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ABSTRACT Low-light images are seriously corrupted by noise due to the low signal-to-noise ratio. In low
intensity, just-noticeable-difference (JND) is high, and thus the noise is not perceived well by human eyes.
However, after contrast enhancement, the noise becomes obvious and severe, because JND decreases as
intensity increases. Thus, contrast enhancement without considering human visual perception causes serious
noise amplification in low-light images. In this paper, we propose perceptual enhancement of low-light
images based on two-step noise suppression. We adopt two-step noise suppression based on noise char-
acteristics corresponding to human visual perception. First, we perform noise aware contrast enhancement
using a noise-level function. However, the increase of the intensity caused by contrast enhancement reduces
JND in low intensity, which makes noise much more visible by human eyes. Second, we perceptually reduce
noise in images while preserving details using a JND model, which represents noise visibility in contrast
enhancement. We estimate the noise visibility based on the intensity change using luminance adaptation.
Also, we extract image details by contrast masking and visual regularity, because textural regions have higher
visibility thresholds than the smooth ones. Based on the human visual characteristics, we perform perceptual
noise suppression using the JND model. Experimental results show that the proposed method perceptually
enhances contrast in low-light images while successfully minimizing distortions and preserving details.

INDEX TERMS Contrast enhancement, just-noticeable-difference, low light, noise level function, noise

reduction, human visual perception.

I. INTRODUCTION

Low light images captured by digital cameras in low light
condition have poor image quality with a narrow dynamic
range and are seriously degraded by noise. The limited
dynamic range distorts image contrast, which results in the
loss of informative textures. It affects the performance of
many computer vision applications such as object detection,
recognition, and tracking. Thus, it is required to perform low
light image enhancement considering both contrast enhance-
ment and noise reduction.

A. RELATED WORK

Many attempts have been made to enhance the contrast of low
light images. They are mainly classified into three groups:
1) Non-linear mapping-based approaches such as gamma
function, logarithm function, and power law functions, which
are used as a preprocessing step of low light image enhance-
ment [2], [3]; 2) Histogram-based schemes such as histogram

equalization (HE), contrast limited adaptive histogram equal-
ization (CLAHE) [4], contrast enhancement by histogram
modification framework (HMF) [5], optimal contrast-tone
mapping (OCTM) [6], adaptive gamma correction with
weighting distribution(AGCWD) [7], and adaptive extended
piecewise histogram equalisation (AEPHE) [8]; 3) Multiscale
analysis-based methods which decompose an image into sev-
eral subbands and enhance frequency components in each
subband [9]-[11]. Histogram-based approaches separate gray
levels of higher probability further to obtain pixel mapping
curves for histogram modification. They increase the differ-
ence between two altered gray levels and preserve the relative
order of them, which makes histogram-based approaches
not suffer from ringing artifacts [6]. Thus, they have much
attention by researchers. However, they are not effective in
considering noise characteristics and image locality, thus
leading to noise amplification after contrast enhancement.
This is because low light images contain serious noise in large
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flat regions with dark intensity. Histogram-based approaches
cause noise amplification while enhancing these regions.
Therefore, the noise reduction has been applied to the contrast
enhancement in recent years [12]-[14].

Some researchers have performed low light image
enhancement based on the observation that the inverted low
light images are similar to hazy images [15]-[18]. Thus,
they applied haze removal to enhance low light images [15].
Li et al. [16] and Zhang et al. [17] adopted a dark channel
prior to enhance images. However, the former one applied
superpixel-based adaptive denoising to improve denoising
performance while the latter one introduced joint bilateral
filtering to the original green component as the edge image
to suppress noise. Shi et al. [18] utilized group-based sparse
representation to accurately estimate transmittance of the
inverted input image based on intrinsic local sparsity and
nonlocal self-similarity. However, the dark channel prior-
based contrast enhancement produced serious visible noise
due to the strong luminance enhancement, and also led to the
color cast problem, i.e. hue shift to unwanted colors such as
red and green.

Other researchers have conducted noise removal in the
transform domain such as DCT and wavelet [19]-[21]. They
reduced noise in the high frequency layer while stretching
dynamic range in the low frequency layer. Loza et al. [19]
designed non-linear luminance enhancement with noise
reduction based on local dispersion of wavelet coefficients
and shrinkage function. Sun and Jung [20] performed contrast
enhancement with noise reduction in the wavelet domain.
The contrast enhancement was performed by CLAHE in
the low-pass subband, while the noise reduction was con-
ducted by a nonlinear transform in the high-pass sub-
bands. Jung et al. [21] also achieved contrast enhancement
in the wavelet domain but performed noise reduction based
on content-based total variation (TV) diffusion considering
noise and edges in the high-pass subbands. However, they
amplified noise in low light images after contrast enhance-
ment without considering noise characteristics.

In addition, more works on low light image enhancement
has been studied as follows [22]-[27]. Rivera et al. [22]
acquired the 256 transformation function by content-aware
HE which considered edge-contrast pairs. Edge-contrast pairs
had the intensity difference between neighboring pixels
larger than a threshold. They enhanced images by fusing
the mapping curves which simulated the human visual sys-
tem (HVS). However, this method could not provide insuf-
ficient enhancement in contrast and luminance for low light
images. Lim et al. [23] first performed contrast enhancement
on noise-free pixels, and then interpolated the missed noisy
pixels by low rank matrix completion. However, this method
led to severe degradation of texture and details due to the
removal of noise pixels. Liu ef al. [24] combined denoising
with contrast enhancement into a unified framework. They
estimated a robust graph-based enhancement operator to
enhance the contrast without noise amplification via a graph-
signal smoothness prior. They performed denoising by sparse
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coding formulation. Chouhan et al. [25] and Jha et al. [26]
performed adaptive stochastic resonance-based enhancement
in terms of perceptual quality in color and contrast, respec-
tively. The former one did it in the spatial domain while the
latter one performed in the DCT domain. Sugimura et al. [27]
enhanced low light images by fusing RGB color images and
near-infrared images under different exposure times.

For video enhancement, researchers have utilized spa-
tiotemporal filters to remove inter- and intra-frame noise,
and then performed tone mapping to enhance low light
videos [2], [3], [28], [29]. Malm et al. [28] proposed
structure-adaptive anisotropic filtering to reduce noise while
preserving structure in videos. Then, they performed tone
mapping by CLAHE [30]. Xu et al. [3] updated spatiotem-
poral filtering by considering motion in videos. They first
performed spatial and temporal filtering independently, and
then combined the filtering results based on the correla-
tion between video motion and image anisotropy. They per-
formed local contrast-based tone mapping to enhance low
light videos. Kim et al. [29] first conducted motion adaptive
temporal filtering before tone mapping, and then did NLM
denoising after tone mapping. They performed tone mapping
based on adaptive histogram adjustment using gamma correc-
tion with clipping thresholds.

Thus, most existing methods have performed contrast
enhancement without considering noise characteristics and
image locality, which causes serious noise amplification after
contrast enhancement. Although some methods have noise
reduction functions, the noise removal has seriously degraded
textures and details in low light images without considering
human visual perception and noise characteristics. Therefore,
we introduce noise aware contrast enhancement to enhance
low light images while preventing noise amplification. More-
over, we consider noise visibility in contrast enhancement
to perceptually suppress noise while preserving details in
images.

B. CONTRIBUTIONS

In this paper, we propose low light image enhancement
based on two-step noise suppression. To enhance low light
images while successfully reducing noise and preserving
details, we adopt noise level function (NLF) and just-
noticeable-difference (JND) model in contrast enhancement.
First, we convert RGB color space of the input image into
YUV color space. Second, we perform noise aware con-
trast enhancement using a noise aware histogram to consider
both local contrast and noise distribution. Noise aware con-
trast enhancement prevents contrast overstretching and noise
amplification in large flat regions with dark intensity and
severe noise. Third, we perform perceptual noise suppression
in the detail layer based on the luminance adaptation and
visual masking effect from the JND model. The JND-based
noise suppression reduces noise while avoiding serious detail
loss. Finally, we perform color enhancement to reproduce
more natural-looking and vivid colors in images. Fig. 1 illus-
trates the entire block diagram of the proposed method.
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FIGURE 1. Entire block diagram of the proposed method. / and I’ are intensities in the original image and its enhanced result, respectively.
CE is contrast enhancement. (a) Noise distribution by Eq. (2) and local contrast by Eq. (3). (b) Luminance adaptation curve and visual masking
effect (local region characteristics affect the noise visibility). Top: Smooth patch and its result with added noise. Bottom: Texture patch and its

result with added noise. (c) Color enhancement.

Compared with existing methods, main contributions of this
work are as follows:

« Weuse NLF and local contrast to acquire the noise aware
histogram for contrast enhancement. The noise aware
histogram successfully enhances the contrast of texture
regions while preventing noise amplification in large
dark regions with severe noise;

o We introduce a JND model based on luminance adap-
tation and visual masking into contrast enhancement
to estimate noise visibility after contrast enhancement.
Luminance adaptation measures the noise visibility
caused by luminance enhancement, while visual mask-
ing measures the noise visibility on smooth and tex-
ture regions. The combination of two models achieves
noise reduction while preserving details in enhanced
results.

o Compared to our previous work [1], the proposed
method employs luminance contrast and visual regular-
ity to estimate visual masking effect, which leads to good
detail preservation in contrast enhancement.

The remainder of this paper is organized as follows.
In Section II, we explain the proposed method in detail,
and experimental results are shown in Section III. Finally,
conclusions are drawn in Section I'V.
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Il. PROPOSED METHOD

A. NOISE AWARE CONTRAST ENHANCEMENT

We analyze noise amplification and over-enhancement that
appear in low light images after contrast enhancement, and
propose a noise aware histogram based on visual content and
noise level. The noise aware histogram successfully attenu-
ates noise amplification and over-enhancement in large flat
regions with dark intensity.

a) Noise amplification by contrast enhancement: sen-
sor noise in digital cameras is signal-dependent, which
is represented by a generalized signal-dependent noise
model [31], [32]. In this work, we use a generalized signal
dependent noise model to represent sensor noise including
poisson noise in low light images [32] [33]. Noise level
function (NLF) for signal-dependent noise is expressed as

follows [32]:
o(l)=/1? -0+ 0} €))

where y is the exponential parameter which controls the
dependence on the signal; u and w are zero-mean Gaussian
distributions with variances o> and o2, respectively. Based
on o(I), we define the relative noise level (RNL) n(l) as
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(a)

(©)

(b)

(d)

FIGURE 2. Enhanced results by AGCWD [7] and gamma function y = x9-5. (a) Original image. (b) Histogram
of (a). (c) Enhanced result by AGCWD [7]. (d) Enhanced result by gamma function.

follows:
I+ao()
1

where [ is the intensity obtained from noisy free pixels. o (1)
is the standard deviation of noise by NLF in (1); and n(J) rep-
resents the relative noise level to noise-free intensity. The left
figure in Fig. 1(a) shows RNL varying with intensity which is
defined as the ratio of noisy intensity to noise-free intensity.
Larger RNL means higher effect of noise level on the intensity
level. That is, RNL is big in dark intensity (0-15), and rapidly
decreases varying as intensity increases. Thus, noise affects
dark intensity more severely than the other intensities, and
thus is serious in dark intensity. This is also validated in the
right figure of Fig. 1(a) (see the red boxes). Therefore, low
light images contain serious noise in dark intensity. Although
serious noise appears in dark regions, low visual sensitivity
in HVS to dark intensity reduces the noise visibility, thus
making the noise invisible.

However, conventional contrast enhancement methods are
not effective in considering the noise characteristics and
image locality, which causes severe noise amplification and
over-enhancement. There are two reasons of them: 1) Large
flat regions with a narrow dynamic range makes high prob-
ability in the original histogram as shown in Fig. 2(b).
High probability causes histogram over-stretching in these
region after contrast enhancement, which results in over-
enhancement of contrast and noise such as wall and

n(l) = @
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ground in Fig. 2(c). 2) Based on the noise characteris-
tics (see the left figure in Fig. 1(a)), dark intensity should
be enhanced little to prevent serious noise amplification.
However, nonlinear mapping functions such as gamma cor-
rection and logarithmic mapping enhance dark intensity
much more than the others, which cause much noise ampli-
fication in dark regions such as black car and plate number
in Fig. 2(d). Therefore, we propose noise aware contrast
enhancement to overcome these two problems considering
noise characteristics and local contrast.

b) Noise aware histogram estimation: we estimate the noise
aware histogram based on pixels with a larger local contrast
than noise level to exclude serious noise pixels in large flat
regions with dark intensity and prevent over-stretching these
regions by contrast enhancement [34]. First, we estimate the
local contrast ¢ in a region as follows:

| (go * P)(x, y)
I =\ e D, y) ®

where [/ is a pixel in the original image; and g, is a Gaussian
kernel with the standard deviation o. Then, we obtain the
histogram of high contrast pixels based on relative noise
level (RNL) and local contrast as follows:

_ Z(X,y)GB,' l(x, y)

p(l) B Z(x,y)gs l(xv y)

“
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FIGURE 3. High contrast map in Car and its histograms. (a) High contrast
map. (b) Original histogram (blue) for Fig. 2(a) and noise aware histogram
(red) for (a).

where

S ={(x,y):clx,y) > nx,y)} (5)
Bi={(x,y)€S:i=0,1,...,255} (6)

where n(x,y) is estimated by (2), and / is calculated as
I = g, * [ for the approximation of noise free pixels. S is
the set of high contrast pixels whose local contrast is higher
than the noise level; B; is the subset of S which contains the
pixels whose intensity is i; and n(x, y) is the relative noise
level calculated by (2). Fig. 3(a) shows a high contrast map in
Car by (5) where white pixels mean pixels with high contrast.
The high contrast map is composed of high contrast pixels
obtained by (5), which prevents noise pixels in flat regions
from being contained in the noise aware histogram. Fig. 3(b)
shows the noise aware histogram (red) obtained by (4)-(6)
which removes most of noise pixels in dark regions while
preventing histogram spikes which causes over-enhancement.
c) Contrast enhancement by noise aware histogram: we
perform HE, OCTM [6], and AGCWD [7] for contrast
enhancement from the noise aware histogram, and show the
results in Fig. 4. As shown in the figure, HE avoids over
enhancement in dark regions and large flat regions such as
sofa and table in Restaurant. OCTM does not produce over
enhancement in large flat regions by adding a constraint to
each intensity increment. OCTM also prevents over enhance-
ment in dark regions such as the black car in Car. AGCWD
prevents over stretching in large flat regions such as wall
and door in Classroom. That is, the noise aware histogram
improves the contrast enhancement performance by success-
fully suppressing noise in dark and large flat regions. In this
work, we adopt the noise aware OCTM [6] for low light
image enhancement because OCTM [6] achieves contrast
enhancement with the minimized tone distortion.

B. DETAIL-PRESERVED NOISE REDUCTION

With the increase of intensity by contrast enhancement,
the visibility threshold of HVS decreases, and thus noise
becomes obvious in human eyes. We estimate the visibility
threshold using a JND model which represents the minimum
intensity difference perceived by HVS, called luminance
adaptation. Local textures also affect the visibility, called
visual masking effect caused by interaction or interference
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among visual stimuli. We estimate the visual masking effect
based on the luminance contrast (gradient magnitude) and
visual regularity (gradient regularity), and the noise visibility
is larger in smooth regions than texture regions (see the right
figure of Fig. 1(b)). Thus, the noise reduction should be larger
in smooth regions than texture regions, which is beneficial
to the detail preservation in images. We perform perceptual
noise reduction based on a JND model to remove noise while
preserving image details. We combine luminance adaptation
(noise reduction) and visual masking (detail preservation)
into a JND model.

Although noise aware contrast enhancement reduces noise
in dark and large flat regions, noise still remains in the results
as shown in Fig. 4. There are two main reasons: 1) Contrast
enhancement brightens images but reduces JND threshold in
low intensity (i.e. 15-127), which makes noise more visible
(see left figure in Fig. 1(b)). 2) Global contrast enhancement
performs coarse noise reduction without considering local
characteristics in the spatial domain, but local characteristics
(e.g smooth and texture regions) have different visibility
sensitivity to noise, called visual masking effect (see the right
figure in Fig. 1(b)). Thus, we perform fine noise reduction
based on a JND threshold (luminance adaptation) consider-
ing locality (visual masking). First, we conduct base-detail
layer decomposition based on anisotropic diffusion-weighted
bilateral filtering in Algorithm 1 [34] to extract the detail
layer. Then, we perform noise reduction in the detail layer
which contains much noise and details as shown in Fig. 5(c).
Due to the first reason, we remove noise after the contrast
enhancement using the variation of JND thresholds (lumi-
nance adaptation). Due to the second reason, we introduce
two visual masking effects of contrast masking and regularity
masking in the spatial JND model to represent luminance
contrast and gradient regularity in local regions [35]. That is,
we perform noise reduction differently according to the lumi-
nance contrast and visual regularity in a local region.

Then, we perform perceptual noise reduction in the detail
layer using luminance adaptation factor LA(x, y) and visual
masking factor VM (x, y) as follows:

dout(x’y):e'VM(x’y)'LA(xvy)'d(xvy) (7)

where d,,;(x,y) and d(x,y) are outputs of noise reduction
and noise aware contrast enhancement in the detail layer,
respectively; e is the control parameter of noise reduction
degree (we set e equals to 1 generally). We calculate LA(x, y)
using the ratio of JND thresholds (luminance adaptation)
before and after contrast enhancement as follows:

VG

LAY = ¥ a6 )

®)

where I(x,y) and I’(x,y) are the original image and its
enhanced result by noise aware contrast enhancement,
respectively; and V (x, y) is the visibility threshold generated
by the luminance adaptation curve (see the left figure of
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(a) b)

(©) d

FIGURE 4. Contrast enhancement results in Restaurant, Car, and Classroom by HE, OCTM [6] and AGCWD [7]. (a) Original image.
(b) Enhancement by the original histogram. (c) Enhancement by the noise aware histogram. (d) Mapping curve by the original histogram (blue)
and the noise aware histogram (red). The first row is processed by HE, the second one by OCTM and the third one by AGCWD. The enhanced

color images are obtained by Section I1I-C.

(a) (b)

(c) d

FIGURE 5. Perceptual noise reduction for Car. (a) Result after noise

aware contrast enhancement. (b) Perceptual noise reduction for (a).

(c) Detail layer of (a). (d) Perceptual noise reduction of (c).

Fig. 1(b)) [36] as follows:

2(x,
k- (1— %)M F1 I(x,y) <128

V((x,y) =
ko (1Y) e 1 iy > 128
2 236 » Y
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C))

where ki, k>, A1, and A, are constants, i.e. 2.0, 0.8, 3.0,
and 2.0, respectively. Fig. 6(a) shows the normalized lumi-
nance adaptation map LA(x, y) for Car. Based on LA(x, y),
the image is divided into three parts: 1) Bright regions
(i.e, intensity is larger than 128): LA(x, y) is larger than 1
(see the white pixels in Fig. 6(b)) because JND thresholds
increase with the increase of pixel intensity larger than 128
(see the left figure in Fig. 1(b)); 2) Dark regions (i.e, intensity
is between 0 and 15): LA(x, y) is approximately equal to 1
(see the gray pixels in Fig. 6(b)) because noise aware contrast
enhancement suppresses the enhancement degree in dark
regions; 3) Low intensity regions (i.e, intensity is between
15 and 127): LA(x, y) is smaller than 1 (see the black pixels
in Fig. 6(b)) because the increase of intensity in the contrast
enhancement leads to reduction of JND thresholds (see the
left figure in Fig. 1(b)). Moreover, we get the visual masking
VM (x, y) [35] as follows:

B LAG.y) > 1
MED =0 Ve + 0 LAy <1 OO
where
/ 2.4 / 2.7
VMG yy — LB G 3P 03N G y) an

Le(U(x, )2 4262 N('(x, )2 + 1

where « and § are constants with 0.5-0.9 and 1.3-2.0 respec-
tively. We first obtain VM'(x, y) from luminance contrast
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(a) (b)

(© (d)

FIGURE 6. Two perceptual factors map and their combined noise
reduction degree maps. (a) Normalized luminance adaptation factor map
LA(x, y) by (8). (b) Classified regions based on (a) (white pixels:

LA(x, y) > 1 in bright regions, gray ones: LA(x, y) ~ 1 in very dark regions,
and black ones: LA(x, y) < 1 in low intensity regions). (c) Normalized
visual masking factor map VM’ (x, y) by (11) (large intensity represents
high visual masking and small one mean low visual masking).

(d) Normalized noise reduction degree map by the fusion of two
perceptual factors in (8) and (10), i.e. VM(x, y) - LA(x, y).

Lc(x,y) and gradient regularity N(x,y) by (11), and then
normalize it by min-max normalization. The normalized
VM'(x, y) is the input for the transfer function (10). Le(x, y)
and N (x, y) represent gradient magnitude and gradient regu-
larity in a local region, respectively [35]. VM’(x, y) extracts
most of details and textures from the noisy image as shown
in Fig. 6(c) because textural regions have higher visual
masking effects than smooth ones. High visual masking
effects mean that noise is hardly detected by HVS, and thus
noise reduction in textural regions can be performed in a
small degree. However, noise in smooth regions should be
greatly reduced due to the low visual masking effect. Thus,
the noise reduction is larger in smooth regions than that in
texture regions, which is beneficial to detail preservation in
images. LA(x,y) < 1 represents noise reduction in low
intensity regions, and we use visual masking to extract tex-
tures in noisy images. In (10), o« determines boundary points
which divide the mapping curve into two parts: VM'(x, y) is
smaller or greater than 1 —«. The boundary points are located
at VM'(x,y) = 1 — . B adjusts the slope of the mapping
curve. Fig. 7 shows transfer functions according to different
a and B. As shown in Fig. 7(a), large VM'(x, y) (greater than
1 —a) in texture regions is mapped beyond 1 to enhance them,
while small VM’ (x, y) (smaller than 1 — &) in smooth regions
is mapped below 1 to suppress noise. Larger « leads to smaller
boundary points, which considers weaker details as texture
and thus preserves them. As shown in Fig. 7(b), 8 adjusts
the slope of the mapping curve and larger 8 increases the
slope. Since LA(x, y) > 1 represents the detail enhancement
and preservation in bright and dark regions, visual masking
is not considered, i.e. VM (x,y) = 1. As shown in Fig. 6(d),
the noise reduction degree map, i.e. the fusion of two
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(a) (b)

FIGURE 7. Mapping curves of VM(x, y) = (VM’(x, y) + «))? in (10).
(a) Different «. (b) Different 3.

perceptual factors in (8) and (10), VM (x,y) - LA(x, y), for
detail layer shows three parts: 1) The detail layer in bright
and dark regions is enhanced based on luminance adaptation
(see the gray pixels); 2) Edges and textures extracted by visual
masking are enhanced in a large degree (see the white pixels);
3) Remained noise in low intensity regions are suppressed
(see the black pixels). Figs. 5(b) and (d) show the detail-
preserved noise reduction result in Car. It is shown that per-
ceptual noise reduction removes noise while preserving most
details compared with the noisy image in Figs. 5(a) and (c).

C. COLOR ENHANCEMENT

Finally, we perform color enhancement by Schlick’s
method [37] as follows:

M()(-xv y)
I(x,y)

where M,(x, y) and M,(x, y) are trichromatic channel values
of the output color and original images, respectively; l.(x, )
and I(x, y) are gray images from the noise reduction result
and the original image, respectively; and a correction factor y
is between 0.6 and 1.0. Fig. 8 shows the final enhancement
result after color enhancement in (12) and color space conver-
sion (YUV — RGB). Color enhancement reproduces vivid
and saturated colors as shown in Fig. 8(c) compared to the
results without color enhancement in Fig. 8(b). We provide
their zoomed regions of (a), (b) and (c) in Fig. 8(d).

M(x,y) = ( )W le(x, y) 12)

Ill. EXPERIMENTAL RESULTS

For experiments, we use a PC with Intel (R) Core (TM)
i5 CPU (2.60GHZ) and 4.00GB RAM running a Windows 7
environment and MATLAB. We use nine test images for
tests and divide them into three types: 1) General low
light images: Car, Classroom, Chair and Bookshelf, 2) Low
light images with non uniform lights: Restaurant and Sofa;
3) Extremely low light images: Greenwich, Ramp and Build-
ings. Greenwich is obtained from Greenwich database [38]
with the resolution of 652 x 916, while Ramp is from [39] with
576 x 720. The other images are captured by a digital camera
(Canon EOS 60D) with 480 x 720. They have a dark tone
with a narrow dynamic range and much noise. We compare
the proposed method with three other methods: content aware
dark image enhancement (CADIE) [22], automatic contrast
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(@) (b)

©) (d

FIGURE 8. Color enhancement results in Car. (a) Original image. (b) Color
space conversion (YUV — RGB). (c) Color enhancement. (d) Zoomed
regions of (a), (b) and (c).

FIGURE 9. Test images for experiments. Top left to bottom right:
Car, Classroom, Restaurant, Sofa, Bookshelf, Chair, Greenwich, Ramp,
and Buildings.

enhancement based on wavelet coefficient (ACEWC) [19],
and low light image enhancement with contrast enlarging and
denoising (LLIE) [16].

A. SUBJECTIVE EVALUATIONS

Twenty persons took part in the subjective experiments and
compared the enhancement results by four methods in terms
of four aspects [22]:

1) Structural similarity which assesses the structural
similarity of the enhancement result considering potential
enhancement. Each person chooses the most closest enhance-
ment result in structure compared to the original image;

2) Details which evaluate detail preservation and enhance-
ment from the enhancement results. Each person chooses
the best enhancement result in detail preservation comparing
with the original image;

7012

FIGURE 10. Preference comparison between different methods in terms
of similarity, details, color, and artifacts.

3) Color which refers to color saturation enhancement.
Each person selects the best enhancement result in color
saturation without the color cast problem;

4) Artifacts which mainly consider noise amplification and
over enhancement problem. Each person need to choose the
enhancement result with the least visible noise and contrast
over stretching.

Fig. 10 shows preference percentages for each method
in terms of four aspects. Experimental results show the
proposed method achieves the best performance in details,
color, and artifacts, while CADIE [22] obtains good per-
formance in structural similarity. Fig. 11 shows experi-
mental results of the proposed methods compared with
CADIE [22], ACEWC [19], and LLIE[16]. CADIE [22]
conducts content-aware histogram equalization by edge-
contrast pairs. However, low dynamic range and severe noise
in low light condition degrade image edges and transforms
edge-contrast pairs into smooth pairs. Thus, CADIE [22]
weakens the degree of contrast enhancement especially
for extremely low light images such as Greenwich, Ramp,
and Buildings (see the third column of Fig. 11). Thus,
CADIE [22] produces relatively dark results which looks
similar to the original image in perception compared to
other enhancement results as shown in the third column of
Fig. 11. In the experiments, CADIE [22] obtains the best
performance in structure similarity. However, insufficient
enhancement in luminance and contrast leads to the lim-
ited detail enhancement, and thus meaningful details and
contrast are lost in the results. ACEWC [19] achieves good
contrast improvement but produces too much noise and over-
stretches contrast in the results such as wall in Car and
ground in Classroom in the second column of Fig. 11. The
main reason is that the contrast enhancement in ACEWC [19]
is done by CLAHE [4] which does not consider the noise
level (see the left figure in Fig. 1(a)) and image locality.
CLAHE produces serious over enhancement in dark and
smooth regions such as the red box in the second column
of Fig. 11. Thus, ACEWC [19] obtains the lower score in
structural similarity and details by subjective evaluations.

VOLUME 6, 2018



H. Su, C. Jung: Perceptual Enhancement of Low-Light Images Based on Two-Step Noise Suppression

IEEE Access

() (b)

(d (e)

FIGURE 11. Experimental results for three test images. Top to bottom: Car, Classroom, Restaurant, Greenwich, Ramp, and Buildings. (a) Original images.

(b) ACEWC [19]. (c) CADIE [22]. (d) LLIE [16]. (e) Proposed method.

LLIE [16] provides the strongest luminance enhancement
with more visible details in the whole images by dehazing-
based contrast enhancement. Therefore, LLIE [16] achieves
better performance in details. However, noise is also
enhanced and distributed in the whole image, especially in
dark regions (see the fourth column of Fig. 11). LLIE [16]
also introduces the color cast problem and serious color noise
in Car and Buildings, and thus obtains the worst performance
in artifacts and color. The proposed method utilizes noise
distribution to extract high contrast pixels which has the
local contrast larger than relative noise level (RNL), and
enhances low light images based on these pixels. Noise aware
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contrast enhancement enhances images with noise suppres-
sion as shown in Fig. 4. Moreover, perceptual noise reduction
suppresses visible noise based on the variation of JND thresh-
olds after contrast enhancement. Also, we use visual mask-
ing to extract details and edges from noisy images. That is,
we generate different reduction degrees for details and noisy
regions based on the visual masking factor. The perceptual
noise reduction reduces noise while preserving details in an
image. Red boxes in Fig. 11 show that the proposed method
achieves the least noise amplification among four methods.
Furthermore, color enhancement reproduces more saturated
colors, which makes the results look more vivid. Above all,
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TABLE 1. Performance comparison between CADIE [22], ACEWC [19], LLIE [16] and proposed method.

Metrics Methods Car Classroom  Restaurant Sofa Bookshelf ~ Chair  Greenwich ~ Ramp  Buildings  Average
Original 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CADIE [22] 1.3406 1.4043 1.2974 1.2260 1.4227 1.5949 1.3470 1.8552 1.6407 1.4588

Luminance =~ ACEWC [19] 1.7174 1.7451 1.7373 1.6362 1.8903 1.4400 1.7395 6.1440 3.0189 2.3410
LLIE [16] 2.1189 2.3288 2.2446 1.9993 2.2149 2.6935 2.8856 3.4181 4.8186 2.7469

Proposed 1.7133 1.8186 1.4988 1.6321 1.8778 1.9621 2.3188 4.7067 2.8310 2.2621

Original 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CADIE [22] 1.1591 1.2063 1.2623 1.0475 1.3338 1.7458 1.0834 1.7510 1.3650 1.3282

Contrast ACEWC [19] 1.4565 1.2694 1.2839 1.1443 1.8674 1.4078 1.1547 4.3316 1.6044 1.7244
LLIE [16] 1.0507 1.4155 1.3679 0.9442 1.5619 2.0894 1.1229 2.6326 1.6660 1.5390

Proposed 1.4597 1.7279 1.4954 1.4794 1.9100 1.8980 1.8395 4.9411 1.8500 2.0657

Original 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CADIE [22]  0.9877 0.9805 0.9926 0.9892 0.9843 0.9759 0.9873 0.9988 0.9598 0.9840

Structure ACEWC [19] 0.9319 0.9131 0.9399 0.8806 0.9293 0.9132 0.8088 0.9454 0.9208 0.9092
LLIE [16] 0.8979 0.9249 0.9505 0.9296 0.9456 0.9339 0.7724 0.9703 0.8041 0.9032

Proposed 0.9585 0.9556 0.9914 0.9636 0.9857 0.9719 0.8818 0.9899 0.9258 0.9582

Original 6.8507 6.1156 5.9414 6.6693 6.5209 5.7307 5.6266 47971 3.9553 5.8008

CADIE [22]  7.2266 6.5853 6.1575 7.0432 6.8698 6.5574 5.9844 5.1580 4.7753 6.2619

DE ACEWC [19] 17.5622 6.9628 6.8259 7.2648 7.4683 6.3046 6.3600 7.3037 5.1944 6.8052
LLIE [16] 7.2134 6.8829 6.9409 7.1992 7.0589 6.6256 6.3634 6.4785 5.7023 6.7183

Proposed 7.5204 6.9086 6.4228 7.3326 7.4184 6.6364 6.8958 6.7107 5.3249 6.7967

Original 0.1445 0.1275 0.4080 0.6103 0.1656 0.1088 0.3914 0.0905 0.0064 0.2281

CADIE [22]  0.1318 0.1511 0.4773 0.6328 0.1774 0.1332 0.4355 0.2121 0.0487 0.2667

Color ACEWC [19] 0.2262 0.2170 0.5315 0.6653 0.2645 0.1186 0.5156 0.6554 0.1967 0.3768
LLIE [16] 0.2330 0.3245 0.5945 0.6307 0.3486 0.2801 0.5499 0.3880 0.2503 0.4000

Proposed 0.2190 0.2108 0.5286 0.7837 0.2638 0.1877 0.6300 0.4948 0.1709 0.3877

Bold numbers represent the best or equally best performance in each metric.

the proposed method enhances low light images with the
minimum noise amplification while successfully preserving
details as shown in the fifth column of Fig. 11.

B. QUANTITATIVE EVALUATIONS

For quantitative measurements, we evaluate the performance
in terms of five quantitative measures. Three measures are
luminance index [/, contrast index ¢, and structural index s,
and calculated as follows [22]:

i,

(e, 1) = (13)
i
o 1) = 2 (14)
i
o, 1+k
l,,]) = 44— 15
sl = 22 (15)

where [, and [ are gray images from the noise reduction
result and the original image in (12), respectively; w; is the
mean intensity in an image [; o; is the standard deviation
of /; and oy, ; is covariance between [, and /. Three measures
evaluate luminance enhancement, contrast enhancement, and
structural similarity between the original images and their
enhanced results, respectively. The other two measures are
discrete entropy (DE) [40] and colorfulness [41] which are
estimated by:

L—1
H(p) = =Y p(i)log, p(i) (16)
i=0
o2 o
cl(M) = 0.02 x log(lﬂalo'z) X log(luﬁlo‘z) (17)
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where p is the probability density function and L is total
intensity levels, i.e. 256; M is the trichromatic channel value
in (12) which contains three channels, i.e. R, G and B in color
images; « = R — G and 8 = 0.5(R + G) — B are opponent
red-green and yellow-blue spaces; aj, crg, e and pg are
variance and mean values in o and S. DE represents the
amount of information in an image. Colorfulness measures
color chrominance attributes from the enhanced results by
human perception. Table 1 shows evaluation results of four
methods on nine test images in terms of the five measures.
High values in luminance and contrast mean strong lumi-
nance and contrast enhancement. Structural index is closer
to 1.0, which means the enhanced results are more similar
to their original images in structure. Higher DE means more
details, while larger colorfulness metric represents more sat-
urated colors in an image. For luminance index, LLIE [16]
obtains the brightest images but produces the lower con-
trast in the enhanced results because dehazing-based contrast
enhancement provides the strongest luminance enhancement
in the whole images including dark regions. Thus, the results
by LLIE [16] looks foggy and suffers from severe noise
amplification in dark regions as shown in the fourth column
of Fig. 11. In contrast, noise aware contrast enhancement
suppresses enhancement in dark regions and provides large
enhancement in high contrast regions. Thus, the proposed
method achieves the best performance in local contrast, which
produces good contrast as shown in the fifth column of
Fig. 11. In structural similarity, CADIE [22] obtains the
closest enhanced results to the original images, which is
mentioned in subjective evaluations. However, the proposed
method acquires the second best performance in structural
similarity with better enhancement in luminance and contrast
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FIGURE 12. Experimental results by [1], the proposed method, and [21]. (a) Original image. (b) [1]. (c) Proposed method. (d) [21]. (e) Texture map in [1].

(f) Texture map of the proposed method.

compared with CADIE [22] (see the bold numbers in the
structure metric of Table 1). Better performance in structure
also indicates the proposed method does not generate too
much noise amplification and contrast over stretching. In DE,
ACEWC [19] and the proposed method achieve equally good
performance but ACEWC [19] suffers from noise amplifi-
cation as shown in the second column of Fig. 11. Thus,
ACEWC does not produce good results in details of sub-
jective evaluation. In colorfulness, LLIE [16] and the pro-
posed method produces the best and second results in the
saturated colors. In (12), high luminance enhancement leads
to over-enhancement in color channels, resulting in large cl.
However, the proposed method does not provide much lumi-
nance enhancement due to the noise aware contrast enhance-
ment considering noise characteristics and image locality.
Thus, the proposed method looks darker with less colorful-
ness than LLIE (see Classroom and Restaurant in Figs. 11(d)
and (e)). However, LLIE produces the enhanced result with
amplified color noise and thus increases c/ (see Car and
Building in Figs. 11(d) and (e)). Thus, the proposed method
achieves the best performance in colors, which is same as sub-
jective evaluations. Therefore, the proposed method achieves
the best performance in contrast enhancement while provid-
ing good results in structural similarity, detail enhancement,
and color enhancement among four methods.

C. COMPARISON WITH OUR PREVIOUS WORKS
We compared the results of the proposed method with
those of our previous works such as [1] (ICASSP 2017)
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and [21] (JVCIR 2017). Fig. 12 shows experimental results
by three methods. The proposed method and [1] adopt two-
step noise suppression for low light image enhancement, and
are different in the second step of perceptual noise reduction.
Reference [1] estimates texture maps based on the statistical
property of textureness [32] with rough region segementa-
tion, while the proposed method extracts texture pixels in
an image based on luminance contrast and visual regular-
ity. Thus, the proposed method achieves a more accurate
texture map as shown in Figs. 12(e) and (f), and preserves
textures better than [1] as shown in Figs. 12(b) and (c)
(sofa area). Reference [21] provides the contrast enhance-
ment based on histogram without considering noise charac-
teristics and content in the low pass sub-band. Thus, [21]
causes over-enhancement in dark regions with severe noise
amplification such as sofa area as shown in Fig. 12(d).

D. COMPARISON WITH OTHER JND MODELS

In general, IND models are composed of two main categories:
luminance adaptation and visual masking. Luminance adap-
tation shows the variation of visibility threshold according
to the change of background luminance, while visual mask-
ing represents the visibility reduction of a visual component
according to the change of the background. In the proposed
method, we use luminance adaptation to measure the noise
visibility after contrast enhancement, and visual masking to
measure the noise visibility at the presence of the background
with different local textures (e.g. smooth and texture regions).
Through experiments, we analyze the effects of different IND
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(a)

(d)

(b)

(e)

(©)

®

FIGURE 13. Luminance adaptation map LA(x, y). (a) Original image (gray level). (b) Enhanced result by noise aware contrast enhancement.

(c) Eq. (18) [43]. (d) Eq. (9) [36]. (e) Eq. (19) [44]. (f) Eq. (20) [45].

models on the noise visibility in the enhanced results as
follows:

1) LUMINANCE ADAPTATION MODELS
We obtain four luminance adaptation models in [42] to eval-
uate the noise visibility change after contrast enhancement as
follows:

Model 1I:[43]

I(x,y)
7-(1— +3 I(x,y) <127
vaw =1 VR o
g (@) —12D+3 1, y) > 127
(18)
Model II:Eq.(9)[36];
Model III:[44]
_ A Y) 0649
V(l(x,y))—(—128 ) (19)
Model IV:|[45]
(60 — I(x, y))/150 + 1 I(x,y) < 60
Vi, y) =11 60 < I(x,y) < 170
(I(x,y) — 170)/425+1 I(x,y) = 170
(20

Fig. 13 shows LA(x,y) by four luminance adaptation
models. Compared to Models I and III [43], [44],
Model IT [36]showsthe mostluminance variationin water
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area between the original image in Fig. 13(a) and its enhanced
result in Fig. 13(b), and achieves different noise reduction
degrees according to regions. Model IT also leads to less
noise amplification as shown in Figs. 13 (d) and (f) compared
to Model IV [45]. Thus, we select Model II [36] to
estimate the visibility threshold and reduce noise caused by
contrast enhancement.

2) VISUAL MASKING MODELS

Visual masking considers contrast masking, pattern mask-
ing, and both of them. Reference [46] estimates the con-
trast masking using edge detection to improve the JND
estimation in edge and non-edge regions. Reference [47]
introduces the structure uncertainty into pattern masking
because HVS has the different sensitivity to visual regu-
larity. References [35] and [48] improve pattern masking by
content regularity, i.e. gradient regularity. Reference [48]
provides a visual masking model considering both con-
trast masking and pattern masking, while [35] provides
easy computation. We use three visual masking models
of [35], [46], and [47] for performance comparison.
Fig. 14 shows visual masking maps by three visual masking
models. As show in Fig. 14 (d), [35] extracts main textures
in the enhanced result while suppressing weak details, which
leads to enhancement of main details without amplification of
weak details in the noise reduction step. This is because noise
and weak details are easily fused in an image. Reference [46]
captures weak textures and noise in the visual masking map
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FIGURE 14. Visual masking. (a) Noise aware contrast enhancement result.
Three visual masking maps by (b) [46], (c) [47], and (d) [35].

as shown in Fig. 14(b), which leads to the enhancement
of both details and noise in the noise reduction step. The
visual masking map (Fig. 14(c)) by [47] seems to be blurry
and cannot represent accurate textures such as paintings on
the wall. Thus, we use [35] to estimate visual masking in
the proposed method, thus resulting in outstanding detail
enhancement.

IV. CONCLUSIONS

In this paper, we have proposed perceptual enhancement
of low light images based on two-step noise suppression.
Contrast enhancement increases the intensity in images while
decreasing the visibility threshold, which makes noise much
visible. Thus, we have employed two-step noise reduction
to deal with this problem. First, we have performed noise
aware contrast enhancement based on noise characteristics
and image locality to prevent noise amplification after con-
trast enhancement. Second, we have perceptually reduced
noise in images while preserving details using a JND model
which represents noise visibility in contrast enhancement.
Experiment results demonstrate that the proposed method
successfully enhances contrast and colors in low light images
while minimizing noise amplification and preserving most
details.
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