical case and present the
detailed optimization results in Fig. 5, the simulation settings
are basically the same as before, i.e., M = 6, N = 5, J = 5.
We randomly generate the UAVs’ initial coordinates and their
flying velocity vectors, the corresponding location dependent
channel gain {C j

k}k∈M,j∈J between each UAV and the BS is
drawn in Fig. 5a, in which the dark blue slots for UAV 2 and 3
are caused by the NLoS attenuation. In Algorithm 2 and
Algorithm 3, we refer to the steps for updating X and Y
as Stage I, and Stage II refers to the steps for updating p.
Through Stage I with Algorithm 3, the RBs assignment pat-
tern is obtained as shown in Fig. 5b, and the corresponding
SINR level of each UAV is depicted in Fig. 5c. We see that
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FIGURE 5. The simulation results for an example (M = 6, N = 5, J = 5). (a) Location dependent channel gain. (b) RBs assignment for UAVs. (c) SINR levels
of UAVs. (d) Transmit power of the BS to each UAV.

the lowest SINR level is among UAV 2 and 3, both of whom
receive the control signal at slot 3. Except for the transmit
power of the BS, the SINR level of each UAV is determined
by its channel gain and the mutual ACI. Therefore, on one
hand, the UAVs should avoid occupying the NLoS attenuated
time slots; on the other hand, for UAVs which are receiv-
ing control signal simultaneously, the interval between their
occupying channels should be as large as possible. In addi-
tion, since we have considered a fairness objective in the
optimization problem, thus in the RBs assignment results,
the two UAVs 2 and 3 who experience the best channel gains,
are assigned to the same time slot. In Stage II, the transmit
power of the BS to theUAVs are further optimized, it observes
from Fig. 5c that the SINR levels of all UAVs are reaching to

a consistent level (i.e. 22.26 dB), and the lowest SINR level
is promoted about 19.87% compared with Stage I. Fig. 5d
shows the resulting transmit power of the BS to each UAV,
which implies that the BS tends to allocate more power to the
UAVs which have received lower SINR levels in Stage I, and
vice versa.

3) PERFORMANCE COMPARISONS
To examine the performance of the proposed methods,
we evaluate them under different scenario characterizations.
Since there are no existing proposed schemes can apply to
our problem, for a clear viewpoint of the performance gain
brought by the proposed optimization algorithms, we also
propose a baseline scheme as the benchmark. The base-
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FIGURE 6. System performance under different scenario characterizations.

line scheme consists of two steps, the first step is to ran-
domly assign each UAV a RB, while in the second step,
with the fixed RBs assignment we optimize the BS’s trans-
mit power by the eigenvalue decomposition method. For
a fairer comparison, the three methods are implemented
under the same realization of the scenario. Since that the
optimal performance of the considered optimization prob-
lem can hardly be determined within an acceptable time,
we run Algorithm 3 multiple times with the random ini-
tial points and choose the best result as the upper bound
performance. The results of the baseline scheme and the
BCD-based method are averaged by multiple independent
running. From Fig. 6, it can be observed that there is a
large gap of the system performance between the base-
line scheme and the upper bound by GP-based method.
The BCD-based method offers superior performance over the
baseline scheme, and its averaged results are close to the
upper bound performance.

VII. CONCLUSIONS
In this paper, we investigated the reliable control signal recep-
tion of multiple UAVs in the presence of adjacent chan-
nel interference. Specifically, to improve the SINR levels

of UAVs’ control signal, we formulated a max-min-fairness
optimization problem which jointly considered the optimiza-
tion of time-frequency RBs scheduling and BS transmit
power allocation. Such a problem contains the subscript opti-
mization variables, which is difficult to process. To tackle
this challenge, we equivalently transformed this problem into
a more tractable form, then we utilized the rank-one prop-
erty to further transform the problem into an equivalent but
more simple formulation. Next, to solve the considered prob-
lem, we developed two efficient methods–namely, the block
coordinate descent based method and the gradient projec-
tion based method. Furthermore, Simulation results showed
the convergence properties of proposed algorithms, and the
comparison results demonstrated the superiority of the pro-
posed design.
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