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ABSTRACT In this paper, we consider the basic makespan minimization problem on identical parallel
machines. The aim of this study is to solve, to optimality the hard instances of the literature. We present
an integer linear program based on an innovative arc-flow model inspired from the duality between the bin
packing problem and the parallel-machine scheduling problem. The proposed mathematical model is tested
on a large set of hard instances. The results of computational experiments attest the efficiency of the new
approach and prove that it outperforms the existing ones. In addition to its efficiency, the proposed method
is simple and easy to use.

INDEX TERMS Arc-flow model, integer programming, parallel machines, scheduling.

I. INTRODUCTION
In this study, we solve the identical parallel-machine schedul-
ing problem with the objective of minimizing the makespan.
This basic problem can be described as follows: a set J of
n jobs has to be scheduled on m identical parallel machines
(with n > m ≥ 2). Each job j ∈ J has to be processed
for pj units of time. Each machine processes at most one job
at a time and the preemption is not allowed. This problem,
denoted by P‖Cmax using the classification introduced by
Graham et al. [1] is NP-hard in the strong sense [2].
This fundamental problem has been massively treated in

the literature. Due to its NP-hardness, only some attempts
are made to solve the P‖Cmax problem with exact methods.
Mokotoff [17] builds an exact algorithm based on cutting
plane techniques. The algorithm essentially consists of iter-
ative additions of valid inequalities, starting from the solu-
tion obtained by successive linear programming relaxations.
Moreover, the experimental results show that the suggested
approach is also a powerful tool for producing fast high qual-
ity feasible solutions. Later, Dell’Amico and Martello [18]
propose a branch-and-bound algorithm that turns out to out-
perform the exact algorithm by Mokotoff [17]. Their branch-
and-bound algorithm is based on sophisticated lower and
upper bounds and some dominance rules.

Dell’Amico et al. [19] present an exact algorithm based
on a branch-and-price scheme using the dual relationship
with the bin packing problem. In fact, they solve a sequence
of feasibility test of bin packing problems while iteratively
updating the size of the used bins. The experimental results
on a large set of benchmark instances show the effectiveness
of the proposed approach. Haouari et al. [20], develop a
bounding stratgy based on lifting procedures. They derive
lower bounds that outperform existing bounds for the P‖Cmax
problem. Also, they suggest two heuristics based on subset-
sum problem (SSP). Motivated by the obtained results,
Haouari and Jemmali [21] propose an exact branch-and-
bound algorithm. The lower bounds used are the bounds
developed in [20] and improved by the SSP-based enhance-
ment procedure in order to obtain stronger ones. They pro-
pose an improved variant of SSP-based heuristic that requires
solving a sequence of 0-1 knapsack problems. The devel-
oped branch-and-bound algorithm includes a new branching
scheme and proves to be able to solve the quasi-totality
of benchmark instances in the literature. While testing the
performance of their algorithm, the authors identify a class
of hard instances for which n

m = 2.5. Their proposed branch-
and-bound fails to solve 32% of these hard instances. Also,
it is shown that for n ≥ 30, the performance of the algorithm
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deteriorates as the number of unsolved instances becomes
relatively high.

Recently, Walter and Lawrinenko [22] have focused
on solving the hard instances identified by
Haouari and Jemmali [21]. They derive a new branch-and-
bound algorithm based mainly on restricting the solution
space using the so-called path-related dominance rules which
represent the principal contribution of their paper. Indeed,
the authors buid their branch-and-bound using classical lower
and upper bounds in the literature; especially those proposed
by [20] and [21]. They test their algorithm on a large set of
instances suggested by Dell’Amico and Martello [18]. They
consider 5 classes of uniform and non-uniform distributions.
As identified by Haouari and Jemmali [21] the hard instances
depend on the ratios of

n
m
. The computational results show

that the proposed method solves instances with at most
33 jobs in case of

n
m
∈ {2, 2.25, 2.5, 2.75}. In order to test the

performance and the limitation of the approach, the authors
propose two new particularly hard classes of instances. The
experimental studies show that the algorithm fails to solve
22% of 480 tested instances (with n ≤ 100) in the two new
classes.

Lately, some researchers treated the considered problem
under some constraints [4], [5], [7].

On the other hand, heuristic methods and approximate
solutions have been intensively attempted. Riera et al. [3] pro-
pose several heuristic algorithms based on the list-scheduling
strategies. The obtained results are close to the optimal solu-
tions given by the dynamic programming algorithm pro-
posed by Blazewicz [6] and also close to the bound of
McNaughton [8]. Mokotoff [9] proposes an approximation
algorithm based on linear programming formulations using
cutting planes algorithm. This algorithm essentially consists
of iterative computations of lower bounds of Cmax using the
successive linear programming relaxations. Lee et al. [10]
propose a simulated annealing (SA) approach to solve the
P‖Cmax problem. The computational results show that the
SA heuristic is more efficient than other heuristics encoun-
tered in the literature. Mokotoff et al. [11] present several
heuristics using list scheduling algorithms. They propose
new assignment rules that begin with the Longest Process-
ing Time (LPT) rule. The main contribution is to deter-
mine how to balance, in the assignment procedure, between
the LPT rule and the new rules. Brueggemann et al. [12]
propose an approximative solution inspired from the idea
of local search and based on new improvement assignment
rule called move-optimal assignment. This method outper-
forms Graham’s LPT-algorithm [13]. Chiaselotti et al. [14]
present a new nlog(n) iterative algorithm with worst-case
performance ratio. The proposed algorithm combines par-
tial solutions which are obtained by partitioning the set of
jobs into suitable families of subsets. Laha [15] presents an
improved simulated annealing heuristic. The experimentation
proves that the obtained results are better than those produced
by Lee et al. [10] as well as other existing heuristics for

large-size instances. Tang and Luo [16] propose, for the
P‖Cmax problem, an iterated local search (ILS) algorithm
obtained from an integer programming model combined with
a variable number of cyclic exchanges.

According to this brief bibliographic study, it is clear that
the problem of minimization of makespan on identical paral-
lel machines has been extensively investigated especially for
approximate solutions.

Despite the efforts of Haouari and Jemmali [21] and
Walter and Lawrinenko [22] challenging instances of the
literature are still unsolved. The aim of this paper is to present
a new approach to solve exactly this challenging class of
instances. Therefore, we propose a new efficient integer linear
program based on an arc-flow model. Our approach is also
based on the duality between the parallel machine scheduling
problem and the bin packing problem. In fact, each job can
be considered as an item with size equal to pj (j = 1, . . . , n)
and that must be packed into a limited number of identical
bins (machines) of capacity C . If a feasible solution of this
problem exists, this means that C is an upper bound of the
P‖Cmax problem. Hence, the bin packing problem can be
treated as a parallel machine scheduling problem aiming to
minimize the number of requiredmachines and not exceeding
a pre-specified makespan C .
This duality was adopted by many researchers as

an alternative strategy to solve the P‖Cmax problem.
Krause et al. [23] are among the first researchers applying
this approach in 1975. They introduce an algorithm named
first-fit-increase (FFI) in order to obtain a bound of the prob-
lem. Hochbaum and Shmoys [24] prove through this duality
that finding an approximation algorithm for the minimum
makespan problem can be reduced to the problem of finding
a dual approximation algorithm for the bin-packing prob-
lem. Alvim and Ribeiro [25] propose a hybrid bin-packing-
based heuristic for the multiprocessor scheduling problem to
minimize the makespan. Dell’Amico et al. [19] suggest an
exact algorithm for P‖Cmax based on the dual relation with
the bin packing problem as discussed in Section 1. We refer
to Cheng and Sin [26], for more general surveys on the
bin packing approach for the parallel machine scheduling
problem.

The remainder of this paper is organized as follows.
In Section II, we introduce the integer linear program based
on the arc-flow model. We describe the upper bound used to
build the proposed graph and we provide a detailed explana-
tion of the graph structure and the different reduction criteria
applied to reduce the graph size. In section III, we report the
details of the implementation and the computational results.
Finally, in section IV we provide some concluding remarks
and perspectives.

II. SOLUTION APPROACH AND MATHEMATICAL
PROGRAM
The proposed method in this paper consists on solving
an integer linear program based on an-arc flow model.
This simple approach compared with the sophisticated
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methods of the literature exploits the duality between the bin
packing and the P‖Cmax problems. Indeed, we show that it is
possible to solve exactly the P‖Cmax problem in a single shot
while using this duality. Whereas, the best approach aiming
to solve exactly the P‖Cmax based on the duality with the
bin packing problem considers a sequence of feasibility test
problems [19]. This concept has been proved to be effective
in the literature [28], [29], [30], [31], [32], [33].

Let J = {1, . . . , n} be the set of n jobs with
positive processing times p1, p2, . . . , pn, to be scheduled
onm (m < n) identical parallel machines in order tominimize
the makespan.

A. GRAPH STRUCTURE
Let UB be an upper bound of the P‖Cmax problem. Deter-
mining a valid solution to parallel machines problem can be
modelled as just findingm disjoint paths in an acyclic directed
graphwithUB+1 vertices. Consider a graphG = (V ,A) with
V = {0, . . . ,UB} and A = A′ ∪ A′′, where:
A′ = ∪k∈JAk and Ak is the set of arcs representing the

item k .
Ak = {(i, j) : 0 < i < j ≤ UB, j− i = pk} and
A′′ = {(j,UB) : ∀j ∈ V \ {UB}}.
The set A′ is constructed as follows: It exists a directed arc

between two vertices i and j if there is a job with size j − i.
To reduce computational efforts and solve larger instances,
the set A′ can be reduced, by using some breaking symmetry
rules:
(i) The jobs are ordered according to a decreasing order of

their processing times.
(ii) An arc of size pt can only have its head at a vertex jwhich

is the tail of another arc of size pk , for pk > pt , or at
node 0.

The pseudo code that builds the graph may be presented as
follow:

Algorithm 1 Graph Construction
V ←− {0,UB}
for i ∈ J do

SetofNewNodes←− ∅
for j ∈ V \ {UB} do

if (j+ pi ≤ UB) then
A′←− A′ ∪ (j, j+ pi)
Ai←− Ai ∪ (j, j+ pi)

SetofNewNodes←− SetofNewNodes ∪(j+ pi)
end if

end for
V ←− V∪ SetofNewNodes

end for
A′′ = ∅
for j ∈ V \ {UB} do
A′′ = A′′ ∪ {j,UB}

end for

The setA′′ is considered as the set of virtual arcs that ensure
the existence of the path between any node in the graph and
the node UB.

The reduction of the set A′ will eventually reduce the size
of V which will include only nodes that are head or tails of
arcs in A′ . V = {0,UB} ∪ {j/∃(i, j) ∈ A′}. Since each arc in
A′′ is related to a node in V \ {UB}, the reduction of V will
certainly result in the reduction of A′′.

B. DESCRIPTION OF THE UPPER BOUND UB
There is a large literature on the upper bounds of the
makespanminimization on parallel machines.We use an easy
heuristic delivered by the LPT (Longest Processing Time)
rule. This heuristic consists of two steps:
• Order the jobs by the non-increasing processing time.
• Assign them on the earliest available machine.

C. EXAMPLE
We consider a set of four jobs to be scheduled on two
machines. Let J = {1, 2, 3, 4}, p1 = 5, p2 = 3, p3 = 3
and p4 = 2. Let’s take for example UB = 6.
Accordingly, to the Algorithm 1, the arcs related to each

job will be appended to the set of the arcs A′. Figure 1 will
display the configuration of the graph at each iteration of the
algorithm.

D. MATHEMATICAL MODEL
The scheduling problem considered in this paper is formu-
lated as the problem of determining m disjoint paths between
vertex 0 and vertex UB covering all the jobs.
Notations: Let us consider the decision variables xij

defined as follows:

xij =


1 if the arc (i, j) is considered in the solution

∀(i, j) ∈ A′.
0 otherwise.

xij ∈ {0, . . . ,m}∀(i, j) ∈ A′′.
z is the variable indicating the makespan.
Using the notations introduced above, the resulting model

is given by:

minimize z (1)

subject to z ≥ jxij ∀(i, j) ∈ A′ (2)∑
(0,j)∈A

x0,j = m (3)

∑
(i,j)∈A

xij −
∑
(j,i)∈A

xji = 0 ∀j ∈ V \ {0,UB}

(4)∑
(i,j)∈Ak

xij = 1 ∀k ∈ J (5)

xij ∈ {0, 1} ∀(i, j) ∈ A′ (6)

xij ∈ N ∀(i, j) ∈ A′′ (7)

z ≥ 0. (8)

The objective function (1) minimizes the makespan. The
set of constraints (2) ensures that the maximum completion
time is larger or equal than the completion time of each job.
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FIGURE 1. The graph building.

Constraints (3) imply that the number of paths in the solu-
tion is m indicating that there are m machines to be used.
Constraints (4) represent the flow conservation constraints.
Constraints (5) state that, each job k ∈ J should appear once
in the final solution. Constraints (6), (7) and (8) define the
value range of the variables.

Generating a lower bound (LB) for the P‖Cmax problem
can enhance the proposed integer linear program. In fact the
constraint (2) can be replaced by:

z ≥ jxij ∀(i, j) ∈ A′; j ≥ LB. (9)

in this case, constraint (8) is to be replaced by:

LB ≤ z ≤ UB. (10)

A straightforward lower bound that will be adopted is:

LB = d

∑
pj
m
e.

TABLE 1. Comparison between Haouari and Jemmali algorithm and the
proposed arc flow model on the hard instances.

III. COMPUTATIONAL RESULTS
In order to test performance of the proposed method, we have
coded our algorithm in C++ language and have run it on an
Intel Core i7-2600 (3.4 GHz) and 16 GB RAMwhile running
Windows 7 Professional (64-bit). Additionally, we have used
CPLEX 12.6 in concert technology.

The tests were done on benchmark instances from the
literature and a large set of new hard instances generated
according to the method used in [22].We note that this type of
instances was introduced first by Haouari and Jemmali [21].

A. DATA GENERATION
The first type of hard instances was identified by Haouari and
Jemmali in [21]. For these instances, the ratio n/m is 2.5. The
instances are generated as follows:

• The processing times are drawn from discrete uniform
distribution on [ n5 ,

n
2 ]

• For each value of n ∈ {20, 30, 40, 50, 60, 70, 80, 90,
100, 150, 200}, a set of 20 instances were randomly gen-
erated. Hence, the total number of Haouari and Jemmali
instances is 220.

Later on, Walter and Lawrinenko [22] focused on this
type of instances and extended it to obtain a large set of
hard instances where the ratio n/m has the following values:
n/m ∈ {2, 2.25, 2.5, 2.75}. In this paper we consider also
n/m = 3. We indicate that the generated values refer to
the processing times. For each type of these hard instances,
7 classes are proposed in [22]. Thus, we generate the process-
ing times according to the following distributions:

• Class 1: discrete uniform distribution in [1, 100]
• Class 2: discrete uniform distribution in [20, 100]
• Class 3: discrete uniform distribution in [50, 100]
• Class 4: normal distribution with µ = 100 and σ = 20
• Class 5: normal distribution with µ = 100 and σ = 50
• Class 6: discrete uniform distribution in [n, 4n]
• Class 7: normal distribution with µ = 4n and σ = n

Each class includes 10 pairs (n,m), with:

• n ∈ {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} if
n/m ∈ {2, 2.5}

• n ∈ {36, 54, 72, 90, 108, 126, 144, 162, 180, 198} if
n/m ∈ {2.25, 3}
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TABLE 2. Results for ratio n/m = 2.

TABLE 3. Results for ratio n/m = 2.25.

TABLE 4. Results for ratio n/m = 2.5.

• n ∈ {22, 44, 66, 88, 110, 132, 154, 176, 198, 220} if
n/m ∈ {2.75}.

For each investigated (n,m) combination, there are
10 instances. So the total number of new generated instances
is 3500.

B. RESULTS
In order to test the effectiveness of our approach, we run our
algorithm and the branch and bound algorithm of Haouari and
Jemmali in [21] on the 220 challenging instances for the ratio
n/m = 2.5. We indicate that for the comparison, we use the
same code introduced in [21]. The summary of the results is
presented in Table 1. In this table, H&J algorithm refeers to
the algorithm in [21]. In addition, (Time) is the mean CPU

time in seconds computed over 20 instances and (NS) rep-
resents the number of unsolved instances. The results reveal
that our algorithm is distincly more efficient than the branch
and bound proposed in [21]. Indeed, all the 220 instances are
solved while in [21] 72 instances were not solved. In addi-
tion to its ability to solve all instances our approach proves
to be much more efficeint in terms of computational time
than that in [21]. In fact, Table 1 shows that the proposed
arc-flow model solves most of the instances in less than
one second. Further, it is up to 830 times faster than the one
in [21].

As in [22] we have tested the 3500 instances described in
section III-A. The results are displayed in Tables 2-6. In these
tables, we have provided for each combination (n,m) and for
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TABLE 5. Results for ratio n/m = 2.75.

TABLE 6. Results for ratio n/m = 3.

each class the mean CPU time in seconds (Time) computed
over 10 instances and the number of unsolved instances (NS)
where the maximal computation time per instance was set to
1200 seconds.

We see from Table 2, associated to the ratio n/m = 2,
that all instances have been solved to optimality. More-
over, most of the instances (530 out of 700) were solved
in less that one second. In addition, for the pair (200, 100),
the mean computation time is less than 8 seconds. At this
point, it is necessary to mention that the method proposed
in [22] solved only instances with 30 jobs for classes 1-5
and failed to solve many instances with 80 and 100 jobs for
classes 6-7.

Furthermore, regarding the ratio n/m = 2.25 (Table 3),
the proposed method solved all the instances for classes 1-5,
and did not solve some instances of classes 6 and 7 where
n ≥ 144. For this type of instances, [22] was able to solve
only instances with 27 jobs.

The same remarks can be observed for the ratios
n/m = 2.5 and n/m = 2.75 (Table 4 and Table 5). In fact, our
algorithm solved all the instances for classes 1-5. In addition,
in classes 6 and 7, the proposed approach is able to solve all
instances with n ≤ 120, while in [22] they did not solve 99
instances over 240 where the maximum number of jobs does
not exceed 80 jobs.

These computational results on the set of hard instances
with ratios n/m ∈ {2, 2.25, 2.5, 2.75} attest the effectiveness
of the proposed algorithm. On the other hand, we observe that

TABLE 7. Percentage of unsolved instances.

the hardness of the instances is proportional to the ratio n/m
mainly for the classes 6 and 7 and when the number of jobs
is large. In order to explore and identify the hard instances
more accurately, we have generated a new type of instances
with ratio n/m = 3. The results obtained for this type are
displayed in Table 6. Notice that, as for the previous types of
ratios n/m = 2 − 2.75, all the instances of classes 1-5 are
solved. Moreover, only 18.5% of instances of classes 6 and 7
of ratio n/m = 3 are unsolved. These results show that the
instances with ratio n/m = 3 are easier to solve than those
with ratios 2.5 and 2.75.
Table 7 summarizes the number of unsolved instances over

the entire test bed of 3500 instances. For each class, we give
the percentage of unsolved instances. The table confirms that
the most hard instances are those with ratios n/m = 2.5
and 2.75 especially for classes 6 and 7. But, it should be
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noted that for these two classes, the proposed algorithm can
solve all the instances with less than 120 jobs. Furthermore,
we can note that only 4.62% of the 3500 instances are
unsolved.

Through this extensive experimental study, we see
that the performance of our algorithm deteriorates when
the number of jobs is larger (n ≥ 140) only for
classes 6 and 7. This allows us to conclude that these
classes include the hardest instances that can be considered as
new challenging instances of the P‖Cmax problem. Overall,
our algorithm shows a high performance for all the tested
ratios n/m.

IV. CONCLUSION
In this paper, we have proposed a mathematical programming
approach based on an arc-flow model for the P‖Cmax prob-
lem. In this formulation, reduction criteria were applied to
reduce the size of the proposed graph and consequently to
reduce the number of variables in the model. The commercial
solver (CPLEX) was used to test the proposed formulation
on 3720 hard instances. The computation results show the
efficiency of the new approach and attest that it outperforms
other methods presented in the literature, because in few sec-
onds on the average, it solves to optimality most of hard
instances. In addition, the proposed method is very easy to
use and to implement compared to other approaches in the
literature.

Nevertheless, some hard instances are still unsolved,
mainly for the classes 6 and 7 when the number of jobs is
relatively large. Hence, future investigation will explore these
classes.
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