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ABSTRACT A low autocorrelation binary sequence (LABS) problem is a hard combinatorial problem and
its solutions are important in many practical applications. Till now, the largest best-known skew-symmetric
sequence with merit factor greater than 9 had a length of 189. In this paper, a new heuristic algorithm is
presented for the LABS problem. The proposed algorithm stores promising solutions and this mechanism
enables the algorithm to perform local searches on these solutions in a systematic way. Our algorithm
was tested on skew-symmetric sequences and the obtained results are compared with results of the
state-of-the-art algorithms. The proposed algorithm was able to find some new best-known skew-symmetric
solutions with merit factor greater than 9 in sequence lengths over 200. The obtained results improve the
suggestion from 1985 (Beenker et al.) and 1987 (Bernasconi) greatly, where the merit factor is approximately
equal to 6 for long skew-symmetric sequences with length up to 199. Now, the largest best-known
skew-symmetric sequence with merit factor greater than 9 has the length 225. Additionally, now all merit
factors are greater than 8.5 on the interval from 159 up to 225 for odd lengths.

INDEX TERMS Algorithm design and analysis, combinatorial optimization, heuristic algorithms, aperiodic
autocorrelation, merit factor, skew-symmetric sequences.

I. INTRODUCTION
The problem of determining the maximal merit factor for
binary sequences is an old and apparently very difficult prob-
lem in combinatorial optimization [1], [2]. Binary sequences
with low autocorrelations are important in communication
engineering [3], [4] and in statistical mechanics, such as
groundstates of the Bernasconi model [5]–[7]. In mathemat-
ics, this problem has attracted sustained interest (see Little-
wood polynomial) [8]–[10]. A recently published survey [11]
reviews the state of knowledge of sequences with small
correlation. Long binary sequences are essential for various
applications of the coded exposure process [12], [13].

Consider a binary sequence of length L, S = s1 s2 . . . sL
where each si ∈ {+1,−1}. The off-peak autocorrelations of
S are defined

Ck (S) =
L−k∑
i=1

sisi+k , for k = 1, . . . ,L − 1, (1)

and the energy of S is

E(S) =
L−1∑
k=1

C2
k (S). (2)

The Low Autocorrelation Binary Sequence (LABS) problem
involves assigning values to the si that minimize E(S) or max-
imize the merit factor F(S) [14], which is defined as

F(S) =
L2

2E(S)
. (3)

The merit factor is a measure of the quality of the sequence
in terms of engineering applications [15].

The autocorrelation function is considered to be one of the
most common methods for extracting various characteristics
from signals, e.g., speech signals [16], where the autocorrela-
tion function is applied one frame at a time in order to extract
the peak and its corresponding lag.

Owing to the practical importance and widespread appli-
cations of sequences with good autocorrelation properties,
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in particular with low PSL values (see (5)) or large merit fac-
tor values, a lot of effort has been devoted to identifying these
sequences via either analytical construction methods or com-
putational approaches in the literature [4], [17].

The search space of the LABS problem is of size 2L .
To locate good (optimal) solutions, there exist two
approaches: Complete and Incomplete search. The com-
plete, or exact search, is able to find the optimal sequence,
but it is unlikely to scale up to large sequences. The incom-
plete, or stochastic search, is able to solve larger instances,
and the obtained result may be optimal or close to optimal,
i.e., it does not guarantee optimality.

The skew-symmetric sequences have odd length with
L = 2k − 1 for some k , and satisfy

sk+i = (−1)isk−i, i = 1, 2, . . . , k − 1. (4)

The restriction of the problem to skew-symmetric sequences
reduces the effective length of the sequence from L to
approx. L/2, but the effective size of the problem from 2L

to approx. 2(L/2) [5], but the skew-symmetric solutions might
not be optimal for each problem instance.

One of the main challenges when solving the LABS
problem using the incomplete search is how to implement
a calculation of energy efficiently and researchers devel-
oped an efficient implementation of the energy calcula-
tion [18]–[20]. Note that similar efficient calculation can
be applied to finding a skew-symmetric solution of the odd
length problem instances.

In this paper, we proposed a new stochastic algorithm
(xLastovka) for solving skew-symmetric binary sequences.
The obtained skew-symmetric solutions might not be optimal
for each LABS problem instance. The proposed algorithm
was able to find some new best-known skew-symmetric solu-
tions with high merit factors. Based on our best knowledge,
it is the first time that a merit factor greater than 9 has been
found for L > 200.
The rest of our paper is organized as follows. Related work

is presented in Section II. Section III describes the xLastovka
algorithm in detail. Experiments are conducted in Section IV
to verify the advantages and disadvantages of xLastovka.
Finally, the paper ends with a Conclusion and future work
in Section V.

II. RELATED WORK
Roughly speaking, there are two versions of LABS searches
in the literature [21]: The one targets low Peak Sidelobe
Level (PSL) [22] and the other targets high merit factor (or
equivalently, low sidelobe energy). The PSL [23] of a binary
sequence of length L is defined as

PSL(S) =
L−1
max
k=1
|Ck (S)|. (5)

It is not possible to consider PSL and merit factor at the same
time, i.e., a sequence with the optimal PSL has a merit factor
which is much lower than the optimal merit factor. In this

paper, our key focus is to search for long sequences with high
merit factors.

Heuristic algorithms are proposed for solving real-
world problems. A heuristic algorithm can solve small
instances easily and performs reasonably when tackling
larger instances to find fast and close to optimal solutions.

To tackle the LABS problem researchers have applied
(1) Exact techniques, such as enumeration [24], branch
and bound [5], [25], (2) Stochastic techniques, such as
tabu search [19], memetic algorithm combined with tabu
search [18], evolutionary algorithm with a suitable mutation
operator [26], evolution strategy [24], genetic algorithm [27],
and directed stochastic algorithm [15]. Recently, a self-
avoiding walk technique has been applied in the lssOrel
algorithm [20]. Memetic agent-based paradigm [28],
which combines evolutionary computation and local search
techniques using parallel GPU implementation, is one
of the promising meta-heuristics for solving a LABS
problem.

Currently, the optimal solutions for even and odd sequence
lengths are known for L ≤ 66 [25] (interestingly, in 1996,
the optimal solutions were known for L ≤ 60 [5], and it
took 20 years to prove optimality for six sequences with
61 ≤ L ≤ 66). The skew-symmetric solutions are defined
only for odd lengths, and the optimal skew-symmetric solu-
tions are known for L ≤ 119 [25] (previously known results
were dated in 2013, L ≤ 89 [29]).

Theoretical considerations from Golay in 1982 [30] give
an upper bound on F(S) of approximately 12.3248 as
L → ∞. However, Golay does not prove that 12.3248 is an
upper bound on the asymptotic merit factor because it relies
on an unproven heuristic argument.

Following the theoretical minimum energy level analysis,
a new asymptotic merit factor value of 10.23 was estimated
by Ukil [31] based on sequences of length 4 to 60, found by
exhaustive search.

Heuristic searches among skew-symmetric sequences up
to L = 199 suggest F ≈ 6 for long skew-symmetric
sequences [32], a value consistent with the results from
simulated annealing [6]. Several sequences and merit factor
values were reported by Knauer [33], and these values are
greater than 6 and lower than 9 for L around 200. A memetic
algorithm combined with tabu search was proposed by
Gallardo et al. [18]. This stochastic algorithm has the efficient
implementation of the energy calculation. Borwein et al. [15]
introduced the directed stochastic algorithm, which was
able to find some sequences for length L within the range
149 and 189 with merit factors F > 9, and most of them are
skew-symmetric. Solver lssOrel [20] was able to find several
skew-symmetric sequences with merit factors F > 8 for L
up to 259.

In 2008, Borwein et al. [15] stated in conclusion ’’We have
found good evidence that the upper limit for maxLF > 8 and
even > 8.5. These maximal values may routinely exceed 9 in
lengths over 200, but it would be difficult to establish this
computationally.’’
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Jedwab et al. in [34] gave a personal selection of challenges
concerning the Merit Factor Problem, arranged in order of
increasing significance. The first challenge is as follows:
’’Find a binary sequence S of length L > 13 for which
F(S) ≥ 10.’’
On the other hand, [35] used themodified Jacobi sequences

together with the steep descent, and got an approximate
asymptotic merit factor of 6.4382. The gap toward Golay’s
upper bound, i.e., 12.3248, still remains huge.

We are aware that the study of the merit factor is funda-
mentally concerned with an asymptotic behavior, and not the
identification of a particular sequence with a large merit fac-
tor. We hope that this paper, which provides the several merit
factors F > 9 for L > 200 of skew-symmetric sequences,
steps forward in researches on the very challenging LABS
problem. A known sequence of high merit factor supplies
a good initial bound for branch-and-bound and other exact
search methods.

III. THE PROPOSED ALGORITHM
In this section, we will describe our stochastic algorithm for
a LABS problem. Let us first define a notation, which is
relying on our previous work [20], where the self-avoiding
walk was used in the lssOrel solver. For the sake of clarity,
a pseudocode of lssOrel is presented in Alg. 1.

Solution S can be represented as a coordinate-value pair:
si ∈ {+1,−1} is represented by 1 and 0, then the coordinate
is a binary string of length L, and the value is energy E(S),
calculated using (2).

The neighborhood of solution S with length L is obtained
by flipping exactly one symbol si in the sequence. A neigh-
borhood is required in order to perform a local search or self-
avoiding walk. For example, in each step, the gradient walk
(steepest descent) moves in a direction to the lowest energy
neighbor.

The proposed algorithm, called xLastovka, is presented in
Alg. 2. The algorithm starts with an initial solution that is
generated randomly. Our algorithm stores a huge number of
promising solutions, and performs local searches on these
promising solutions in a systematic way.

In Step 4 (Alg. 2), the energy calculation (2) is applied, and
stopping criterion (’if target value of energy is reached’) is
checked in Steps 5–7. Note that the stopping criteria can also
be runtime limit, a number of function evaluations cntProbe
(i.e., energy calculations), etc.

The main while loop is presented in Steps 9–26. The best
coordinate, say pivot, is obtained from the priority queue
PQ in Step 10. The pivot’s neighborhood is searched inside
the for loop, using efficient implementation of the energy
calculation [18], [20]. In Step 11, L+12 flips are required since
one skew-symmetric sequence is searched. The while loop
stops if the found energy value is better than or equal to the
target value, which is an algorithm’s parameter.

The xLastovka algorithm uses a priority queue, in which
neighbor coordinates are stored, along with their values of
energy. Since the coordinate with the best value is the most

Algorithm 1 The lssOrel Algorithm [20]
Require: L - instance size
Require: valueTarget – best upper bound
Ensure: coord,value – best coordinate and best value

1: closePivots← ∅ F storage of pivots – hash table
2: coord← RandomSolution(L) F initialize coordinate
3: value← Eval(coord) F evaluation
4: if value ≤ valueTarget then F stopping criteria
5: return (coord,value)
6: end if
7: while value > valueTarget do
8: for k ← 0; k < 8 · L+12 ; k++ do F self-avoiding

walk
9: iterVal←∞
10: for i← 1; i ≤ L+1

2 ; i++ do F search
neighborhood

11: S← coord
12: sFlipped← S.flip(i) F flip i-th bit
13: if closePivots.find(sFlipped) then
14: continue F skip if already pivot
15: else
16: value← Eval(sFlipped)
17: end if
18: if value ≤ valueTarget then F stopping

criteria
19: break
20: else if value ≤ iterVal then F random tie if

equals
21: (iterVal,iterCoord)← (value,sFlipped)
22: end if
23: end for
24: closePivots.push(coord)
25: coord← iterCoord F next pivot
26: end for
27: if value > valueTarget then
28: coord← RandomSolution(L) F reinitialize

coord.
29: value← Eval(coord) F evaluation
30: end if
31: end while
32: return (coord,value)

promising to become the next pivot, the priority queue needs
to be ordered. There arises a question about the size of a pri-
ority queue. Is it necessary to store all neighbors, or would
it be sufficient to store only some of the most promising
neighbors? In the latter case, a smaller amount of storage
would be required. Therefore, our priority queue stores a
predefined number of the best coordinate-value pairs.

Another challenge is regarding memory, and it arises when
a solver stores already probed coordinates. The number of
the probed coordinates increases very quickly, and it seems
impractical to store all visited coordinates. More practical
seems to be to store only pivots, but their number also

VOLUME 6, 2018 4129



J. Brest, B. Bošković: Heuristic Algorithm for a LABS Problem With Odd Length and High Merit Factor

Algorithm 2 The xLastovka Algorithm
Require: L - instance size
Require: valueTarget – best upper bound
Ensure: coord,value – best coordinate and best value

1: PQ← ∅ F priority queue of pairs (coord,value)
2: closePivots← ∅ F storage of pivots – hash table
3: coord← RandomSolution(L) F initialize coordinate
4: value← Eval(coord) F evaluation
5: if value ≤ valueTarget then F stopping criteria
6: return (coord,value)
7: end if
8: PQ.push(coord,value)
9: while value > valueTarget do
10: coord← PQ.pop()
11: for i← 1; i ≤ L+1

2 ; i++ do F search neighborhood
12: S← coord
13: sFlipped← S.flip(i) F flip i-th bit
14: if closePivots.find(sFlipped) then
15: continue F skip if already pivot
16: else
17: value← Eval(sFlipped)
18: end if
19: if value ≤ valueTarget then F stopping criteria
20: break
21: else
22: PQ.push(sFlipped,value)
23: end if
24: end for
25: closePivots.push(coord)
26: end while
27: return (coord,value)

increases very quickly. It is obvious that a solver needs to
store as many as possible coordinates in order to avoid mak-
ing a cycle, i.e., repeating pivots. The best scenario, when a
solver could store all coordinates, is limited by the amount of
a computer’s memory.

As a mechanism that tries to overcome the memory lim-
itation, we can use tabu search to store symbol si, which is
flipped, for some steps (iterations) in the optimization pro-
cess. Then this symbol remains fixed, and it could be flipped
again, if necessary, after some steps. This mechanism, which
is used in memetic algorithm [18], does not require a big
amount of memory. It uses less memory than the lssOrel and
xLastovka algorithms, which is a great advantage. However,
its disadvantage lies in an issue that it does not prevent strictly
a repetition of the pivot(s), which has a consequence in the
lower performance of the memetic algorithm combined with
tabu search in comparison with the other two algorithms.
A detailed analysis of the memetic algorithm combined with
tabu search and the lssOrel algorithm is presented in [20].
The memetic algorithm uses less memory than the lssOrel

TABLE 1. Best, worst, median, mean and standard deviation values for
cntProbe of the xLastovka solver to get the best known skew-symmetric
solution.

algorithm with the Self-Avoiding Walk (SAW) with the
length of 8 · L+1

2 . The lssOrel algorithm stores all pivots
of one contiguous SAW, whereas the proposed xLastovka
algorithm stores pivots and the predefined number of the best
coordinate-value pairs.

In this work, the xLastovka algorithm used the following
parameters. The size of priority queue PQ was 640 000 coor-
dinates, and the size of storage for pivots was 512 MB. The
parameters were set based on some additional experiments,
but we did not perform a fine tuning of the parameters.

IV. RESULTS
In this section, we present experimental results: (1) An analy-
sis of the proposed xLastovka algorithm on small and middle
size skew-symmetric sequences, and a comparison with state-
of-the-art algorithms, and (2) xLastovka, tested on larger
skew-symmetric sequences, where we tried to find new best-
known solutions.
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A. RESULTS ON SKEW-SYMMETRIC SEQUENCES
WHEN L ≤ 127
In this experiment, we ran the xLastovka algorithm 100 times
for skew-symmetric sequences that have 4 optima or one
canonic solution [20]. Each run was stopped when a target
value of energywas reached. The target value was equal to the
currently best known (optimal for L ≤ 119) energy value of
skew-symmetric sequences. The obtained results are shown
in Table 1, where the best, worst, mean, median and standard
deviation values of cntProbe are presented.

FIGURE 1. The asymptotic performance comparison of xLastovka on
lengths from Table 1 for L = 51 up to L = 105.

FIGURE 2. The asymptotic performance comparison of xLastovka on
lengths from Table 1 for L = 71 up to L = 127.

Asymptotic performance for L between 51 and 105 is pre-
sented in Fig. 1, and for L between 71 and 127 in Fig. 2. For
each L, the cntProbe does not follow a normal distribution,
but it follows an exponential distribution. Therefore, it can

be noticed that asymptotic performance may deviate slightly
for different sequence length ranges. Note that cntProbe is
plotted on a logarithmic scale in Figs. 1 and 2. In our previous
paper [20], we showed that the time is highly correlated with
a number of function evaluations, cntProbe. Based on results
for L between 71 and 127 (Fig. 2), the estimated complexity
of our algorithm is O(1.2L).
Let us make a comparison of xLastovka with lssOrel [20]

regarding speed. The speed is defined as the number of probes
per second. The lssOrel solver can reach a higher speed.
For example, lssOrel can perform approx. 9.2e+6 probes
per second for L = 127, while xLastovka reaches approx.
2.9e+6 probes per second. However, xLastovka was able to
find some LABS solutions with higher merit factors on larger
sequences, as we can see in the next subsection.

B. RESULTS ON LARGE SKEW-SYMMETRIC SEQUENCES
In this section, experiments were conducted on sequences
with long length, for L = 149 up to L = 225. In order
to make a comparison with other results from the literature,
we divided this interval into two parts: 149 ≤ L ≤ 189 and
191 ≤ L ≤ 225. The experiments were performed using the
SLING grid computing environment [36].

The directed stochastic algorithm [15] was able to find ten
solutions with F > 9 for L = 149 up to L = 189, while
xLastovka was able to find solutions with the same merit
factors, too. Note that the directed stochastic algorithm did
not find sequences with merit factor F > 9 for L in the
range 191–200.

The xLastovka algorithm has found better or equal solu-
tions for L in the range 149–225 than those reported in [33] in
all cases except for 159, 167, 187. These exceptions indicate
that a particular stochastic algorithm may not perform as the
winner in all cases.

The most interesting part of the obtained results (191 ≤
L ≤ 225) is presented in Fig. 3 and Table 2. Figure 3
shows merit factors obtained by the xLastovka algorithm and
compared with the results obtained by the solver lssOrel [20]
andmemetic algorithm [18], and also with the values reported
by Knauer [33]. The lssOrel algorithm reported two solutions
in the range 191–225, and both skew-symmetric solutions
have better merit factors than those reported in [33], while
xLastovka improved both of them further.

Best-known solutions obtained by xLastovka for L = 191
up to L = 225 are summarized in Table 2, where energy,
merit factor, and best coordinate are reported. The proposed
xLastovka algorithm has found 18 new best-known solutions.
Among these solutions, there are three new best-known skew-
symmetric solutions for 191 ≤ L ≤ 199 with merit factor
F > 9 (L =191, 193, 199), and 6 new best-known skew-
symmetric sequences with merit factor greater than 9 in
lengths over 200. These sequences are 201, 207, 211, 213,
223, and 225.

Till now, only two merit factors greater than 9.5 were
known, i.e., for lengths 103 and 177. In this work, our algo-
rithm adds two new, F = 9.5851 and F = 9.5393 for
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FIGURE 3. Merit factors of binary sequences obtained by the solver xLastovka, memetic algorithm [18], the solver lssOrel [20], and also with
the values reported by Knauer [33].

lengths 191 and 213, respectively, and both of them are skew-
symmetric.

The obtained results improve the suggestion
from [6] and [32] greatly, where F ≈ 6 for long skew-
symmetric sequences up to L = 199.
Figure 4 shows best-knownmerit factors up to L = 401 for

sequences of odd length. In this Figure, we can see clearly that
merit factors drop for a length greater than 225. We believe
that our and also other state-of-the-art stochastic algorithms
were not able to find sequences with merit factors greater
than 9 when L > 225. We also believe that such sequences
exist for L, which is slightly greater than 225 – for even much
larger sequences it is hard to judge.

We make an estimation of merit factors from the range
51 ≤ L ≤ 225 of odd length by a linear model

8.6770+ 0.0015× L (6)

that is also shown in Fig. 4. The red line in Fig. 4 will reach
the value F = 10 at L = 883, which is a big gap, since
our model uses values up to 225, and, therefore, it is hard to
make an accurate prediction for larger L. This model is very
consistent with the model of the lssOrel [20]

8.6325+ 0.0007581× L, (7)

where the estimation is performed on the range
51 ≤ L ≤ 183. The model (6) is calculated using 21 more

FIGURE 4. Merit factors of binary sequences with odd lengths (optimal
for L ≤ 119, best-known otherwise). The merit factors drop when L > 225.
A linear model is calculated on the range 51 ≤ L ≤ 225.

points with larger lengths (183 < L ≤ 225) on sequences that
are skew-symmetric. Note again, that the skew-symmetric
solutions might not be optimal for each problem instance.

The greatest merit factorF = 14.08 is known for length 13.
For smaller lengths, the merit factor values are quite dis-
persed. It is interesting to look at values of merit factors for
lengths between 100 and 225 in Fig. 4. These values are
arranged pretty well around 9. Note that

F > 8.5, for 157 < L ≤ 225 and L is odd (8)
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TABLE 2. Best-known merit factors and solutions obtained with the xLastovka solver. The coordinate is presented in the run-length encoding notation.

is obtained with xLastovka, and also with other state-of-the-
art heuristic algorithms. We are aware that the study of the
merit factor is fundamentally concerned with an asymptotic
behavior, and not the identification of a particular sequence
with a large merit factor. However, (8) holds for the contigu-
ous range.

V. CONCLUSION
The main contributions of this papers are: (1) On the interval
from 159 up to 225 for odd lengths, all the best-known merit
factors are greater than 8.5. (2) Now, the largest best-known
skew-symmetric sequence withmerit factor greater than 9 has
the length 225. (3) A new stochastic algorithm is proposed
for solving a Low-Autocorrelation Binary Sequence (LABS)
problem.

The proposed xLastovka algorithm was very efficient for
large instance sizes. It was able to find 6 new best solutions

and their merit factors F > 9 for L = 201 up to L = 225.
Two large merit factors F = 9.5851 and F = 9.5393 were
obtained for lengths 191 and 213, respectively, and both of
them belong to skew-symmetric sequences. Now, it holds that
F > 8.5 on the interval of odd lengths 157 < L ≤ 225.
The advantage of the proposed algorithm seems to lie in

its usage of a priority queue that stores promising solutions
(pivots). The queue enables the algorithm to perform local
searches on these solutions systematically.

There might be further possible improvements to the
xLastovka algorithm. We can include contiguous self-
avoiding walks of some length in the algorithm alongside
using a priority queue for storing the promising neighbors.
Skew-symmetric sequences have odd length, and they could
be used as good initial points for an algorithmwhen searching
for sequences without skew-symmetric restriction or nearest
odd length sequences.
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