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ABSTRACT Color transfer is to generate synthetic images by changing the color of target images with
new colors obtained from given source images, while the geometrical structure of the synthetic images
remains the same. Classical color transfer models use a total variation (TV) regularizer to preserve the
details and suppress the noise of the synthetic images. These models can sometimes cause staircase effect
and geometrical structure details over-smoothed. To overcome these problems, we propose a new color
transfer model in which an adaptive second-order total generalized variation (TGV) regularizer is designed.
Here, the adaptive second-order TGV regularizer is a weighted second-order TGV regularizer. The weight
is computed by an adaptive edge indicator function. In addition, an efficient algorithm is developed to
program our new model. The algorithm is based on a weighted primal–dual method. Experimental results
and comparisons demonstrate that our new color transfer model can generate better results than classical
TV regularizer-based models in the aspects of the inhibition of staircase effect and the preservation of image
details.

INDEX TERMS Color transfer, staircase effect, total variation (TV), total generalized variation (TGV),
primal-dual algorithm.

I. INTRODUCTION
Color transfer is a technique that the color information of
input ‘‘source images’’ can be transferred to input ‘‘target
images.’’ The newly synthetic images are usually called as
‘‘resulting images.’’ Here, the resulting images not only keep
the structural information of the target images, but also have
the color information of the source images. The technique
of color transfer has important application in film editing,
computer animation, medical image colorization, color cor-
rection and so on [1]–[4]. In recent years, color transfer
has attracted a lot of attention of the researchers [4]–[10].
Reinhard et al. [1] originally propose a color transfer method
based on the statistical characteristics of images. The method
in [1] is fast and simple, but to some extent, it produces
unnatural results when images to be processed have different
color distributions. Since then, various kinds of color transfer
methods are springing up constantly. Existing color transfer
methods mainly include local methods [2]–[7] and global
methods [11]–[14].

Local methods usually achieve the purpose of color trans-
fer by local feature matching between images. A stroke
based color transfer method of gray images is proposed by
Levin et al. [2]. In the approach, the users are requested to
stroke the fond colors in different interior zones of images.
A local color transfer method based on EM (Expectation-
Maximization) scheme and color smoothness is proposed
by Tai et al. [3], and good effect of regional color transfer
between two images is realized by soft color segmentation.
To further improve the performances of the methods in [2]
and [3], Chang et al. [4] propose a color transfer scheme
based on user-modified palette. In the method, the users
can recolor images according to their own interests, and
the color transfer results are related to the subjective con-
sciousness of users. Han et al. [5] propose to use the concept
of color theme to simulate consciousness of users and pro-
pose a cartoon-and-texture decomposition based local color
transfer approach. There are two sequential phases in the
approach. In the first phase, an input image is decomposed
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into its cartoon and texture components. During the decom-
position process, the cartoon component is simultaneously
segmented into several regions. In the second phase, a new
cartoon component is generated by transferring the colors in
a given color theme. Then, resulting images can be recon-
structed by integrating the new cartoon component and the
original texture component. In general, the traditional local
color transfer methods usually need to use some subjective
interventions or some image segmentation algorithms if they
want to obtain good effect. Then, it may aggravate the burdens
of users when the images have complex textures and patterns.
In addition, deep neural networks [8]–[10] are also used in
achieving local color transfer. For example, Yan et al. [8]
propose that the local semantics of source images are used
to produce image descriptors, and resulting images can be
generated by learning the descriptors. Although deep neural
network based methods can obtain relatively good results,
they tend to be time-consuming since the number of training
samples is usually very large, and the structures of learning
networks are usually complicated.

For the global color transfer methods, global information
of the source images and the target images are taken into
account. The global methods can automatically perform the
task of color transfer and greatly reduce the subjectivity
and the uncertainty of manual interventions. In this sense,
the global color transfer methods have higher application
value. In [13], an automatic, global color transfer algorithm
of grayscale images is proposed by Welsh et al. In the
approach, color transfer is realized by matching the lumi-
nance information between source images and target images.
Xiao and Ma [14] propose an improved algorithm on the
basis of Reinhard’s algorithm. Xiao’s algorithm gets the color
matching scheme by using the correlation of image covari-
ance. Xu et al. [15] propose a novel color tone matching
scheme based on region-of-interests (ROIs). In the method,
global tone mapping curves are created by analyzing fea-
tures from multiple ROIs, and good visual experience is
achieved under the guidance of the tone mapping curves.
Chen et al. [16] follow the work [15] and introduce an intra-
and-inter-frame constraint to achieve color transfer of videos.
Sun et al. [17] propose a weighted Mahalanobis distance to
achieve color matching on the statistics of mean and variance
in the YUV color space. However, resulting images obtained
from above methods may have defects such as noise enhance-
ment since data noise influences matching processes. In order
to solve the problem, variational framework [18], [19] has
been introduced in some color transfer methods [20]–[24]
in recent years. In particular, among these variational based
methods, the TV regularizer [22]–[24] becomes very popular
in color transfer due to the anisotropy characteristics of the
TV regularizer [25], [26]. Rabin and Peyré [22] propose a
classical color transfer method, which combines the TV reg-
ularizer and the Wasserstein distance. The method can simul-
taneously perform color matching and its regularization by a
method of variational energy minimization. Feng et al. [23]
follow Rabin’s model and propose to use a color wheel to

guide the process of colormatching. Bugeau et al. [24] further
introduce a spatial constraint into TV regularizer basedmodel
to obtain better color transfer results.

Although the TV regularizer plays a valuable role in above
methods, there still have two problems due to the use of
the TV regularizer. Problem One: the function space of the
TV regularizer has piecewise smooth feature which is easy
to produce staircase effect [27], [28]. Then, the quality of the
resulting images will be severely impacted by the staircase
effect. How to restrain the staircase effect is a very important
problem in color transfer. Problem Two: some small details
may be over-smoothed, and it will lead to the fuzzy phe-
nomenon of the resulting images [29], [30]. Then, the color
transfer results will produce certain flaws. In order to solve
Problem One, we introduce the second-order TGV [31] of
image as the regularizer term in this paper. The second-order
TGV can automatically balance the relation between the first
derivative term and the second derivative term according
to image characteristics, and it can restrain the staircase
effect better [31], [32]. For convenience, we use the TGV
to represent the second-order TGV in subsequent content.
We should note that the TGV has been also used in Han’s
local color transfer method [5] to remove the staircase effect
in image decomposition processes. In this paper, we follow
the work [5] and introduce the TGV in achieving global color
transfer. Although the TGV is good at restraining staircase
effect, the ability of preserving image details of TGV is
limited [30]. For solving Problem Two, we design an adaptive
edge indicator function which can enhance the ability of
preserving image details of our model.

In summary, in this paper we propose a new global
color transfer method based on adaptive TGV regularizer.
Comparing with classical global color transfer methods based
on TV regularizer, our method has following primary innova-
tions. Firstly, we introduce the TGV regularizer to restrain the
staircase effect which is usually produced in the TV regular-
izer based methods. As described in [33] and [34], the TGV
regularizer can effectively restrain staircase effect and noise,
and it is very suitable for solving the optimization problem.
Secondly, to preserve the details of the resulting images
better, we design a TGV regularizer with an adaptive edge
indicator function. Our color transfer method can effectively
protect the details of the resulting images under the action
of the adaptive edge indicator function. Moreover, we design
a new numerical algorithm based on weighted primal-dual
algorithm to efficiently solve our model.

II. RELATED WORK AND DISCUSSION
A. CLASSICAL TV REGULARIZER BASED COLOR
TRANSFER MODEL
In [22], a classical TV regularizer based color transfer
model is proposed by Rabin et al. Let χ : χi = (χR(i),
χG(i), χB(i))T ∈ 0(i ∈ �) be a discrete color image with
RGB format, where � ⊂ Z2 denotes the spatial domain
which include κ pixels, and 0 ⊂ R3 is the RGB color cube.
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Let g be a target image, h be a source image, and d be a
resulting image. Both the target image and the source image
are input by users, and d is under-estimated. The target image
(resp. the source image) is used to provide the structural infor-
mation (resp. the color information) for the resulting image.
In Rabin’s model, the task of color transfer is equivalent to
obtain d∗, the solution of the following optimization problem:

d∗ = argmin
d
{λWW2(d, h)+ λRR(d)+ F(d, g)}, (1)

whereW2(d, h) is a color penalty term based on the quadratic
Wasserstein distance [35], [36], R(d) is the TV regularizer,
F(d, g) is called as the fidelity term, and λW and λR are two
positive tuning parameters. Below, we give more discussion
on each term of model (1).

In model (1),

W2(d, h) = min
σ∈
∑

(�)

∑
i∈�

∑
j∈{R,G,B}

∥∥dji − hjσ (i)∥∥22
, (2)

where ‖·‖2 is the classical l2 norm, σ ∈
∑

(�), and
∑

(�)
is the set of all permutations of �. Eq. (2) is the definition
of the Wasserstein distance between d and h, when σ is the
optimal permutation. Eq. (2) can be used to penalize the color
distribution differences between the resulting image d and
the source image h in model (1). It is worth noting that, for
the reason W2(d, h) is hard to be computed directly, in [22]
W2(d, h) is approximated by a sliced Wasserstein distance.
In this paper, we follow the work [22] to use the sliced
Wasserstein distance in our image color transfer model. For
convenience, the notationW2(d, h) mentioned below refers to
the sliced Wasserstein distance between d and h.
The TV regularizer term R(d) in model (1) is defined as

R(d) =
∑

j∈{R,G,B}

∥∥∣∣∇dj∣∣∥∥1 = ∑
j∈{R,G,B}

∑
i∈�

√
(∂xdji)2 + (∂ydji)2,

(3)

where d = (dR, dG, dB)T , ∇ = (∂x , ∂y)T is the gradient
operator,

∣∣∇dj∣∣ is the module of ∇dj, and ‖·‖1 is the l1 norm.
According to Eq. (3), the term R(d) in model (1) makes the
estimated image d smoother than the image g since some
noisy geometrical structure details of the image g can be
removed through minimizing the term R(d).

The fidelity term F(d, g) in model (1) consists of the
following two parts,

F(d, g) = Z (d, g)− λTB(d, g)

= ‖d − g‖22 − λT

〈
∇d,

∇g
‖|∇g|‖1

〉
, (4)

where λT is a positive tuning parameter. In Eq. (4),

Z (d, g) = ‖d − g‖22 , (5)

and

B(d, g) =
〈
∇d,

∇g
‖|∇g|‖1

〉
. (6)

Both of the two terms in F(d, g) can ensure the resulting
image d and the target image g containing similar image
details. In fact, when F(d, g) is minimized, the image d
is approximated to the image g, which can make d and g
having similar geometrical structure information. At the same
time, the gradient ∇d is approximately parallel to the normal
direction of g, ∇g/‖|∇g|‖1, which can also keep the details
in the image d similar to the ones in the image g.

Although the above TV regularizer based color transfer
model can obtain relatively good results, the TV regularizer
has two main disadvantages. It tends to produce staircase
effect in color transfer results, and it tends to oversmooth
some important image details. For example, Fig. 1 shows
a color transfer result obtained from the TV regularizer
based model in [22]. Fig. 1 (a), (b) and (c) are a source
image, a target image and a resulting image, respectively.
Fig. 1 (d) and (f) are two local enlarged parts of Fig. 1 (b).
Corresponded to Fig. 1 (d) and (f), Fig. 1 (e) and (g) are two
local enlarged color transfer results shown in Fig. 1 (c).

FIGURE 1. The TV regularizer based color transfer results obtained from
the work in [22]. (a), (b) and (c) are a source image, a target image and a
resulting image, respectively, (d) (resp. (e)) is the local enlarged part of
the green box marked in (b) (resp. (c)), and (f) (resp. (g)) is the local
enlarged part of the red box marked in (b) (resp. (c)).

From the result shown in Fig. 1 (e), we can find that
the cloud scene has staircase effect since the colors of the
corresponding scene in Fig. 1 (d) varies homogeneously.
Moreover, from the result shown in Fig. 1 (g), we can find
that some image details are over-smoothed comparing with
the corresponding scene in Fig. 1 (f). Then, according to the
results shown in Fig. 1, although the color transfer method
in [22] can well retain most geometrical structure details of
the target image in the resulting image and can well suppress
noisy image details, the method tends to produce staircase
effect and tends to oversmooth some image details due to the
TV regularizer. To overcome these drawbacks, in this paper
an adaptive TGV regularizer is introduced.

B. THE TGV REGULARIZER
To restrain the staircase effect which is usually brought by
the TV regularizer in image restoration, Bredies et al. [31]
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proposed the TGV regularizer. Proved in [31], the first-order
TGV regularizer is equivalent to the original TV regular-
izer. The second-order or higher-order TGV regularizer can
remove the staircase effect of restored images. However, too
high-order TGV regularizers are relatively hard to implement.
Therefore, as mentioned in Section I, we only focus on the
second-order TGV regularizer in this paper, and, below, we
refer the TGV regularizer in particular to be the second-order
TGV regularizer. The TGV regularizer on a color image d is
defined as follows,

TGV 2
α (d)

= min
e∈BD3(�)

 ∑
j∈{R,G,B}

α1j
∥∥∇dj − ej∥∥1 + α0j ∥∥ε(ej)∥∥1

,
(7)

where e = (eR, eG, eB)T , ε(ej) = (∇ej +∇eTj )/2 is the sym-
metrized derivative on ej, ∇eTj is the transportation of ∇ej,
and α0j > 0, α1j > 0 are two tuning parameters. The deno-
tation BD(�) is the so-called bounded and distorted space of
vector fields [31], and BD3(�) = BD(�)×BD(�)×BD(�).
From Eq. (7), we can find that the TGV regularizer can

automatically balance the relation between the first derivative
constraint ej ≈ ∇dj and the second derivative constraint
∇ej + ∇eTj ≈ 0. This is the main reason why the TGV
regularizer can remove the staircase effect from restored
images [37], [38]. Inspired by the image restoration work
in [31], we introduce an adaptive TGV regularizer in our new
color transfer model. The adaptive TGV regularizer can better
preserve image details than the original TGV regularizer.

III. THE PROPOSED MEDEL
In order to restrain the staircase effect and to preserve the
details of the resulting image, we propose a new color transfer
model based on an adaptive TGV regularizer. Our new color
transfer model can be expressed as follows,

d̂ = argmin
d

{
Z (d, g)+ λWW2(d, h)+ ATGV 2

α (d)
}
, (8)

where Z (d, g) is a fidelity term whose goal is to keep that the
structural information in a resulting image d is consistent with
that in a target image g, W2(d, h) is a quadratic Wasserstein
distance between the resulting image d and a source image h,
which is also used in model (1), λW is a tuning parameter,
ATGV 2

α (d) is our newly designed adaptive TGV regularizer,
and d̂ is our final optimal color transfer resulting image.
Below, we give a discussion on our model (8) in details.

A. A SIMPLER FIDELITY TERM
The fidelity term in our model (8), Z (d, g), is a special case
of F(d, g) in model (1) when the tuning parameter λT is set
to be zero. In fact, according to the discussion in Section II
Part A, both Z (d, g) and B(d, g) are good at preserving image
details. However, the term B(d, g) can produce some negative
impacts on color transfer results, especially when λT is set to

FIGURE 2. The comparison of the color transfer results obtained from
model (1) with different λT . (a)-(e) correspond to λT = 0, 0.06, 0.3,
1.5 and 3, respectively, (f)-(i) correspond to the differences between
(a) and (k) (k = b, c, d and e), respectively.

be relatively large values. For example, in Fig. 2, we com-
pare different resulting images obtained from model (1) with
λT = 0, 0.06, 0.3, 1.5 and 3, respectively, while keeping
λW = 15 and λR = 0.0002. Fig. 2 (a)-(e) correspond to
λT = 0, 0.06, 0.3, 1.5 and 3, respectively, (f)-(i) correspond
to the differences between (a) and (k) (k = b, c, d and e),
respectively. Here, the source image and the target image are
still the images shown in Fig. 1 (a) and (b), respectively.

From the results shown in Fig. 2, we can find that
the colors of (a), (b) and (c) are all brighter and fuller
than (d) and (e) , while the results shown in (d) and (e)
seem not only unnaturally overexposed, but also bleak and
withered. Furthermore, it is hard to distinguish the differences
among (a), (b) and (c). In fact, as shown in Fig. 2 (f) (resp.
Fig. 2 (g)), the differences between Fig. 2 (a) and Fig. 2 (b)
(resp. between Fig. 2 (a) and Fig. 2 (c)) are not quite obvious
in vision. It demonstrates that, although larger λT can promise
the preservation of image details, model (1) tends to obtain
relatively better color transfer results only when λT is small
enough. Then, to ensure the effectiveness of color transfer,
in our model (8) we set λT = 0 and use the term Z (d, g) to
preserve the details of resulting images.

B. AN ADAPTIVE TGV REGULARIZER TERM
The adaptive TGV regularizer on the resulting image d in our
model (8) is given by

ATGV 2
α (d) = min

e∈BD3(�)

 ∑
j∈{R,G,B}

α1jA(dj)
∥∥∇dj − ej∥∥1

+α0j
∥∥ε(ej)∥∥1

, (9)
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where d = (dR, dG, dB)T , and A(dj)(j ∈ {R,G,B}) is our
newly defined adaptive edge indicator for each color channel,
namely,

A(dj) =
1

1+ σj
∥∥∇dj∥∥21 . (10)

Here, σj ≥ 0 is a tuning parameter. From Eq. (10), we can
find that A(dj) ≈ 0 when

∥∥∇dj∥∥1 is large, and A(dj) ≈ 1
when

∥∥∇dj∥∥1 ≈ 0. It demonstrates that the function A(dj) is
an adaptive edge indicator [23] for the corresponding color
channel of the image d .
The introduction of the edge indicator A(dj) in the TGV

regularizer is to further protect the details of the image d .
In fact, for the case A(dj) ≈ 0, Eq. (9) shows that a pixel
point i of dj is an edge point, and the direction of∇djat point i
is not needed to be rigidly paralleled to ej. It means that our
model (8) can drive dj at point i not to be smoothed as the way
of the case A(dj) ≈ 1. Then, the details of the image d can be
protected.

C. THE SOLUTION OF OUR MODEL
In order to solve our color transfer model (8) efficiently,
we design a new algorithm in which both the former-
backward operator splitting method [39] and the primal-dual
method [40] are used. Here, the former-backward opera-
tor splitting method is to obtain the solution of model (8),
d̂ , by an iteration process. More specifically, starting from a
given initialization, d (0) = g, the minimization problem (8)
is converted into the following forward-backward iteration
which includes a gradient descent step (11) and a proximal
correction step (12) :

d̃ (t) = d (t−1) − τ∇[Z (d (t−1), g)+ λWW2(d (t−1), h)],

(11)

d (t) = proxτATGV (d̃
(t)), (12)

where t is the iteration index, t = 1, 2, 3, · · · , and τ is an
iteration step. The stopping criterion of the algorithm is to
meet the following condition,∥∥d (t) − d (t−1)∥∥22∥∥d (t)∥∥22 ≤ ξ, (13)

where ξ is a threshold for the stopping criterion. In our exper-
iments, we use ξ = 10−6. When the condition of the stopping
criterion is met, the final optimal color transfer resulting
image d̂ = d (t) with t iterations. Note that the iteration
process shown in Eq. (11) and Eq. (12) is similar to the one
designed by Rabin and Peyré [22]. However, the difference
between our iteration process and the iteration given in [22]
lies in Eq. (12). More precisely, in Eq. (12), the operator
proxτATGV is equivalent to a newly proposed weighted TGV
minimization problem as follows,

d (t) = argmin
u

{
1
2

∥∥∥u− d̃ (t)∥∥∥2
2
+ ATGV 2

α (u)
}
, (14)

where d (t) = (d (t)R , d
(t)
G , d

(t)
B )T . In actual computation, we can

simply assume that different color channels are indepen-
dent with each other. Then, the minimization problem (14)
can be respectively minimized for each of the color chan-
nels R, G and B. Furthermore, combining the expression of
ATGV 2

α (u), the minimization problem (14) can be transferred
into the following equivalent form in each color channel,

min
uj,ej

{
1
2

∥∥∥uj − d̃ (t)j ∥∥∥22+α1jA(uj)∥∥∇uj−ej∥∥1 + α0j ∥∥ε(ej)∥∥1
}
,

(15)

where j ∈ {R,G,B}. The minimization problem (15) is still
difficult to be solved since the term A(uj)

∥∥∇uj − ej∥∥1 is
non-convex with respect to uj. To overcome the difficulty,
we simply set the edge indicator A(uj) = A(d̃ (t)j ), and then
we have the following minimization problem,

min
uj,ej

{
1
2

∥∥∥uj − d̃ (t)j ∥∥∥22+α1jA(d̃ (t)j )
∥∥∇uj−ej∥∥1+α0j∥∥ε(ej)∥∥1}.

(16)

For the minimization problem (16), it is convex on
uj and ej, respectively. Then, we can use some efficient con-
vex optimization algorithms to solve the minimization prob-
lem (16). Considering that the minimization problem (16)
corresponds to a special image denoising problem discussed
by Xu et al. [38], in this paper we follow Xu’s work to solve
the minimization problem (16), and a new weighted primal-
dual algorithm is proposed. The weighted primal-dual algo-
rithm is a generalized version of the original primal-dual
algorithm in [40], and the original primal-dual algorithm has
been well studied in the field of image processing [41]–[45].

According to the primal-dual theory, the dual problem of
Eq. (16) is listed as follows,

min
uj,ej

max
pj∈Pj,qj∈Qj

{〈
∇uj − ej, pj

〉
− F∗1 (pj)+

〈
ε(ej), qj

〉
−F∗2 (qj)+

1
2

∥∥∥uj − d̃ (t)j ∥∥∥22
}
, (17)

where

F∗1 (pj) =

{
0,

∣∣pj∣∣ ≤ α1jA(d̃ (t)j )

+∞,
∣∣pj∣∣ > α1jA(d̃

(t)
j ),

F∗2 (qj) =

{
0,

∣∣qj∣∣ ≤ α0j
+∞,

∣∣qj∣∣ > α0j,

Pj =
{
pj = (p1j, p2j)T

∣∣∣ ∥∥pj∥∥∞ ≤ α1jA(d̃ (t)j )
}

and

Qj =
{
qj =

[
qj11 qj12
qj21 qj22

]∣∣∣∣ ∥∥qj∥∥∞ ≤ α0j}.
Then, the minimization problem (17) can be solved by the
iteration process listed in Algorithm 1.

In Algorithm 1, s is the iteration index, div} = −ε∗ is
the negative conjugate of symmetrical gradient operator ε,
projPj (pj) =

pj

max(1,
|pj|

α1jA(d̃
(t)
j )

)
, and projQj (qj) =

qj

max(1,
|qj|
α0j

)
.
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Algorithm 1 The Weighted Primal-Dual Algorithm for the
Minimization Problem (17)

Initialize: u(0)j = ū(0)j = d̃ (t)j , e
(0)
j = ē(0)j = 0*,

p(0)j = q(0)j = 0, s = 0, γj, τj, α1j, α0j > 0.

Repeat:

1. p(s+1)j = projPj [p
(s)
j + γj(∇ū

(s)
j − ē

(s)
j )];

2. q(s+1)j = projQj [q
(s)
j + γj(ε(ē

(s)
j ))];

3. u(s+1)j =
u(s)j +τjdiv(p

(s+1)
j )+τjd̃

(t)
j

1+τj
;

4. e(s+1)j = e(s)j + τj[p
(s)
j + div

}(q(s+1)j )];

5. ū(s+1)j = 2u(s+1)j − u(s)j ;

6. ē(s+1)j = 2e(s+1)j − e(s)j ;

7. s = s+ 1;

Until: the constraint

∥∥∥u(s+1)j −u(s)j

∥∥∥2
2∥∥∥u(s)j ∥∥∥22 ≤ 10−6 is satisfied, and

then output d (t)j = u(s+1)j , otherwise return to 1.

IV. NUMERICAL EXPERIMENTS AND ANALYSIS
In this section, to demonstrate the effectiveness of our new
method, we present several typical color transfer results
on some images with different styles. The results are also
compared with the ones obtained from the TV regularizer
based method in [22] and the original TGV regularizer based
method. For the sake of convenience, the TV regularizer
based color transfer method in [22] is simply referred to be
the TV-CT method, the original TGV regularizer based color
transfer method is referred to be the OTGV-CT method, and
our newly proposed method is referred to be the ATGV-CT
method, which represents the adaptive TGV regularizer based
color transfer method.

To make readers more intuitively understand the per-
formance of our ATGV-CT method, Fig. 3 and 4 show
two sets of color transfer results with the target images
respectively called as ‘‘stone bridge in winter’’ and ‘‘morn-
ing mist.’’ Here, the sizes of the images are 800 × 600.
In Fig. 3 and 4, (a) and (b) are the source image and the tar-
get image, respectively, (c) and (d) are the resulting images
obtained from the TV-CTmethod and our ATGV-CTmethod,
respectively, and (e) (resp. (f) and (g)) is the local enlarged
part of (b) (resp. (c) and (d)).

From the results shown in Fig. 3 (f) and (g) (resp.
Fig. 4 (f) and (g)), we can find that, comparing with the cor-
responding scene in Fig. 3 (e) (resp. Fig. 4 (e)), the resulting
image obtained from the TV-CT method is over-smoothed
and has staircase effect, while the resulting image obtained
from our ATGV-CT method overcomes the above drawbacks
well. Moreover, the geometrical structure details of the origi-
nal target image are better maintained. It proves that it is nec-
essary for our color transfer model to introduce the adaptive
TGV regularizer.

FIGURE 3. The color transfer results with the target image called as
‘‘stone bridge in winter.’’ (a) is the source image, (b) is the target image,
(c) (resp. (d)) is the resulting image obtained from the TV-CT method
(resp. our newly proposed ATGV-CT method), and (e) (resp. (f) and (g)) is
the local enlarged part of (b) (resp. (c) and (d)).

FIGURE 4. The color transfer results with the target image called as
‘‘morning mist.’’ (a) is the source image, (b) is the target image,
(c) (resp. (d)) is the resulting image obtained from the TV-CT method
(resp. our newly proposed ATGV-CT method), and (e) (resp. (f) and (g)) is
the local enlarged part of (b) (resp. (c) and (d)).

A. THE SELECTION OF PARAMETERS
In this section, we focus on the main parameters of our
ATGV-CT method. The example shown in Fig. 3 is used
to explain the selection of the parameters in our ATGV-CT
method. As mentioned in Section III Part C, in order to solve
our newly proposed model (8), we divide it into Eq. (11) and
Eq. (12) by the former-backward operator splitting method.
Eq. (11) can be easily solved by the gradient descent method.
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By testing, we find that the step length τ of the gradient
descent method can be simply fixed to be 0.1. In addi-
tion, Eq. (12) is equivalent to a special image denois-
ing problem (16) whose parameters include α0j, α1j and
σj(j ∈ {R,G,B}). In general, the noise for images used in
the process of color transfer is relatively small. Therefore,
the model (16) can be approximately regarded as a weighted
TGV denoising model under the background of small noise.
The selection of the above three parameters can be conve-
niently obtained by using triple optimization. Through a large
number of experiments, we find that α0j, α1j and σj(j ∈
{R,G,B}) can be simply fixed to be 0.0012, 0.0006 and 2.6,
respectively. In order to test the tuning parameter λW of
model (8), we introduce two evaluation indexes ERRJ and
ERRI as follows,

ERRJ =

∥∥d (t) − d (t−1)∥∥22∥∥d (t)∥∥22 , (18)

and

ERRI =

∥∥d (t) − g∥∥22∥∥d (t)∥∥22 . (19)

In Eq. (18), d (t) (resp. d (t−1)) denotes the resulting image
obtained from our ATGV-CT method after t(resp.t − 1) time
forward-backward iterations, and the convergence state of
our color transfer algorithm can be indicated by the evalu-
ation index ERRJ . In Eq. (19), g is the target image, and
d (t) − g denotes the difference between the target image and
the resulting image obtained after t time forward-backward
iterations. Then, the effect of our color transfer algorithm can
be indicated by the evaluation index ERRI . Fig. 5 shows the
influence of different λW on our iteration processes. Fig. 5 (a)
(resp. (b)) is the curves of ERRJ (resp. ERRI ) of our color
transfer results shown in Fig. 3, for different choices of the
tuning parameter λW with the iteration index t increasing.
From the curves shown in Fig. 5, we can find that, for

the case λW ≤ 15, the ERRJ index rapidly decreases and
tends to be zero with the iteration index t increasing, and the
ERRI index gradually increases and tends to be a stable level
with the iteration index t increasing. It demonstrates that the
resulting images obtained from our ATGV-CT method are
stable when t ≥ 15. Moreover, through a large number of
experiments, we find that both the ERRJ index and the ERRI
index fluctuate constantly with the iteration index t increasing
when λW ≥ 20, which means the results of color transfer
are not robust for λW ≥ 20. So, in order to guarantee the
stability of our new model, the condition λW ≤ 15 needs to
be satisfied.

Furthermore, in Fig. 6 (a)-(d), we compare different result-
ing images obtained from our model (8) with λW = 1, 5,
10 and 15, respectively. Here, we also use the source image
(resp. the target image) shown in Fig. 3 (a) (resp. (b)). From
the results shown in Fig. 6, we can find that the color informa-
tion of the resulting image are more and more close to those
of the source image with the tuning parameter λW increasing.

FIGURE 5. The influence of the tuning parameter λW and the iterations t
for the results obtained from our ATGV-CT method in Fig. 3. (a) (resp. (b))
shows the curves of ERRJ (resp. ERRI) of the color transfer with our
ATGV-CT method in Fig. 3, for different choices of λW with t increasing.

FIGURE 6. The comparison of the color transfer results obtained from
model (8) with different λW . (a)∼(d) correspond to λW = 1, 5, 10 and 15,
respectively.

It demonstrates that relatively larger λW (λW ≤ 15) can
obtain good color transfer results. Meanwhile, we also notice
that the effects of color transfer of (c) and (d) are relatively
good, and the differences between (c) and (d) are not notable
in vision. Therefore, in this experiment we can simply set
λW = 10 or 15.

B. TYPICAL COLOR TRANSFER RESULTS
Asmentioned in Section I, our ATGV-CTmethod is designed
for overcoming the two main drawbacks of the TV-CT
method. In this section, four typical color transfer results are
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used to demonstrate the ability of preserving image details
and restraining staircase effect of our ATGV-CT method,
respectively.

To manifest the detail-preserving capability of our newly
proposed method, we choose some fabric images which con-
tain rich texture details as the target images. Fig. 7 and 8
show two sets of color transfer results with the target images
respectively called as ‘‘oval love’’ and ‘‘temptation of line.’’
Here, the sizes of the images are 500 × 500, and the fabric
images are from the GAMA lab in the Hong Kong Poly-
technic University. In Fig. 7 and 8, (a) (resp. (b)) is the
source image (resp. the target image), (c) (resp. (d) and (e))
is the resulting image obtained from the TV-CT method
(resp. the OTGV-CT method and our ATGV-CT method),
and (f) (resp. (g), (h) and (i)) is the local enlarged part
of (b) (resp. (c), (d) and (e)).

FIGURE 7. The color transfer results with the target image called as ‘‘oval
love.’’ (a) and (b) are the source image and the target image, respectively,
(c) (resp. (d) and (e)) is the resulting image obtained from the TV-CT
method (resp. the OTGV-CT method and our newly proposed ATGV-CT
method), and (f) (resp. (g), (h) and (i)) is the local enlarged part of (b)
(resp. (c), (d) and (e)).

From the results shown in Fig. 7 and 8, we can find that
the resulting images obtained from our ATGV-CT method
are better than those obtained from the TV-CT method and
the OTGV-CT method. As a matter of fact, comparing with
the corresponding scene in Fig. 7 (f) (resp. Fig. 8 (f)),
we notice that some important texture details are relatively
fuzzy in Fig. 7 (g) (resp. Fig. 8 (g)). In some ways, the fuzzy
phenomenon of the resulting images obtained from the
OTGV-CT method (shown in Fig. 7 (h) and Fig. 8 (h)) are
somewhat mitigated but still exist. By contrast, the texture
details of the original target images are preserved well in
the resulting images obtained from our ATGV-CT method
(shown in Fig. 7 (i) and Fig. 8 (i)). It demonstrates that, under
the guidance of the adaptive edge indicator, our ATGV-CT
method can better preserve the geometrical structure details

FIGURE 8. The color transfer results with the target image called as
‘‘temptation of line.’’ (a) and (b) are the source image and the target
image, respectively, (c) (resp. (d) and (e)) is the resulting image obtained
from the TV-CT method (resp. the OTGV-CT method and our newly
proposed ATGV-CT method), and (f) (resp. (g), (h) and (i)) is the local
enlarged part of (b) (resp. (c), (d) and (e)).

of the original target image than the TV-CT method and the
OTGV-CT method.

To evaluate the staircase effect inhibition performance of
our new method, we choose some images which contain rich
smooth regions as the target images. Fig. 9 and 10 show
other two sets of color transfer results with the target images
respectively called as ‘‘terraced landscape’’ and ‘‘sky of city.’’
Here, the sizes of the images are 600× 400. In Fig. 9 and 10,
(a) (resp. (b)) is the source image (resp. the target image),
(c) (resp. (d)) is the resulting image obtained from the
TV-CT method (resp. our ATGV-CT method), and (e) (resp.
(f) and (g)) is the local enlarged part of (b) (resp. (c) and (d)).

From observation, we noticed that some staircase effect
can be easily found in the resulting images obtained from the
TV-CT method (shown in Fig. 9 (f) and Fig. 10 (f)), while
the resulting images obtained from our ATGV-CT method
(shown in Fig. 9 (g) and Fig. 10 (g)) have not obvious stair-
case effect. Apparently, compared with the TV-CT method,
our new method can obtains better results since the resulting
images obtained from our ATGV-CTmethod aremore natural
and realistic. In fact, due to the use of the TGV regularizer
rather than the TV regularizer, our ATGV-CT method can
better restrain the staircase effect.

The color transfer results shown in Fig. 3, 4, 7, 8, 9 and 10
prove that our newly proposed ATGV-CT method can gen-
erate better results than the TV-CT method in the aspects of
the inhibition of staircase effect and the preservation of image
details.

In order to further demonstrate the effectiveness of our pro-
posed ATGV-CT method, the results of a user study test [46]
are shown in Table 1. Here, 20 participants are asked to view
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FIGURE 9. The color transfer results with the target image called as
‘‘terraced landscape.’’ (a) and (b) are the source image and the target
image, respectively, (c) (resp. (d)) is the resulting image obtained from the
TV-CT method (resp. our newly proposed ATGV-CT method), and
(e) (resp. (f) and (g)) is the local enlarged part of (b) (resp. (c) and (d)).

FIGURE 10. The color transfer results with the target image called as ‘‘sky
of city.’’ (a) and (b) are the source image and the target image,
respectively, (c) (resp. (d)) is the resulting image obtained from the
TV-CT method (resp. our newly proposed ATGV-CT method), and
(e) (resp. (f) and (g)) is the local enlarged part of (b) (resp. (c) and (d)).

10 sets of color transfer results obtained by different methods
and give subjective scores with a range of 1-10, where higher
the average score better the image quality. Note that the
final scores are averaged over all participants and all color
transfer results. Moreover, the source of the color transfer
results is unknown to the participants and the orders of the
color transfer results are randomly placed. From Table 1,
it is obvious that the color transfer results obtained by our
proposed ATGV-CT method have higher quality.

In addition, Table 2 shows the averaged time statistics of
above 10 sets of color transfer results obtained by different
methods. From Table 2, the averaged time of our proposed

TABLE 1. User test results for different color transfer methods.

TABLE 2. Timing statistics for different color transfer methods.

ATGV-CT method is slightly longer than the TV-CT method
and the OTGV-CT method. This is mainly because that it
needs to spend more time to compute the adaptive TGV reg-
ularizer than the TV regularizer and the original TGV reg-
ularizer. Considering the time difference is not significant,
we believe that the complexity of above three methods belong
to the same level, while our proposed ATGV-CT method can
obtain better color transfer results.

V. CONCLUSION
In this paper, we present a new global color transfer method
which is called as the ATGV-CT method. Aimed at deal-
ing with the defects of traditional TV regularizer based
color transfer methods, an adaptive TGV regularizer is intro-
duced in our new method. Compared with the classical
TV-CT method, our newly proposed method can better
restrain the staircase effect and preserve the geometrical
structure details of the original target images. To solve our
newly proposed model, we design an efficient numerical
algorithm which combines the former-backward operator
splitting method and the weighted primal-dual method. The
numerical experiment results show that the resulting images
obtained from our newly proposed ATGV-CT method are
more realistic and clear than ones obtained from the classical
TV-CT method.
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