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ABSTRACT The probability distribution is often sought in engineering for the purpose of expanded
uncertainty evaluation and reliability analysis. Although there are various methods available to approximate
the distribution, one of the commonly used ones is the method based on statistical moments (or cumulants).
Given these parameters, the corresponding solution can be reliably approximated using various algorithms.
However, the commonly used algorithms are limited by only four moments and assume that the correspond-
ing distribution is unimodal. Therefore, this paper analyzes the performance of a relatively new and an
improved parametric distribution fitting technique known as the moment-constrained maximum entropy
method, which overcomes these shortcomings. It is shown that the uncertainty (or reliability) estimation
quality of the proposedmethod improves with the number ofmoments regardless of the distributionmodality.
Finally, the paper uses case studies from a lighting retrofit project and an electromagnetic sensor design
problem to substantiate the computational efficiency and numerical stability of the moment method in
design optimization problems. The results and discussions presented in the paper could guide engineers
in employing the maximum entropy method in a manner that best suits their respective systems.

INDEX TERMS Moments, probability distribution, confidence interval, uncertainty, maximum entropy,
design optimization.

I. INTRODUCTION
Finding the probability distribution of a quantity-of-interest
has always been a classical problem in the field of engineer-
ing. Depending on the type of information available, there
are different methods to estimate the probability distribution.
For example, it is common to employ Bayesian methodol-
ogy [1] when the users intend to impose prior assumptions
on the distribution estimation. Conversely, there are also
many cases where direct observation of the output probabil-
ity distribution is not available, but the statistics associated
with the distribution are available, e.g., the moments (or
cumulants). In such cases, the construction of the probabil-
ity distribution must be based solely on moments. In engi-
neering science and technology, moment-based probabil-
ity distribution estimation methods are often employed for

instrument calibrations [2], iterative procedures such as con-
trol design [3] and probabilistic design optimizations [4],
solid state physics [5] and more.

The problem of finding the cumulative distribution func-
tion (CDF) or the probability density function (PDF) given a
full knowledge of moments is known as themoment problem.
Prominent mathematicians like Stieltjes, Chebyshev, Markov
and many others laid a very solid theoretical foundation on
the work [6]. The earlier works focus on the existence and
uniqueness of solution (or distribution). However, finding the
complete moment sequence is not practical in most cases
and thus a finite moment sequence is often used in prac-
tice. The problem of finding CDF (or PDF) given a finite
sequence of moments is commonly known as the truncated
moment problem. It has been long known that the solution
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FIGURE 1. (a) Bounds of the permissible CDF F (x), whereby the solid line represents the CDF of a standard normal distribution while the dotted
lines represent the bound/envelope of theoretically most extreme deviation from the normal distribution CDF given the identical first n = 4,8
moments; and (b) the bound gap p(x) in a logarithmic scale.

to the truncated moment problem is not unique and is highly
sensitive to the moment values [7]. These findings are very
valuable in recognizing the limitation of the moment method
(which will be clarified below), however, they also lead to
the widespread misconception that the truncated moment
approach is generally an unreliable and inferior method.

One of the most common uses of probability distributions
approximated from truncatedmoments is for expanded uncer-
tainty evaluation. According to the Guide to the Expression
of Uncertainty in Measurement [8] and its supplement [9],
which are one of the most widely cited documents for uncer-
tainty evaluation, the coverage interval of a quantity at a pre-
scribed confidence level will be referred to as the expanded
uncertainty. Accordingly, the evaluation of expanded uncer-
tainty only concerns the upper and lower ‘‘tails’’ of a
probability distribution.

Study [10]–[12] presented the theoretical developments as
well as the justification for using truncated moment sequence
to find the expanded uncertainty. It went on to use the local
distribution bounds [11], [12] to show that inferring the
‘‘tails’’ of a distribution from a finite sequence of moments
is both robust and reliable, and that even the uncertainty
within the functional space of all possible distributions is
quantifiable. To illustrate this point, Fig. 1(a) shows the upper
and lower bounds of the CDFs that have the first four and
eight moments identical to those of the standard normal
distribution. In other words, it illustrates the theoretical worst-
case deviations of the possible CDFs that can be obtained
from these moments in comparison to the actual CDF of the
standard normal distribution. It is important to emphasize
that the bounds are independent of any distribution fitting
technique. Also, in agreement with the conclusion made
in [10], Fig. 1(b) shows that the local distribution bounds
would improve (or become narrower) asymptotically when
increasing: 1) the number n of known moments; and 2) the

distance of x from the mean regardless of the distribution
(provided that it exists). The truncated moment method is
therefore effective, easy to use, at lower risk of subjec-
tive judgement from parametric models and well-suited for
the task of evaluating expanded uncertainty and reliability
estimation.

There are many methods (analytical [13] and numeri-
cal [14]) that has been used to calculate the high-order
moments of the output variables using information about the
input variables. There are also various algorithms reported
in literature to subsequently approximate the output prob-
ability distribution provided that the corresponding statisti-
cal moments are available. The algorithmic estimations of
parametric distributions using the first four moments have
become a standard practice in applied statistics and engineer-
ing. Study [15] summarizes variousmainstream four-moment
distribution fitting techniques developed over the last century
and compares their performances across a wide variety of
distributions. The results of the study showed that the Pearson
distribution is the most reliable general-purpose algorithm for
the evaluation of the expanded uncertainty. At the same time,
it was found that the distribution fitting algorithms studied
in [15] have the following limitations:

1) They support the use of only up to n = 4 moments.
Consequently, the importance of themoments of higher
orders (n > 4) in characterizing the distribution ‘‘tails’’
was not studied;

2) The studied algorithms cover only unimodal distribu-
tions and the effect of such an assumption on the quality
of the expanded uncertainty evaluation for multimodal
distributions is unknown.

Addressing these shortcomings, the objective of this study
is to develop on the principle of maximum entropy [16]
that overcomes the limitations of commonly used moments-
based distribution fitting techniques and present an improved
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maximum entropy (MaxEnt) algorithm in Section II. The
effectiveness of the algorithm is studied for the evaluation of
expanded uncertainty in Section III. Consequently, the lim-
itations of the MaxEnt method and the conditions in which
the method performs the best have been reported. Section IV
then goes on to highlight the advantages of using the moment
method as a viable alternative to the state-of-the-art Monte
Carlo (MC)method [9] in settings where the expanded uncer-
tainty results are iteratively used in engineering design opti-
mization. Here, case studies from a lighting retrofit project
and an electromagnetic sesor design is employed for a more
comprehensive discussion from computational efficiency and
optimization convergence standpoint.

II. MOMENT-CONSTRAINED MAXIMUM
ENTROPY METHOD
According to the principle of maximum entropy
(MaxEnt) [17], all likelihoods are to be taken into account
based on the information available in the data, which in
this case is the set of truncated moments associated with
the distribution-of-interest. The MaxEnt distribution would
be the one with the largest overall uncertainty, measured by
Shannons entropy, out of all possible distributions with the
same moment sequence. Also, the MaxEnt distribution only
commits to maximum entropy principle and it is sufficiently
flexible to model various distribution characteristics such as
multimodality, long-tail, etc., without needing the users to
make prior assumptions.

The following section introduces a numerically stable
MaxEnt algorithm that uses an arbitrary order nmoments for
the distribution fitting. An overview of the maximum entropy
principle is given in Section II-A. Section II-B, however,
presents a stable automatic numerical implementation of the
MaxEnt algorithm, which is the main technical contribution
of this paper. The subsequent Section III goes on to bench-
mark the performance of this approach for the expanded
uncertainty against other distribution fitting methods [15].

A. FORMULATION OF THE MAXIMUM
ENTROPY PROBLEM
For a random variable X , whereby its realization x takes all
values over an interval of real numbers with unique PDF f (x),
the Shannon entropy S [18] is defined as:

S (x) = −
∫
R
f (x) ln f (x) dx. (1)

In the moment-based MaxEnt method, the information
entropy S is maximized subject to:∫

R
x if (x) dx = mi, (2)

whereby i = 0, . . . , n.
Using the method of Lagrange multipliers [19], the opti-

mization problem with n + 1 constraints (considering
0-th moment) is then reduced to the optimization of the

unconstrained function:

L (λ) =
∫
R
exp

(
n∑
i=0

λix i
)
dx −

n∑
i=0

λix i, (3)

whereby λ = {λi} for i = {0, . . . , n} is the Lagrange
multiplier for its corresponding x = {x i}. Expression (3) has
a closed form solution for f (x):

f (x) = exp

(
n∑
i=0

λix i
)
. (4)

All the optimal MaxEnt distributions are achieved when
∂L/∂λ = 0, which automatically satisfies the moment con-
straints in (2), and takes the general form f (x) in (4). Note
that since x0 = 1 (for i = 0) in (4), λ0 can be found by using
the explicit function:

λ0 = − ln
∫
R
exp

(
n∑
i=1

λix i
)
dx. (5)

The gradient ∂L/∂λ and the elements Hij of the Hessian
matrix H of the Lagrangian function in (3) are given, respec-
tively, as:

(∇L)i =
∂L
∂λi
=

∫
R
x if (x) dx − x i, (6)

Hij =
∫
R
x i+jf (x) dx. (7)

B. IMPLEMENTATION OF THE MOMENT-CONSTRAINED
MAXIMUM ENTROPY METHOD
The MaxEnt problem described in Section II-A is an opti-
mization problem to find the Lagrange multipliers λ in
(4) such that the gradient ∇L ∼= 0. The first algorithm
to do it was developed in 1984 [16]. It uses monomials
(i.e., x i) as the basis functions in the expressions (2)-(7).
However, as the number of moments increases (especially
when n > 5), the procedure becomes highly sensitive to
numerical imbalances in the moments, ill-conditioned gra-
dient and Hessian matrix, and insufficient arithmetic pre-
cision [5], [20]. Addressing these shortcomings, advanced
and numerically stable algorithms were developed in the past
decade using different basis functions, such as the shifted
Chebyshev polynomials [5] and the Fup functions [20].
Most recently, [21] extended the improvements to multi-
dimensional problems using generalized orthogonal polyno-
mials (GOPoly). However, these algorithms assume that the
range of the distribution is known. Unfortunately, conver-
gence is not guaranteed in an automatic application of the
procedures [5], [20], [21] if the limit of integration is not
known (at least approximately) beforehand.

This section therefore proposes a methodology to approx-
imate the integral limits of the GOPoly method using the
available set of moments. The improvement simplifies and
enhances the numerical stability of the GOPoly algorithm.
To keep this section succinct, the supporting expressions
are provided in Appendix A whereas the improved MaxEnt
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FIGURE 2. Framework of the proposed moment-constrained MaxEnt algorithm with enhanced numerical stability.

algorithm is illustrated in Fig. 2. Accordingly, the Lagrange
multipliers λ in (4) can be found using the steps below:
1) Precondition the moments mi for i = {0, . . . , n}

by setting zero mean and unit variance (from
Appendix A-A). The preconditioned moments are
denoted by m̃i;

2) Generate a set of random linearly independent n-th
order polynomials ak (x), whereby 1 ≤ k ≤ (n + 1).
The Lagrange multipliers of the new basis ak (x) are
denoted by γk . Mathematically, {x i, λi}, for 0 ≤ i ≤
n→ {ak (x), γk}, for 1 ≤ k ≤ (n+ 1);

3) Using the preconditioned moments m̃i and the new
polynomial basis ak (x), calculate the starting set of the
Lagrange multipliers γk corresponding to the moments
of the standard normal distribution;

4) Find the approximated integral limits (from
Appendix A-B). The estimation considers the ‘‘tail’’
characteristics of the distribution based on the infor-
mation provided by the moment values;

5) Re-orthogonalize the set of polynomials ak (x) using
the modified Gram-Schmidt algorithm [22] (from
Appendix A-C) for the current iteration. The orthog-
onal polynomials are denoted by pk (x). Re-compute its
corresponding set of Lagrange multipliers γk ;

6) Perform Newton method [19] until gradient ∇L ∼= 0 is
reached, or the inverse Hessian matrix H−1 becomes
too ‘‘ill-conditioned’’ [21]. The inverse Hessian is
deemed ill-conditioned if the condition number of the
matrix κH exceeds a threshold value (in this paper
it is 20). Compute the ∇L and H from expressions
(6) and (7) respectively;

7) If the gradient ∇L ∼= 0 is reached, compute the
Lagrange multipliers λ̃i of the preconditioned moments
m̃i from γk and pk (x). Refer Appendix A-A to compute
a standard set of Lagrangemultipliers λi for the original
moments mi from λ̃i. On the other hand, if κH ≥ 20,
return to step 5. The polynomials are re-orthogonalized
again to prevent the loss of their orthogonality, which

could negatively affect the convergence of the Newton
method.

Note that the optimization problem given in Section II-A
is convex with a unique solution (if such a solution exists).
Nevertheless, the convergence of the numerical algorithm
provided above greatly depends on the accuracy of the calcu-
lation of the integrals. The paper employs the Gauss-Hermite
quadrature rule [21] to compute the integrals effectively.
The speed of the computation, on the other hand, depends
on the computational speed of the computer hardware as
well as the platform used to develop the algorithm. This
study has developed a version of the improved algorithm
using MATLAB [23] and it is employed in the subsequent
Section III. The developed algorithm is available for down-
load at: http://tc32.ieee-ims.org/content/maxent-distribution-
fitting.

III. PERFORMANCE OF THE MOMENT-CONSTRAINED
MAXIMUM ENTROPY METHOD
Prior to recommending the moment-constrained MaxEnt
method discussed above for the expanded uncertainty estima-
tion, validation against other distribution fitting techniques is
required. It will also be the basis for recommending the con-
ditions in which the MaxEnt method performs the best. Here,
the expanded uncertainty estimation results from the MaxEnt
method are compared against that of a set of analytical
benchmark distributions, whereby the high-order moments
of the analytical distributions are the inputs to the MaxEnt
algorithm presented in Section II. The performance analysis
is given in the following subsections which are divided into
two parts corresponding to: 1) unimodal; and 2) multimodal
distributions.

A. UNIMODAL DISTRIBUTIONS
This subsection utilizes the set of 124 analytically derived
benchmark test distributions as well as the comprehensive
procedural framework for the performance analysis of the
expanded uncertainty evaluation techniques provided in [15].
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First, the exact high-order moments up to n = 12 are calcu-
lated from the analytical expressions of the 124 distributions.
Then, five sets of 124 MaxEnt distributions, using n =
{4, 6, 8, 10, 12} moments respectively, are obtained from the
algorithm presented in Section II. The distributions are then
used to estimate the values of x at the following percentile
values (as per [15]): {0.001, 0.006, 0.01, 0.1, 0.27, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10}× 10−2 for the lower ‘‘tail’’ and {90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 99.73, 99.9, 99.99, 99.994, 99.999}
× 10−2 for the upper ‘‘tail’’ of the distributions. The accuracy
of the estimation is then calculated using the actual values of
x computed from the analytical distributions, and the perfor-
mance of the MaxEnt method is analyzed by benchmarking
against the most reliable algorithm from [15], which is the
Pearson distribution. Although there are other variations of
MaxEnt algorithms proposed in [5], [20], and [21], they can-
not be used for performance comparison as those algorithms
require that the limits of theMaxEnt distribution to be known,
which is not the case in this study.

1) PERFORMANCE METRIC AND RESULTS
The expanded uncertainty estimation error ε, which is the
discrepancy in estimating x for a given percentile level F(x),
is used as the performance metric. The procedure to calcu-
late ε, defined by

ε =
|x − x∗|
x − m1

, (8)

is outlined in [15], whereby x is the actual value that cor-
responds to a percentile value and x∗ is the estimated value
of x from the fitted distribution. Here, the estimation error
ε is calculated for every percentile levels reported above
and for all 124 analytical test distributions reported in [15].
In addition, the average computation time of each distribution
is also reported.

Fig. 3 presents ε in the form of a reliability plot. The plot is
determined by the number of distributions (out of 124) falling
within the intervals of ε. Simply, the faster the reliability
plot reaches the maximum value of 1, the more reliable
the corresponding technique is. Table 1, on the other hand,
presents the mean and standard deviation of ε for the 124 test
distributions given in [15]. In addition, the table also reports
the average computation time for each distribution (except
for the Pearson method as it does not require an optimization
algorithm for its deployment). Note that all computations
were done on a computer with 64-bit Intel Core i5-3470 CPU
and 8 GB RAM.

2) DISCUSSION
Based on Fig. 3, it can be deduced that for 90% of the 124 test
distributions, the expanded uncertainty estimation error is
within 25% when Pearson distribution is used. The same way
of interpretation deduces that the performance of the MaxEnt
methodwith n = 4moments ismarginallyworse compared to
the Pearson distribution. However, as anticipated from stud-
ies [10]–[12], increasing the number of moments improves

FIGURE 3. Expanded uncertainty estimation reliability plot for Pearson
and MaxEnt methods with n = {4,6,8,10,12} moments benchmarked
against the analytical results of 124 test distributions [15]. The fastest
technique to reach the maximum reliability of 1 is the most reliable
algorithm since all the distributions fall within the smallest error interval,
e.g., 90% of the 124 test distributions is within 25% expanded uncertainty
estimation error when Pearson system is used.

the performance of the expanded uncertainty estimation.
Table 1 further validates this outcome. Themean and standard
deviation of ε for the MaxEnt method using only 4 moments
are higher than those of the Pearson distribution method.
On the contrary, impressively, they are lower than those of the
Pearson distribution when 6 moments are used. The improve-
ment is getting more significant with the higher number of
moments. However, these performance enhancements come
at the expense of additional computational time that can be
reduced with more efficient numerical integration methods
for higher n, better computer hardware, pre-compiled codes,
parallel processing and different programming platforms
(e.g., multi-dimensional MaxEnt algorithm [21] was devel-
oped on C programming language).

In summary, the results in Fig. 3 and Table 1 show that
the MaxEnt method is capable of accommodating more than
n = 4 moments while significantly improving the qual-
ity of the expanded uncertainty estimation. Although the
longer moment sequence incurs the extended computational
time, it provides considerably more information about the
distribution ‘‘tails’’.

B. MULTIMODAL DISTRIBUTIONS
Even though the unimodal distributions constitute the most
common class in applications, the multimodal distributions
should not be ignored. In fact, the multimodal distribution
type corresponds well to the operation of many real-world
systems. For example, the power loss of a V6 gasoline
engine [24] and diffusion concentration from hazardous
releases [20] are characterized by bimodal distributions.
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TABLE 1. Mean and standard deviation of the expanded uncertainty estimation error and average computation time of the distribution fitting algorithms
based on 124 unimodal test distributions.

TABLE 2. Mean and standard deviation of the expanded uncertainty estimation error and average computation time of the distribution fitting algorithms
based on 6 multimodal test distributions.

Unlike the unimodal distributions, extensive set of multi-
modal test distributions are not available in the literature.
Therefore, six multimodal distributions from [20], [24]–[27]
are used in this work as a test set to analyze the expanded
uncertainty estimation performance of the MaxEnt method.
The PDFs of the distributions are listed in Appendix B,
whereby their high-order moments have been calculated
analytically.

1) PERFORMANCE METRIC AND RESULTS
Following the same procedures as in Section III-A, the perfor-
mance analysis here is performed by calculating the expanded
uncertainty estimation error ε. Table 2 presents the mean and
standard deviation of ε, as well as the average computation
time for the six test distributions in Appendix B. To keep
the section succinct, the MaxEnt method is employed using
n = 4, 8, 12.

2) DISCUSSION
It can be seen from the mean and standard deviation values
of ε (Table 2) that the Pearson distribution approach (which
is the most reliable technique for unimodal distributions as
shown in [15]), is less reliable compared to the MaxEnt
method (regardless of n). The MaxEnt method demonstrates
its superiority over the Pearson one for the multimodal dis-
tributions given in Appendix B. Furthermore, as observed
in Section III-A, increasing the number of moments
(e.g., from n = 4 to n = 8, and further to n = 12) reduces
the uncertainty estimation error. However, it is worthwhile
to note that the mean and standard deviation values of ε for
multimodal distributions (Table 2) are lower than those of the
unimodal distributions (Table 1). This is due to the inclusion
of challenging distributions with extreme skewness/kurtosis
in the unimodal benchmark set, while no such distributions
are present in the multimodal distribution set employed in

this study. The computation time also increases with the
number of moments. Additionally, the results in Table 1
and Table 2 suggest that the average computation time of
the proposed MaxEnt algorithm is longer for the multimodal
distributions compared to that of the unimodal distributions.

The above results suggest that the MaxEnt method should
always be preferred over the Pearson distribution unless
n ≤ 4 and the output distribution is known to be unimodal
(modality testing is outside the scope of this paper).

IV. CASE STUDY: MOMENT-BASED EXPANDED
UNCERTAINTY EVALUATION IN ENGINEERING
DESIGN OPTIMIZATION
In agreement with the deductionsmade in [10], Section III has
evidently shown that the expanded uncertainty evaluation per-
formance of the proposed moment-constrainedMaxEnt algo-
rithm in Section II improves with the number of moments n.
At the same time, the algorithm also addresses the two
shortcomings of the commonly used distribution fitting tech-
niques. The aim of this section, on the other hand, is to high-
light the strength ofmomentmethods for repeated uncertainty
evaluation (or reliability analysis) in engineering design and
optimization.

As the cost of computing power has decreased over the last
few decades, theMC simulation has become the most popular
technique to estimate non-standard PDFs. The MC method
generates many independent realizations of the input quanti-
ties using known probability distributions of inputs and then
propagates through a system to obtain the output probability
distribution, which can be used to infer the expanded uncer-
tainty. Not only can it model any output distribution, but its
accuracy can also be increased reliably simply by increasing
the number of MC sample size. However, the use of MC to
find expanded uncertainty within an iterative procedure will
lead to two significant problems.
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FIGURE 4. Illustration of the probability distributions of the input variables (design parameters), a highly nonlinear model
(electromagnetic sensor [31]) and the probability distribution of the output quantity-of-interest (sensor peak flux density).

The first problem is the long computational time. This issue
is very well-documented in engineering design optimization
literature [28]. Various numerical methods to circumvent the
use of MC in an optimization setting have been developed
over last three decades. [29], [30] has shown that the moment
method is faster and more accurate than these numerical
algorithms. The moment methods have also been used to
significantly speed-up the design and reliability assessment
of magnetic sensors [31] and fuel cell [32]. The second
problem, however, is a subtler one. The simulation noise from
MC will affect the stability or convergence of the iterative
search/optimization procedure. A recently reported lighting
retrofit Measurement and Verification (M&V) project [33]
and a three-dimensional electromagnetic sensor design prob-
lem [31] will be employed to illustrate the afore-mentioned
shortcomings of MC method and the advantages of using the
moment method in an iterative procedure.

In the M&V study, a large quantity of inefficient lamps is
being replaced by energy efficient ones. M&V methodology
has been used to quantify the savings realized over a number
of years. It employsmeasurement instruments such as surveys
and on-site energy meters. The expanded uncertainty of the
reported savings must adhere to a given set of bounds in
order to be eligible for incentive programs from the funding
body. Increasing the sample size would reduce estimation
uncertainty at the expense of a higher cost. Therefore, the goal
is to design an optimal annual sampling/measurement plan,
in a manner which satisfies the uncertainty requirements at
the minimal cost. In the design stage, the energy saving Y is
computed at each time step using the equation (9), whereby
a is the number of lamps retrofitted. One of the uncertainty
sources, the lamp survival X1, is beta-distributed while the
others, such as mean annual energy use X2 and ratio of power
consumption X3, are normally distributed.

Y = aX1X2 (X3 − 1) (9)

In the study, the genetic algorithm (GA) in conjunction
with the integer linear programming [33] was used to design

an appropriate sampling plan so that the M&V project results
could satisfy the uncertainty requirement at the minimum
sample size (cost). On a 64-bit Intel Core i7 quad-core CPU
with 8 GB of memory running Linux Ubuntu 16.04 and
Python 3.3 (Numpy), the application of the MC trial size
of 107 on the genetic algorithm with 50 individuals, evolved
over 50 generations taking 320 minutes. However, when the
moment-basedmethodwas employed, the same problem con-
verged within a minute, showing an impressive gain in the
computational speed by three orders of a magnitude.

The computational speed gain becomes even more critical
in engineering design optimization problems whereby the
nonlinear model output (9) is replaced with the output from a
finite element model. Take, for example, an electromagnetic
sensor [31] (as illustrated in Fig. 4) that is optimized consid-
ering the manufacturing tolerance in its design parameters.
Similar to the M&V problem described above, the PDFs
of the design parameters (inputs) are known whereas the
PDF of the peak flux density (output) of the sensor must
be computed within the GA optimization framework. Here,
one execution of the finite element model takes 65 minutes
and even for a relatively small sample size of 106, reliable
computation of the expanded uncertainty using MC simu-
lation could take more than a century. However, with the
use of response surface moment-based uncertainty analysis,
the computational time can be reduced to several minutes,
which in turn makes the GA-based optimization of the sensor
practically feasible. This is also the case in various other
design optimization problems [4], [25], [28], [31], [32], e.g.,
structural, mechanical, etc. Besides, as the solutions of these
design problems were found using the traditional Pearson fit-
ting technique, the results from the previous section show that
the quality of the solution can be further improvedwith higher
order moments in combination with the proposed MaxEnt
algorithm.

The second problem (the optimizer stability), however, is a
more serious one. Optimizers such as the genetic algorithm
can find solutions that are close to (while not violating)
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FIGURE 5. Assume that point U should cover less than 96% percentile.
The moment method solution (solid line) satisfies this requirement
consistently. At the same time, MC sometimes does not satisfy
(in realization 1) and sometimes does satisfy (in realization 2) due to the
simulation noise.

a specified coverage interval. The inter-simulation variation
between the MC realizations would create a design that
adheres to the constraints most of the time, but occasionally
generate outliers that violate the constraints. Fig. 5 illustrates
this phenomenon, whereby the solution from the moment
method is consistent, whereas those of two independent MC
simulations are different. Note that the CDFs representing
MC simulation are shown only for the sake of discussion
completeness and do not represent the actual results.

These ‘false positives (or negatives)’ happen rarely.
However, when (if) they happen, the logical consistency of
the optimization search is broken by the MC noise. Often,
the optimizer terminates failing to determine the reason of
the constraint violation that occurs randomly. Unless the
complete MC realization is kept for a post-mortem inspec-
tion, the user will be left with no indication as to why the
optimization algorithm fails randomly. The chance of these
occurrences increases with the size and complexity of the
sampling plan. In the worst-case scenario, some of the non-
viable solutions can get through the optimization as viable
ones due to the MC noise. The probability of occurrence may
be reduced through the use of a largerMC trial size. However,
that would significantly increase the computation load with-
out fundamentally addressing the root cause. Furthermore,
only amarginal benefitmay be derived from an increased trial
size, since most of the additional trials are located in the high-
mass regions of the PDF, and not in the ‘‘tails’’, which are of
the main interest for the uncertainty and reliability evaluation.

Therefore, in view of the problems outlined above, for
cases where repeated uncertainty evaluation is required such
as engineering design optimization and reliability estima-
tion, using the method of moments with MaxEnt algorithm
represents an attractive alternative due to its computational
efficiency and the analytical representation that maintains

its constraint-adherence consistency throughout the optimiza-
tion process.

V. CONCLUSION
Methods using statistical information such as the moments
(or cumulants) are one of the commonly used ones for find-
ing the probability distribution of a desired output in vari-
ous fields of engineering. Previous studies have shown that
the moment method is useful for the purpose of expanded
uncertainty evaluation done based on the resultant distribu-
tion, especially for systems with stringent reliability require-
ments. This is due to the increasing reliability of employing
high-order moments along the ‘‘tails’’ of the distribution-
of-interest, and with the increase in the number of avail-
able (truncated) moments. However, the commonly used
distribution fitting methods are limited to supporting only
four moments and assumes that the output distributions are
unimodal.

This paper, therefore, studied the use the principle of max-
imum entropy (MaxEnt) to overcome these shortcomings and
went on to propose an improved and a simplified moment-
constrainedMaxEnt algorithm. The improvement to the algo-
rithm was made by adding a sub-algorithm to approximate
the integral limits of the MaxEnt distribution for a better
overall numerical stability. The obtained results suggest that
the MaxEnt method is a highly reliable technique for the
evaluation of the expanded uncertainty. At the same time,
if only four moments are available and the distribution is
known to be unimodal, Pearson distribution may also be
deployed. Furthermore, the results also suggest that users
employing the MaxEnt method with a long (known) moment
sequence (typically more than 6), should take into account the
computation time that increases nonlinearly with respect to
the number of moments. However, the trade-off between the
accuracy and computation time largely depends on the com-
puter hardware and platform used to develop and implement
the algorithm.

Lastly, the paper used an energymeasurement and verifica-
tion study and an electromagnetic sensor design optimization
problem to draw attention to the advantages of using the
moment method as an alternative to the Monte Carlo method
when repetitive, consistent (or ‘‘noiseless’’) and computa-
tionally efficient uncertainty evaluation is sought.

APPENDIX A
EXPRESSIONS TO THE STEPS REPORTED IN SECTION II-B
A. SETTING ZERO MEAN AND UNIT VARIANCE
The transformation of moments mi, for i = 0, . . . , n, when
conditioning them to those of zero-mean and unit variance
distribution is given by (10):

m̃i =
1(√
m2
)i i∑

j=0

(
i
j

)
(−1)jmi−jm0

j, (10)

whereby m̃i denotes the transformed moment values. The
inverse transformation of the Lagrange multipliers λ̃i of the
preconditioned moments m̃i to the Lagrange multipliers λi of
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Algorithm 1 Algorithm for Modified Gram-Schmidt
Orthogonalization
Input: Linearly independent n-th order polynomials ak (x)

and their Lagrange multipliers γk for all k
Output: Orthogonalized n-th order polynomials pk (x) and

their corresponding γk for all k
1: Initialize the square matrix a of size (n + 1), whereby

each column vector corresponds to the coefficients of
polynomial ak (x); vector γ of size (n+ 1) corresponding
to all values of γk ; γinitial = γ; and ainitial = a.

2: for k = 1 to n+ 1 do
3: for l = 1 to 2 do
4: for m = 1 to k = 1 do
5: ak (x) = ak (x)− Q(ak (x)pm(x))pm(x)
6: Update matrix a
7: γ = a−1(ainitialγinitial)
8: end for
9: end for

10: pk (x) = Q([ak (x)]2)−
1
2 ak (x)

11: end for
12: Initialize the square matrix p of size (n + 1), whereby

each column vector corresponds to the coefficients of
polynomial pk (x)

13: γ = p−1(pinitialγinitial)
14: return pk (x) and γk for all k

the original moments mi is given by (11):

λi =

n∑
j=0

(
j
i

)
(−1)j−i λ̃jm1. (11)

B. FINDING THE INTEGRAL LIMITS
This section presents the procedures to approximate the inte-
gral limits in a succinct manner based on the theoretical
findings reported in [19]. First, shift the original moments
mi, for i = 0, . . . , n, to point-of-interest C using the linear
transformation (12):

ḿi =
i∑

j=0

(
i
j

)
(−C)i−jmj, (12)

whereby ḿi is the linearly shifted moment. Then, find the
maximal mass τ at 0 using (13):

τ =

∣∣∣∣∣∣∣∣∣
ḿ0 ḿ1 · · · ḿń
ḿ1 ḿ2 · · · ḿń+1
...

...
. . .

...

ḿń ḿń+1 · · · ḿ2ń

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ḿ2 ḿ3 · · · ḿń+1
ḿ3 ḿ4 · · · ḿń+2
...

...
. . .

...

ḿń+1 ḿń+2 · · · ḿ2ń

∣∣∣∣∣∣∣∣∣

, (13)

whereby ń =
⌊ n
2

⌋
. This paper uses τ = 10−(ń+1) and

solves expression (13) in the real coordinate space for C .

The solutions are used as the upper and lower limits of the
integrals in Section II-B.

C. MODIFIED GRAM-SCHMIDT ALGORITHM FOR
POLYNOMIAL ORTHOGONALIZATION
The maximum entropy method proposed in [21] uses the
modified Gram-Schmidt orthogonalization method [22] tai-
lored for the polynomial basis pk (x), for 1 ≤ k ≤ (n+1). The
algorithm is presented below, whereby Q(·) is given by (14),
where g is a polynomial.

Q (g) =
∫
R
g exp

(
K∑
i=1

γipi (x)

)
dx (14)

APPENDIX B
PROBABILITY DENSITY FUNCTIONS OF
MULTIMODAL DISTRIBUTIONS
PDFs of themultimodal distributions from [20] and [24]–[27]
are given by (15)-(20), whereby β(·) denotes the Beta
function.

f (x) =
x7

3β (8, 1)
+

x15

3β (16, 1)
+
x63 (1− x)−

1
2

3β
(
64, 12

) (15)

f (x) =
0.5 exp

(
−
(x+4)2
32

)
√
32π

+

0.5 exp
(
−
(x−4)2
18

)
√
18π

(16)

f (x) =
0.4 exp

(
−
(x+1)2
0.32

)
+ 0.6 exp

(
−
(x−1)2
0.32

)
√
0.32π

(17)

f (x) =
0.4 exp

(
−
x2
2

)
+ 0.6 exp

(
−
(x−3)2

2

)
√
2π

(18)

f (x) =
0.4 exp

(
−
x2
2

)
+ 0.6 exp

(
−
(x−25)2

2

)
√
2π

(19)

f (x) =
(x + 1)23 (1− x)11 + (x + 1)11 (1− x)23

236β
(
64, 12

) (20)
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