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ABSTRACT In this paper, a novel continuous sampled-data observer for linear time-varying systems is
presented. The proposed observer is based on two different impulsive observers. The state estimates of
these impulsive observers are fused in a manner such that continuous state estimation is achieved. Another
significant contribution is comprehensive stability analysis of the proposed observer. The analysis establishes
conditions that guarantee exponential convergence of observers. Contrary to the common understanding, it is
revealed that the convergence of associated discrete-time equation for impulsive observers is not a sufficient
condition for overall convergence. Contributions are illustrated by simulations.

INDEX TERMS Sampled-data, linear time varying system, impulsive observer.

I. INTRODUCTION
The advancement of digital electronic has attracted interest
of researchers in sampled-data systems. The output feedback
control of such systems is based on sampled output. Histori-
cally, pure discrete-time (DT) observers have been the core of
output feedback sampled-data systems. Their simple nature
allows ease of implementation. However, their inability to
reconstruct continuous system states forces a designer to
rely on certain approximations like zero order hold that may
compromise system performance [1].

The other type of observers for sampled-data sys-
tems which overcome the limitations of DT observers are
the impulsive observers. These observers reconstruct the
continuous-time (CT) system states within the sampling inter-
val on the basis of system model and sampled output [2].
In literature two different types of sampled data impulsive
observers have been discussed these are the current and
prediction observers. In current observers, the states are
estimated for the current sampling interval using the cur-
rent output sample. On the other hand, prediction observers
estimate the states for the next sampling interval based on
the current output. In literature, primarily current impul-
sive observers have been discussed because of their obvious
advantage of incorporating the latest data available for state
estimation [3] and [4]. However from an application perspec-
tive the estimates cannot be computed within infinitesimally
small time, as it is not possible to sample and perform all the
computations in such a short duration [5]–[8].

In literature current impulsive observers for a class of linear
impulsive system have been dealt in [3], [9], and [10]. In these
contributions, the system dynamics were also impulsive with
DTmeasurements of the output. In [11] an impulsive observer
is proposed for the stabilization of uncertain non-impulsive
system. In [12], an impulsive observer is proposed making
use of CT and DT outputs. The same concept of current
observer is also extended to the sampled-data nonlinear sys-
tems as discussed in [13]–[16]. Output feedback control for
a nonlinear CT system using high gain observer with input
saturation constraints is discussed in [17] and [18].

The states estimated using impulsive observers contain
the so called jumps. These jumps are undesirable in applied
control systems. The major contribution of this paper is
the development of continuous reconstruction observer for
Linear Time Varying (LTV) systems. The state estimates
from the current and prediction impulsive observers are
fused together with a mathematical relation which is a time
dependent fusion function. The advantage of non-impulsive
reconstruction observer is eradication of jumps in state
estimation.

A rigorous convergence analysis of estimation error for
the proposed non-impulsive sampled-data observer is also
presented. The analysis is based on derivation of continu-
ous exponential bound for the current and prediction impul-
sive observers for stable and unstable LTV systems in open
loop configuration. The customary analysis for sampled-
data systems with impulsive observers presented in literature
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guarantee stability of the closed loop systems. In [3], [10],
and [19] stability analysis was carried out with the geometric
approach, whereas time varying Lyapunov function is defined
for establishing the stability of the closed-loop system in [11].
The advantages of the proposed methodology of convergence
analysis in this paper have been elaborated by motivating
example.

In this paper, prediction impulsive observer design is pre-
sented which to the best of authors’ knowledge has not been
discussed in literature. The prediction observer like the cur-
rent observer works in two steps, but the correction in states
estimate is introduced on the basis of sampled output at the
previous sample. The prediction observer has the advantage
of convenient design and implementation, attributed to the
availability of complete sampling period for computations.

In addition to the design of prediction impulsive observer,
the mathematical framework for current impulsive observers
has been reorganized in this paper. The system output at
sampling point is used to introduce impulsive correction at t+k .
This leads to lack of differentiability of the open-loop state
estimation dynamic equation from the left hand side. This
aspect has been addressed in this paper by the use of D+

and D− operator which represents continuous differentiabil-
ity from the right and left hand side respectively. The non-
existence of the derivative at jumps has usually been ignored
in the literature.

To summarizes, the major contribution of the article is to
design a continuous (non-impulsive) reconstruction observer
and carry out a comprehensive stability analysis for both sta-
ble and unstable systems. To accomplish these major objec-
tives a prediction impulsive observer is also proposed, while
addressing the ambiguities in the mathematical framework of
existing current observer design.

The organization of the paper is as follows. Section II
presents sampled-data impulsive reconstruction observers.
In Section III, continuous sampled-data reconstruction
observer is discussed and Section IV deals with stability
analyses. A LTV sampled-data system is illustrated with
intuitive second order system example in Section V, to visu-
alize and authenticate the theoretical discussion. Finally,
Section VI concludes the paper.

II. BACKGROUND OF SAMPLED-DATA IMPULSIVE
RECONSTRUCTION OBSERVERS
Consider the following LTV system

ẋ(t) = A(t)x(t)+ B(t)u(t) x(to) = xo,

y[k] = C[k]x[k], (1)

where x(t) ∈ Rn is CT state, u(t) ∈ Rm is CT input and
y[k] ∈ Rp is the sampled output. A(t), B(t) and C[k] are time
varying bounded system matrices of appropriate dimensions.
The sampled output y[k] of the system is only available at
sampling points. The discrete indices representing the sam-
pling points are denoted by k = ko, ko + 1, . . .. Throughout
this paper, parentheses (.) are used for CT whereas square

brackets [.] are used for DT quantities and T is a non-
pathological sampling time [20]. The initial time t0 and dis-
crete index k0 are related by t0 = k0T .
The state transition matrix (STM) associated with A(t) in

its usual sense is denoted by 8(tf , to ) where to and tf are the
initial and final times respectively [21, p. 386]. DT equivalent
of state transition matrix (STM) is defined as 8[kf , ko] =
8(kf T , koT ). In case of transition over a sample from k to
k + 1, the DT STM is

A[k] = 8((k + 1)T , kT ),

= 8[k + 1, k].

The invertability ofA[k] is guaranteed since STM is always
full rank. The (A[k],C[k]) pair is assumed to be l step
observable [21, p. 485].

The typical reconstruction using sampled output makes
use of impulsive correction in the state estimates. The point
in time within the sampling interval at which impulsive
correction is introduced is dependent upon the observer
design methodology. If the impulsive correction immediately
follows the observation, the observer is termed as current
observer. Alternately, prediction observer applies impulsive
correction just before the next observation. The former is
more popular in control systems community [3] and [9].
The following subsections briefly discuss the structure of the
observers and draw a comparison between the two.

A. CURRENT IMPULSIVE OBSERVERS
The state estimates are impulsively corrected by the current
observer immediately after the output is sampled. The state
estimates are generated based on system dynamics for the
rest of the sampling interval after the impulsive correction.
This concept can be found in [3] and [9]. The mathematical
formulation of the current impulsive observer is as follows

x̄(t+) = x̄(t)+ Hc[k](y[k]− ȳ[k]) t = kT , (2)
˙̄x(t) = A(t)x̄(t)+ B(t)u(t) kT < t < (k + 1)T , (3)

D− x̄(t) = A(t)x̄(t)+ B(t)u(t) t = (k + 1)T ,

k = ko, ko + 1, . . . , (4)

where x̄(t) ∈ Rn is the current observer state and
Hc[k] ∈ Rn×p is a time varying current observer gain matrix.
Let the initial state of the observer be x̄(to) = x̄o. We use the
notation x̄(t+) = lim

h→0
x̄(t + h) = x̄(kT+), where h > 0.

The second term on the right hand side of (2) is the
impulsive correction. Equation (3) predicts the states for time
kT < t < (k + 1)T based on the estimate at t = kT . Due to
impulsive correction, the derivative of x̄(t) at t = (k + 1)T
does not exist. Accordingly we have used left sided derivative
D−x̄(t) in (4), defined as

D−x̄(t) = lim
h→0−

x̄(t)− x̄(t − h)
h

,

where h is a positive real number. Response of such an
observer is illustrated in Fig. 1. It may be noted here
that the convention used in this paper is slightly different
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FIGURE 1. Impulsive function of current observer.

from [3] and [9] in the sense that the samples are assumed to
be available at exact sampling instants kT instead of (kT )−.
Error state vector of current impulsive observer is

written as

ē(t) = x(t)− x̄(t) ∀t ≥ t0 (5)

derivative of (5) is

D−ē(t) = A(t)ē(t) t = (k + 1)T , (6)
˙̄e(t) = A(t)ē(t) kT < t < (k + 1)T , (7)

DT error dynamics using current observer is written as

ē(t+) = x(t+)− [x̄(t)+ Hc[k](y[k]− ȳ[k])] t = kT . (8)

Continuity of system state imply x(t) = x(t+) leading to

ē(t+) = ē(t)− Hc[k]C[k](x[k]− x̄[k]) t = kT , (9)

after simplification (9) is expressed as

ē(t+) = (I − Hc[k]C[k])ē[k] t = kT , (10)

where Hc[k] is chosen such that (10) is uniformly expo-
nentially stable (UES). Methods for designing Hc[k] can be
found in [3], [11], [21, p. 548], and [22, p. 426]. Additional
constraints on the rate of convergence of (10) will be dis-
cussed in Section IV.

B. PREDICTION IMPULSIVE OBSERVERS
An alternate approach to observer design is to delay the
impulsive correction till just before the next sample point.
States are constructed using open loop extrapolation based
on system model before the correction. Such an observer is
termed as prediction observer. Impulsive function of predic-
tion observer is illustrated in Fig. 2 and is mathematically
represented as

D+x̂(t) = A(t)x̂(t)+ B(t)u(t) t = kT , (11)
˙̂x(t) = A(t)x̂(t)+ B(t)u(t) kT < t < (k + 1)T , (12)

x̂[k + 1] = x̂(t−)+ Hp[k](y[k]− ŷ[k]) t = (k + 1)T ,

k = ko, ko + 1, . . . , (13)

where x̂ ∈ Rn is the prediction observer state,Hp[k] ∈ Rn×p is
a time varying prediction observer gain matrix and x̂(to) = x̂o
is the initial state of the observer. We also use the notation

FIGURE 2. Impulsive function of prediction observer.

x̂(t−) = limh→0 x̂(t − h), where h > 0. D+x̂(t) is the right
sided derivative defined as

D+x̂(t) = lim
h→0+

x̂(t + h)− x̂(t)
h

.

Equation (12) predicts the states for time kT < t <

(k + 1)T based on the estimate at t = kT .
Error state vector of prediction impulsive observer is

written as

ê(t) = x(t)− x̂(t), (14)

derivative of (14) is

D+ê(t) = A(t)ê(t) t = kT , (15)
˙̂e(t) = A(t)ê(t) kT < t < (k + 1)T , (16)

where (15) signifies the discontinuous nature of ê(t). DT error
dynamics using prediction observer is written as

ê[k + 1] = x(t)− [x̂(t−)+ Hp[k](y[k]− ŷ[k])]

t = (k + 1)T . (17)

Continuity of system states imply x(t) = x(t−) leading to

ê[k + 1] = ê(t−)− Hp[k](y[k]− ŷ[k]) t = (k + 1)T .

(18)

Substituting ê(t−) = A[k]ê[k] in (18) gives

ê[k + 1] = (A[k]− Hp[k]C[k])ê[k], (19)

where Hp[k] is chosen such that (19) is UES.

C. RELATION BETWEEN CURRENT AND PREDICTION
IMPULSIVE OBSERVERS
The following analysis reveals an interesting relationship
between the current and prediction impulsive observers. The
solution of (3) and (4) results in

x̄(t) = 8(t, kT+)x̄(kT+)+
∫ t

kT+
8(t, σ )β(σ )u(σ )d(σ )

kT < t ≤ (k + 1)T . (20)
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Evaluating (20) at t = (k + 1)T

x̄[k + 1] = A[k]x̄[k]+
∫ (k+1)T

kT
8((k + 1)T , σ )B(σ )

× u(σ )d(σ )+ A[k]Hc[k]C[k](x[k]− x̂[k]).

(21)

Similarly for prediction observer

x̂[k + 1] = A[k]x̂[k]+
∫ (k+1)T

kT
8((k + 1)T , σ )B(σ )

× u(σ )d(σ )+ Hp[k]C[k](x[k]− x̂[k]). (22)

The expressions (21) and (22) with

Hc[k] = A−1[k]Hp[k], (23)

and x̄(koT ) = x̂(koT ), guarantee the following

x̄(t) = x̂(t), t = kT , k = ko, ko + 1 . . . (24)

Relation (24) signifies that the current and prediction
impulsive observer estimates coincide at the sampling points.

As a result, the associated DT equation representing error
dynamics for current impulsive observer can be written as

ē[k + 1] = (A[k]− Hp[k]C[k])ē[k], (25)

The property of equality of estimation errors for current and
prediction impulsive observers is exploited in the develop-
ment of proposed continuous sampled-data observer in the
following section.

III. CONTINUOUS SAMPLED-DATA
RECONSTRUCTION OBSERVER
The concept of continuous reconstruction from sampled
observation is based on the notion of circumventing the jumps
encountered in conventional impulsive observers. This can be
realized by exploiting complementary nature of prediction
and current observers with regards to the point in time at
which impulsive correction takes place. The respective jumps
for the two observers occur at different time in a sampling
interval whereas their estimates coincide exactly at the sam-
pling instants. The estimates of the two observers are fused
using a fusion function such that estimates of the prediction
impulsive observer are weighted maximally in the beginning
of a sampling interval, thereby avoiding the jump in the
estimates of the current observer. Similarly towards the end
of a sampling interval, maximumweightage is assigned to the
estimates of current impulsive observer so that the jump in the
estimates of prediction impulsive observer is avoided.

The fusion can be accomplished by defining a continuous
function which weights the current and prediction impulsive
observer estimates during different intervals of time within
a sampling interval according to the preceding discussion.
As an example, one such function is

ψ(t) =


0 t ∈ 11,

1 t ∈ 13,
1
2

t = t∗,

ψ̄(t) t ∈ 12,

where t∗ is preferably the midpoint i.e.
(
k + 1

2

)
T but may

have a different value if required and ψ̄(t) is monotonically
increasing continuous function. The above definition implies

ψ̇(t) = 0 t ∈ 11,13

An example of the fusion function defined as ψ(t) =
1 − 0.5 tanh (5µ(t)) + 0.5, where µ(t) is sawtooth function,
is shown in Fig. 3. The structure of the fusion function will
ensure the continuity properties of the observer discussed as
follows.

FIGURE 3. Example of Fusion function.

A reconstruction observer with the fusion function defined
above, is given by

_x(t) = x̄(t)ψ(t)+ x̂(t)(1− ψ(t)) (26)

The expression (26) suggests that as the output is sampled,
maximumweight is given to the prediction observer estimates
and the least weight is given to the current observer output.
The weight gradually shifts towards the current observer with
a reversal of situation at the end of sampling interval.

The reconstruction observer (26) is the proposed novel
continuous observer for sampled-data linear systems and the
idea is illustrated in Fig. 4.

FIGURE 4. Continuous reconstruction observer.

The smoothness properties of the proposed continuous
sampled-data reconstruction observer with necessary condi-
tions are discussed in the following two Lemmas. Continuity
of the estimated states is established in Lemma 1. Conditions
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for continuous differentiability of the state estimates are sum-
marized in Lemma 2.
Lemma 1:Under the stated assumptions, the state estimates

using the proposed continuous sampled-data reconstruction
observer (26) are continuous.

Proof: The continuity of the state estimates outside the
neighborhood of sampling points is trivial under the assump-
tions. At the sample points, the current impulsive observer
estimates are continuous from left, that is x̄(t) = x̄(t−)
whereas, prediction impulsive observer estimates are con-
tinuous from right, that is x̂(t) = x̂(t+). From (24),
x̄(t−) = x̂(t+), which proves the continuity of reconstruction
observer at sampled point and its neighborhood.
Lemma 2: The state estimates (26) are continuously dif-

ferentiable under the additional assumption of continuous
differentiability of u(t) and ψ(t). 11 and 13 are assumed to
be sufficiently large to contain the jump.

Proof:The continuous differentiability of state estimates
of continuous reconstruction observer outside the intervals
11 and 13, again follows trivially under the assumptions of
continuous differentiability of u(t) and ψ(t). In the proximity
of a sample point, the dynamics of the continuous reconstruc-
tion observer are represented by the following differential
equations.

Immediately prior to sample point t = kT in the interval
((k − 1)T , kT )

_̇x(t) = A(t)x̄(t)+ B(t)u(t) t ∈13,

D−_x(t) = A(t)x̄(t)+ B(t)u(t) t = kT , (27)

and immediately following the sample point t = kT the
dynamics in the interval (kT , (k + 1)T )

D+_x(t) = A(t)x̂(t)+ B(t)u(t) t = kT ,
_̇x(t) = A(t)x̂(t)+ B(t)u(t) t ∈ 11. (28)

From (24), 2nd equation of (27) and 1st equation of (28)

D−_x(t) = D+_x(t) t = kT ,

which guarantees the existence of d
dt
_x and proves the

assertion.

IV. STABILITY ANALYSIS
The convergence of the continuous sampled-data reconstruc-
tion observer can only be guaranteed if a continuous exponen-
tial bound is established for estimation error of the constituent
current and prediction impulsive observers. Contrary to the
prevalent notion, the UES of the associated DT equation of
impulsive observers does not guarantee the convergence of
the inter-sample open loop estimates as illustrated by the
following motivating example.

A. MOTIVATING EXAMPLE
Consider the following LTV system

ẋ(t) = A(t)x(t)+ Bu(t) x(to) = xo,

y[k] = C[k]x[k],

where A(t) =
[
2εt 0
0 −2κt

]
, B = [0 1]T , C = [1 2] and

u(t) = sin(2π t) with initial conditions xo = [1 0.5]T . The
system is unstable for ε = 1

3 and κ = − 1
30 . Prediction

impulsive observer is designed for the system with following
observer gain

Hp[k] = [8T [k − l + 1, k + 1]Mλ̃[k − l + 1, k + 1]

×8[k − l + 1, k + 1]]−1A−T [k]CT [k],

whereMλ̃(ko, kf ) is the DT observability Gramian defined as

Mλ̃(ko, kf ) =
kf−1∑
j=k0

λ̃4(j−kf+1)8T (j, ko)CT (j)C(j)8(j, ko),

with discrete convergence rate λ̃ > 1, which guarantees the
convergence of associated DT estimation error dynamics (19)
[21, p. 548].

State estimation error with two different convergence rates
λ̃1 = 1.11 and λ̃2 = 1.60 for prediction impulsive observers
are plotted in Fig. 5 and Fig. 6 respectively. Fig 5(a) shows
convergence of estimation error at discrete points in time for
λ̃1 = 1.11, however Fig 5(b) shows that prediction estimation
error diverges within the sampling points described by (11)
and (12). In Fig 6, estimation error for convergence rate
λ̃2 > λ̃1 is plotted for λ̃2 = 1.60. In this case estimation
error is convergent at discrete points in time and also within
the sampling interval.

FIGURE 5. Estimation error with prediction impulsive observer, λ̃1 = 1.11
(a). Convergence at discrete points (b). Divergent inter sample behavior.

It turns out that for unstable systems, divergent inter-
sample behavior and convergent impulsive corrections occurs
simultaneously. For the overall asymptotic stability of estima-
tion error, convergence must dominate divergence. This war-
rants convergence analysis for determination of conditions
that guarantee convergence of CT estimation error of current
and prediction impulsive observers.

VOLUME 6, 2018 17227



R. Ali et al.: Continuous Reconstruction Observer for Sampled-Data Linear Time Varying Systems

FIGURE 6. Prediction impulsive observer with convergent inter-sample
behavior λ̃2 = 1.60.

B. CONTINUOUS EXPONENTIAL BOUND FOR CURRENT
IMPULSIVE OBSERVER
We define αi ≥ 1 as the following bound for STM over the
sampling interval

‖8A(kT , t)‖ ≤ αi (k + 1)T ≥ t > kT . (29)

The order of the two time argument of STM indicates
integration backward in time, where i = 0, 1, 2, . . .. Such
a bound αi always exists in linear systems on STM over
a closed intervals (k + 1)T ≥ t > kT , where k is the
discrete time index. A sequence of such bounds termed as
State Transition Matrix Backward Sequence (STMBS) over
the sampling interval T is given by

{α0, α1, α2, . . .} . (30)

The STMBS diverges with less than or equal to exponential
rate if

αi ≤ ηcα
i
∀ i ≥ 0, (31)

where α = α1
ηc

and ηc = α0.
With the above definitions, the following theorem

establishes sufficient conditions for continuous expo-
nential bound for estimation error of current impulsive
observers.
Theorem 1: The CT estimation error for the current

impulsive observer is uniformly exponentially bounded as
follows

‖ē(t)‖ ≤ γce−λc(t−t0) ‖eo‖ ,

with positive constant γc and λc =
(
−1
T

)
ln
(
α

λ̃

)
, if the

observer gain Hc[k] is designed such that the DT observer
error dynamics (25) exponentially convergence with conver-
gence rate λ̃ satisfying α < λ̃.

Proof: The exponential convergence of (25) with con-
vergence rate λ̃ implies

∥∥ê[k]∥∥ ≤ γ̃ (1

λ̃

)k−k0 ∥∥ê[k0]∥∥ . (32)

where γ̃ > 1 [21, p. 526] and λ̃ ≥ 1, both independent of k0.
The maximum current observer error in between the sampled
intervals is expressed as

‖ē(t)‖ ≤ αi ‖ē[k]‖ (k + 1)T ≥ t > kT , (33)

iteratively (32) and (33) are written while consider-
ing the left continuity of states for current observer
i.e. 8(t, kt) = 8(t, kt+)

‖ē[k1]‖≤
γ̃

λ̃
‖ē[k0]‖ ‖ē(t)‖≤‖8(t,1)‖ ‖ē[k1]‖ ∀k1T ≥ t>k0T,

≤
γ̃ α0

λ̃
‖ē[k0]‖ ,

‖ē[k2]‖≤
1

λ̃
‖ē[k1]‖ ‖ē(t)‖ ≤ α1 ‖ē[k1]‖ ∀k2T ≥ t > k1T ,

≤
γ̃ α1

λ̃2
‖ē[k0]‖ ,

...
...

...

‖ē[k]‖≤
1

λ̃
‖ē[k−1]‖ ‖ē(t)‖≤αk ‖ē[k−1]‖ ∀(k+1)T ≥ t>kT,

≤
γ̃ αk

λ̃k−k0
‖ē[k0]‖ .! (34)

Incorporating (31), considering the starting point of the
STMBS as k0, we get

‖ē(t)‖ ≤
γ̃ αk−k0

λ̃k−k0
‖ē[k0]‖, (35)

hence from (35), convergence of (34) is guaranteed only if

α < λ̃. (36)

Following uniform exponential bound is defined by choos-
ing γc =

γ̃ ηc
α

and λc =
(
−1
T

)
ln
(
α

λ̃

)
for any to and eo for the

solution of linear state equation (6) and (7)

‖ē(t)‖ ≤ γce−λc(t−t0) ‖eo‖ . (37)

����
A special case of the above result if a supremum of (30)

exists, with α defined as

α = sup {α0, α1, α2, . . .} , (38)

is presented in the following corollary.
Corollary 1: The CT state estimation error for current

impulsive observer is uniformly exponentially bounded with
convergence rate λc =

(
1
T

)
ln(λ̃) if there exists α defined

in (38) and observer gain Hc[k] designed such that the DT
estimation error (25) exponentially converges with rate λ̃.

Proof: Under these condition, α = 1 in (31). The rest of
the proof is trivial.
Corollary 2: UES of DT estimation error (25) for linear

time invariant (LTI) systems implies UES of current observer.
Proof: Supremum of (38) always exists for LTI systems.

C. CONTINUOUS EXPONENTIAL BOUND FOR
PREDICTION IMPULSIVE OBSERVER
We define βi ≥ 1 as the following bound on the STM

‖8(t, kT )‖ ≤ βi kT ≤ t < (k + 1)T . (39)
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A sequence of such bounds termed as State Transition
Matrix Forward Sequence (STMFS) over the sampling inter-
val T is given by

{β0, β1, β2, . . .}. (40)

The sequence STMFS diverges with less than or equal to
exponential rate, then

βi ≤ ηpβ
i, (41)

where ηp = β0 and β =
β1
ηp
.

With the above definitions, we present the following theo-
rem which establishes sufficient conditions for exponential
convergence of CT state estimation error of the prediction
impulsive observer.
Theorem 2: The CT estimation error for the prediction

impulsive observer is uniformly exponentially bounded as
follows ∥∥ê(t)∥∥ ≤ γpe−λp(t−t0) ‖eo‖ ,
with positive constants γp and λp =

(
−1
T

)
ln
(
β

λ̃

)
. If the

observer gain Hp[k] is designed such that the DT estima-
tion error dynamics (19) exponentially converge with conver-
gence rate λ̃ satisfying β < λ̃.

Proof: The exponential convergence of (19) with con-
vergence rate λ̃ implies (32). Maximum prediction observer
error in between the sampled intervals is expressed as∥∥ê(t)∥∥ ≤ βi ∥∥ê[k]∥∥ kT ≤ t < (k + 1)T , (42)

Iteratively (32) and (42) can be combined as∥∥ê(t)∥∥ ≤ β0 ∥∥ê[k0]∥∥∀ k0T ≤ t < k1T ,∥∥ê(t)∥∥ ≤ β1 ∥∥ê[k1]∥∥∀k1T ≤ t < k2T
∥∥ê[k1]∥∥ ≤ γ̃

λ̃

∥∥ê[k0]∥∥ ,
≤
γ̃ β1

λ̃

∥∥ê[k0]∥∥ ,
...

...
...∥∥ê(t)∥∥≤βk ∥∥ê[k]∥∥∀kT ≤ t<(k+1)T∥∥ê[k]∥∥≤ γ̃

λ̃k−ko

∥∥ê[k0]∥∥,
≤

γ̃ βk

λ̃k−ko

∥∥ê[k0]∥∥ . (43)

Incorporating (41) by considering the starting point for the
STMFS sequence as k0, we get∥∥ê(t)∥∥ ≤ γ̃ ηpβk−k0

λ̃k−ko

∥∥ê[k0]∥∥
It can be seen that the convergence of the above is

guaranteed if

β < λ̃. (44)

Consequently, the following uniform exponential bound is

defined by choosing γp =
γ̃ ηpλ̃

β
and λp =

(
−1
T

)
ln
(
β

λ̃

)
for

any to and eo for the solution of linear state
equation (11) and (12)∥∥ê (t)∥∥ ≤ γpe−λp(t−t0) ‖eo‖ . (45)

����
Analogous to the case of current impulsive observers if the

supremum of (40) exists, which is defined as

β = sup{β0, β1, β2, ....}. (46)

Then a special case of Theorem 2 for prediction impulsive
observers is stated as follows
Corollary 3: The CT state estimation error for predic-

tion impulsive observer is uniformly exponentially bounded
with convergence rate λp =

(
1
T

)
ln(λ̃), if there exists β

defined in (46) and observer gain Hp[k] designed such that
the DT estimation error (19) exponentially converges with
rate λ̃.

Proof: Under these condition, β = 1 in (46). The rest of
the proof is trivial.
Corollary 4: UES of DT estimation error (19) for LTI

systems implies UES of prediction observer.
Proof: Supremum of (46) always exists in LTI systems.

D. EXPONENTIAL BOUND FOR CONTINUOUS
SAMPLED-DATA RECONSTRUCTION OBSERVER
The estimation error for the continuous reconstruction
observer is defined as

_e(t) = ē(t)ψ(t)+ ê(t)(1− ψ(t)). (47)

The exponential convergence of the estimation error (47)
follows naturally if the continuous estimation errors of the
current and prediction impulsive observers are exponen-
tially bounded. The result is summarized in the following
Lemma.
Lemma 3: The estimation error of the continuous recon-

struction observer (47) is exponentially bounded if the
CT estimation errors of current and prediction impulsive
observers are exponentially bounded.

The proof of the Lemma trivially follows from
Theorem 1 and Theorem 2.

V. EXAMPLE
The prediction, current and reconstruction observers are illus-
trated for state estimation with following LTV system. The
peculiar reason for selecting simple and non-trivial second
order sampled-data system example is to clearly demonstrate
the discussion results of unstable system

ẋ(t) =
[
2εt 0
0 −2κt

]
+ Bu(t), (48)

where B = [0 1]T and C = [12]. The constant ε = 0.05
and κ = 0.05 results in a unstable (divergent) system.
The simulation results with T = 1 sec and sinusoidal
input u(t) = sin(2π t) are discussed with initial conditions
xo = [1 0.5]T .
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FIGURE 7. Estimation Error for divergent system for x0 = [1 0.5]T and
λ̃ = 1.11 (a) Observer error for x1 (b) Observer error for x2.

The estimation error for second order system with pre-
diction, current and reconstruction observer is illustrated
in Fig. 7 for discrete convergence rate λ̃ = 1.11
and l step observability for l = 3. Prediction estimate is the
continuation of current estimate from the common point of
both observers. Reconstruction observer utilizes current and
prediction impulsive estimates to provide continuous (non-
impulsive) output for sampled-data system. In this example
t∗ = (k + 1

2 )T is considered for simulation results with ψ(t)
discussed in previous section.

Impulsive jumps can be observed at sampling time instants
in prediction and current estimated error states. The recon-
struction observer error states are available at sampling
instants without impulsive jumps. Reconstruction observer
error output follows prediction observer for 11 duration and
current observer for 13 duration. Reconstruction observer
error for12 duration is measured by using (47) with current,
prediction and fusion function outputs.

VI. CONCLUSION
A continuous (non-impulsive) reconstruction observer is pro-
posed for sampled-data system. Its construction is based on
the fusion of two proposed impulsive observers. Prediction
and current impulsive observer designs are based on asso-
ciated DT dynamical equation for estimation error. For a
current observer, impulsive correction is applied immediately
after receiving the output sample, whereas the same is done
just before the next observation for a prediction observer.
The relationship between the current and prediction impul-
sive observers exhibits a commonality of estimation at the
sampled point. This relationship is exploited to develop a
continuous reconstruction observer without jumps by fusing
the estimates of the two impulsive observers.

The analyses carried out in this paper deal with conver-
gence properties of the discussed observers in a comprehen-
sive manner. It covers for both stable and unstable systems.
Certain bounds on STM play an important role in this con-
text. As a future recommendation, this paper is a pre-sequel
to sampled-data LTV regulator problem. The philosophy
introduced here can also be extended to the nonlinear realm.

Dead beat observer has not been discussed in this paper
intentionally, as a detailed discussion on receding horizon
observer for sampled-data LTV demands a separate paper.
The simulation example demonstrates the performance of
the reconstruction observer in relation to the functioning of
current and the prediction impulsive observers.
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