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ABSTRACT Identification of different risk factors and early prediction of mortality for patients with
heart failure are crucial for guiding clinical decision-making in Intensive care unit cohorts. In this paper,
we developed a comprehensive risk model for predicting heart failure mortality with a high level of accuracy
using an improved random survival forest (iRSF). Utilizing a novel split rule and stopping criterion,
the proposed iRSF was able to identify more accurate predictors to separate survivors and nonsurvivors
and thus improve discrimination ability. Based on the public MIMIC II clinical database with 8 059 patients,
32 risk factors, including demographics, clinical, laboratory information, and medications, were analyzed
and used to develop the risk model for patients with heart failure. Compared with previous studies, more
critical laboratory predictors were identified that could reveal difficult-to-manage comorbidities, including
aspartate aminotransferase, alanine aminotransferase, total bilirubin, serum creatine, blood urea nitrogen,
and their inherent effects on events; these were determined to be critical indicators for predicting heart
failure mortality with the proposed iRSF. The experimental results showed that the developed risk model
was superior to those used in previous studies and the conventional random survival forest-based model
with an out-of-bag C-statistic value of 0.821. Therefore, the developed iRSF-based risk model could serve
as a valuable tool for clinicians in heart failure mortality prediction.

INDEX TERMS Heart failure, survival analysis, risk prediction, random survival forest, predictor.

LIST OF ABBREVIATIONS
ACE-I Angiotensin-converting enzyme inhibitor.
ARB Angiotensin-receptor blockers.
CCA Calcium channel antagonists.
K Potassium [mEq/L] in Blood.
NA Sodium [mEq/L] in Blood.
WBC Leukocytes [K/uL] in Blood.
RBC Erythrocytes [m/uL] in Blood.
SCR Creatinine [mg/dL] in Serum.
BUN Urea nitrogen [mg/dL] in Serum.
CKPK Creatine kinase.total [IU/L] in Serum.
CKMB Creatine kinase.MB in Serum.
AST Aspartate aminotransferase [IU/L] in Serum.

ALT Alanine aminotransferase [IU/L] in Serum.
BR Total bilirubin [mg/dL] in Serum.
PT Prothrombin time (seconds) in Blood by

Coagulation assay.
APTT Activated partial thromboplastin time

(seconds) in Blood by Coagulation assay.
INR International normalized ratio in Blood by

Coagulation assay.
Glucose Glucose [mg/dL] in Blood.
TRIG Triglyceride [mg/dL] in Blood.
HGB Hemoglobin (%) in Blood.
BMI Body mass index (kg/m2).
RSF Random survival forest.
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I. INTRODUCTION
Heart failure, a major cause of death, occurs when the heart is
unable to provide sufficient pumping action tomaintain blood
flow to meet the body’s requirements [1]. In developed coun-
tries, approximately 2% of adults suffer from heart fail-
ure, increasing to 6%–10% for elderly people aged over
65 years [2]. Evaluating a patient’s mortality based on a
reliable predictive model is an effective method of identifying
critical factors related to poor outcomes, and can thus assist
clinicians in identifying those in need of intensivemonitoring,
therapy, or hospice care in ICU cohorts.

Several risk models exist for predicting heart failure
mortality [3]–[9]. Most are based on traditional clinical risk
factors, such as hypertension, diabetes, and prior cardiovascu-
lar diseases. An ecological study was also conducted [10] to
identify areas of Brazil where residents were at risk of mortal-
ity related to cardiovascular disease. Laboratory information
such as blood urea nitrogen (BUN), serum creatine (SCR),
leukocytes (WBC), aspartate aminotransferase (AST), ala-
nine aminotransferase (ALT), and total bilirubin indicates
comorbid conditions that are difficult for clinicians tomanage
and thus lead to high mortality rates. These conditions have
not been studied comprehensively. Moreover, because most
laboratory results are real-valued, their normal ranges are
difficult to define to a certain degree. An effective survival
model to handle real variables is essential for accurate risk
analysis that can identify critical real variables. Traditional
proportional hazards used in existing risk models (i.e., the
Cox proportional hazard model) are weak at identifying this
type of predictors through manual transformation [11].

Machine learning algorithms can automatically recon-
struct relationships between variables and response values
from big data and thus provide an efficient method of
improving the performance of traditional proportional haz-
ard models in identifying critical predictors [12]. Machine
learning approaches such as a least squares support vector
machine, decision tree, Bayesian network, and association
rule have medical applications (e.g., in cardiovascular disease
prediction and coronary heart disease detection) [13]–[17].
Survival trees are flexible nonparametric alternatives to
parametric or semiparametric models because they can auto-
matically identify certain types of interactions rather than
specify them beforehand for time-to-event data. Survival
forests combine survival trees and the ensemble method to
form a powerful predictive tool. Therefore, a random sur-
vival forest (RSF) was proposed as an extension of a ran-
dom forest [18] for nonparametric survival analysis through
the automatic assessment of nonlinear effects and complex
interactions among multiple variables [19]. RSF has been
used in risk models for various types of diseases, such as
heart failure [7] and breast cancer [20]; however, improve-
ments have been limited, as demonstrated in the experi-
mental results. Furthermore, our previous study found that
RSF was weak at identifying predictors in relatively small
populations [21], [22]. For example, RSF has a limited abil-
ity to identify the newer class III of antiarrhythmic agents

(which has not been widely used in large-scale popula-
tion) [21], as its stopping criterion is based on minimum
unique deaths. However, we cannot conclude that it is not
predictive, because it was demonstrated to be an ideal agent
for reducing mortality in patients with heart disease [23].

Therefore, in this paper, we present an improved RSF
with a novel split rule and stopping criterion that can iden-
tify the discriminative variables separating survivors from
non-survivors in a small population. We used the proposed
improved RSF to develop a high-accuracy risk model fitted
with more laboratory data for predicting hospital mortality
and identifying critical risk factors among ICU patients with
heart failure.

This paper is organized as follows: Section II describes
the proposed iRSF and statistical analysis procedure;
Section III presents the experimental results of the proposed
approach; Section IV presents a discussion of the results; and
Section V presents the conclusions.

II. METHODOLOGY
A. PROPOSED IMPROVED RANDOM SURVIVAL FOREST
RSF was proposed in 2008 for survival data analysis based
on random forest. A split rule, such as the log-rank test,
which maximizes the survival difference between daughter
nodes, was used for each survival tree in the forest [19].
In traditional RSF, each survival tree is grown to full size
under the constraint that a terminal node should have no
fewer than d0 > 0 unique deaths. However, the log-rank
test was shown to be asymptotically optimal under the pro-
portional hazards alternative because of an equal censoring
pattern hypothesis in the two groups. In addition, the stopping
criterion is arbitrary and demonstrates bias toward predictors
with a larger population. This is because it is difficult for
predictors with a smaller population to satisfy the criterion,
especially when d0 is large.
Therefore, we proposed an improved RSF (iRSF) with

a novel split rule and stopping criterion for identifying
more accurate predictors that can separate survivors and
non-survivors and thus improve discrimination ability. First,
a weighted log-rank test was used to split the node, which
was proposed by Yang and Prentice [24] and can be applied
to non-proportional hazard situations to improve the test for
a range of alternative hypotheses.

We let d(t) be the number of deaths, Y (t) be the individuals
at risk, and t be time. The hazard function estimate H (t) at a
time t with the Nelson–Aalen estimator can be expressed as:

H (t) =
d(t)
Y (t)

, t <= τ0 (1)

where τ0 = 365 in our study. The model proposed in [25] can
be used in our study and expressed as:

HR(t) =
θ1θ2

θ1 + (θ2 − θ1YL(t))
HL(t) (2)

where HR(t) and HL(t) are the respective hazard func-
tions of the right branch and left branch of a grown tree,
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YR(t) and YL(t) are the respective survival functions of the
right branch and left branch, θ1 = limt↓0 HR(t)/HL(t), and
θ2 = limt↑τ0 HR(t)/HL(t). A χ

2 test using the two estimating
functions of the right and left branches was used by Yang and
Prentice to test the hypothesis of significant difference [25].

We let t1,h < t2,h < . . . < tN(h),h be the N(h) distinct
event times in a node of the grown tree. The cumulative
hazard function can be expressed as CH (t) =

∑
tl,h<=t

H (t).

CHR(t) and CHL(t) are cumulative hazard functions of the
right branch and left branch. The relative cumulative hazard
function at each distinct event time can be computed using:

rH (t) = abs(log
CHR(t)
CHL(t)

), t1,h <= t <= tN (h) (3)

To identify the predictors that can discriminate low risk
(with a small cumulative hazard function) and high risk (with
a large cumulative hazard function), combined with the fact
that high-risk populations have high mortality rates in the
short term, the split function was defined as follows:

Splitfun =
∑

t1,h≤t≤tN ,h

rH (t)
t

tN ,h (4)

The stopping criterion is defined as the split function
decreasing.

FIGURE 1. Block diagram for developing a risk model based on the
proposed iRSF. CHF: cumulative hazard function.

B. STATISTICAL ANALYSIS
As presented in Fig. 1, we developed the risk prediction
model based on the proposed iRSF through the following
methods:

1. One thousand bootstrap samples were randomly
selected from the entire database (N samples, M fea-
tures). For each bootstrap sample, 37% of the data were
excluded for verification (i.e., the out-of-bag (OOB)
data).

2. Using each bootstrap sample, a survival tree was grown
based on all variables. Then all survival trees were
ensembled to develop the risk model. The aforemen-
tioned split rule was used to split each node in the tree.

3. Each survival tree was grown to full size under the con-
straint that the split function presented in formula (4)
decreased. The cumulative hazard function was then

FIGURE 2. Illustration of minimal depth. Blue and yellow points are
maximal subtrees for age and AST, respectively. The minimal depth for
age is 1 and AST is 2.

calculated for each terminal node of the grown tree
using Nelson–Aalen estimator.

4. All of the cumulative hazard functions from each tree
in the forest were averaged to acquire the ensem-
ble cumulative hazard function. Subsequently, Harrell
C-statistics presented in [26] was used to compute
the prediction error, whereas the bth value represented
the error rate evaluated using the first b trees in the
forest. Generally, variables that split branches closed
to the tree trunks most frequently were identified as
the most crucial variables. Therefore, predictive vari-
ables were selected based on the minimal depth of a
maximum subtree; specifically, the shortest distance
from the tree trunk to the branch level of the maximal
tree. Smaller minimal depth meant greater predictive
power. Fig. 2 presents an illustration of minimal depth
with a single tree grown from the experimental dataset
(described in detail in section IIC) as an example.
In Fig. 2, due to splitting the tree trunk, BUN has a
minimal depth of 0, whereas age has a minimal depth
of 1 and AST has a minimal depth of 2. By averaging
over the forest, variables that with a minimum depth
smaller than mean minimum depth were identified as
predictive variables.

To validate the performance of the proposed iRSF-based
model, a traditional 1000-tree based RSF with a stopping
criterion that unique deaths at the terminal node should be no
less than 3 was used for comparison [19]. The discrimination
performance of the iRSF-based model was compared with
RSF in terms of OOB C-statistics [27].

We conducted our analyses based on R version 3.4.1
(www.R-project.org).

C. EXPERIMENTAL DATA
We used the public MIMIC II database [28], [29] in our
study. Beginning in 2001 and lasting over a 7-year period, the
data were collected from a variety of ICUs in Boston’s Beth
Israel Deaconess Medical Center. Clinical records including
laboratory results, medications, and the Ninth Revision of the
International Classification of Diseases (ICD-9) diagnoses
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for 32,536 patients were provided in the database. Patients
with heart failure were defined as those with ICD-9 code
428, ∗∗which encompassed conditions from acute to chronic
heart failure. The start point of each patient was defined as the
time of ICU admission, whereas the end point was defined as
the time of death in hospital or 365-day after the start point.
Through these means, 8,059 patients with heart failure were
extracted in our study to develop the risk model, including
1,346 patients who died in hospital over a 1-year follow-up
period.

Thirty-two variables were assessed for prognostic value:
demographics such as age, sex, and body mass index
(BMI); clinical variables such as cardiac arrest, hypertension,
diabetes, myocardial infarction, cardiac murmur, and atrial
fibrillation; laboratory variables such as glucose, blood
sodium, blood potassium, SCR, BUN, erythrocytes (RBC),
WBC, prothrombin time (PT), activated partial throm-
boplastin time (APTT), international normalized ratio in
blood by coagulation assay (INR), total bilirubin, AST,
ALT, hemoglobin, creatine kinase.MB (CKMB), creatine
kinase.total (CKPK) and triglyceride; and medications such
as beta-blockers, ACE-I, ARB, diuretics, calcium channel
antagonists (CCA), and digoxin. The laboratory results were
defined as the continuous values measured at the time of ICU
admission. If a patient was prescribed and took a type of
medication during the ICU stay, the medication was defined
as 1, otherwise as 0. Dummy variables were used for categor-
ical variables and log-transformed variables for continuous
measurements.

III. EXPERIMENTAL RESULTS
A. BASELINE CHARACTERISTICS OF THE STUDY COHORT
Baseline characteristics during 1-year follow-up of non-
survivors and survivors who presented with heart failure are
shown in Table 1. During a median follow-up of 1 year, 1,346
individuals died in hospital and 6,713were censored.We used
a two-sample t-test to verify whether the variables differed in
non-survivors and survivors, with p < 0.05 indicating sta-
tistical significance. Table 1 demonstrates that demographics
and clinical risk factors such as age, BMI, cardiac arrest, and
cardiac murmur were significantly different between live and
dead patients, as most of the laboratory results and all of the
medications.

B. PREDICTOR COMPARISON BETWEEN THE
PROPOSED IRSF AND TRADITIONAL RSF
Six randomly selected trees from the 1000-tree forest were
presented in Fig. 3. We computed the minimal depth for each
variable in each tree and then averaged across the forest to
obtain themost predictive variables; specifically, those whose
minimal depths were smaller than the mean minimal depth.

The identified predictors based on iRSF and RSF are
presented in Fig. 4(a) and 4(b), respectively. Eleven vari-
ables were selected as predictive for heart failure mortality
with iRSF, including age, AST, ARB, ACE-I, SCR, BUN,
ALT, cardiac arrest, WBC, total bilirubin, and triglyceride

TABLE 1. Baseline Characteristics of patients who died in hospital and
those who survived during 1-year follow-up. Mean ± SD or counts (%)
for real-valued and categorical variables, respectively.

(the detailed minimal depths of all variables are presented
in Fig. 4(a), in which the 11 predictive variables are identified
as those below the horizontal line). Another 11 variables were
selected as predictive for heart failure mortality with RSF,
including cardiac arrest, ACE-I, BUN, total bilirubin, WBC,
AST, triglyceride, ALT, age, INR, and SCR (the detailed
minimal depths of all variables can be seen in Fig. 4(b)). The
selected predictors and their relative predictive powers are
slightly different in the twomodels. ARB, amedicationwith a
high predictive power but fewer individuals from the baseline
characteristics description, was not identified as an indepen-
dent predictor with RSF, as detailed in the Discussion section
of this paper. Moreover, compared with previous risk models
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FIGURE 3. Six random trees selected from 1000-tree forest. log∗ indicates log of index.
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for heart failure mortality, more real-valued laboratory vari-
ables (including liver indicators that involved AST, ALT, and
total bilirubin; renal indicators that involved SCR and BUN;
and the inflammation indicator WBC) were demonstrated to
have high predictive power for heart failure mortality.

TABLE 2. OOB C-statistics comparison for the proposed iRSF- and
RSF-based models.

C. DISCRIMINATION PERFORMANCE COMPARISON
BETWEEN IRSF- AND RSF-BASED MODELS
The discrimination performance comparison for the two
models in our study (iRSF- vs RSF-based) is presented
in Table 2. The table reveals that the iRSF-based model
improved the discrimination ability to a certain degree with
a favorable OOB C-statistics value of 0.821, compared with
0.804 for RSF. Fig. 5 provides the estimated error rates of the
iRSF- and RSF-based risk models, using 32 variables for
differently grown trees. As shown in Fig. 5, the iRSF-based
model has a minimum error rate of 0.179. The error rate
decreased as the number of trees increased and became
stable when the number of trees exceeded 900. The RSF-
based model had a minimum error rate of 0.196. Despite the
iRSF-based model exhibiting relatively larger error rates than
the RSF-based model when the grown trees were fewer
than 50, it decreased sharply as the number of grown trees
increased. The one-sided t-test revealed that the iRSF-based
error rate was significantly smaller than the RSF-based error
rate, with a p value of less than 0.01.

Fig. 6 provides the correlations among the ensem-
ble survival function estimated using iRSF, RSF, and the
Kaplan–Meier estimator. Compared with RSF, the estimated
survival function using iRSF is closer to the curve of the
Kaplan–Meier estimator. We evaluated their proximity in
terms of the Euclidean distance between the two curves.
The Euclidean distance between the iRSF-estimated survival
function and the Kaplan–Meier estimator is 0.00789, com-
pared with 0.0687 for RSF, which demonstrates a superior
estimation of survival function.

D. DISCRIMINATION PERFORMANCE COMPARISON
BETWEEN THE PROPOSED MODEL AND
PREVIOUS MODELS
In our study, a comprehensive risk model for predicting
hospital mortality was developed using a 1000-tree iRSF.
To demonstrate the effectiveness of the proposed risk model,
we compared its performance with previous models based on
survival analysis [3]–[7], as presented in Table 3. From the
table, we can observe that the proposed risk model is superior
to the previous models presented in [3]–[7] in terms of dis-
crimination performance. Althoughmore variables, including
echocardiographic and radiographic variables, are used in the

FIGURE 4. Predictors identified from iRSF and RSF-based models. Y-axis
presents the minimal depth of the maximum subtree for specific
variables. The horizontal line is the threshold separating predictive
variables (below the line) from non-predictive ones. The diameter of each
circle in the plot is proportional to the average number of maximal
subtrees in the forest for that variable. (a) iRSF-based model. 1. Log of
age; 2. Log of AST; 3. ARB; 4.ACE-I; 5. Log of SCR; 6. Log of BUN; 7. Log of
ALT; 8. Cardiac arrest; 9. Log of WBC; 10. Log of total bilirubin; 11. Log of
triglyceride; 12. Log of PT; 13. Log of BMI; 14. Log of hemoglobin; 15. Log
of CKMB; 16. Log of INR; 17. Log of RBC; 18. Log of glucose; 19. Log of
CKPK; 20. Log of potassium; 21. Log of sodium; 22. CCA; 23. Log of
PTT; 24. Beta-blocker; 25. Diuretic; 26. Cardiac murmur; 27. Diabetes;
28. Digoxin; 29. Myocardial infarction; 30. Hypertension; 31. Atrial
fibrillation; 32. Sex. (b) RSF analysis based model. 1. Cardiac arrest;
2. ACE-I; 3. Log of BUN; 4. Log of total bilirubin; 5. Log of WBC; 6. Log of
AST; 7. Log of triglyceride; 8. Log of ALT; 9. Log of Age; 10. Log of INR;
11. Log of SCR; 12. Beta-blocker; 13. Log of PT; 14. Log of BMI; 15.
Diuretic; 16. Log of sodium; 17. Log of PTT; 18. Log of potassium; 19. Log
of CKMB; 20. Log of Glucose; 21. Log of RBC; 22. Log of hemoglobin;
23. Log of CKPK; 24. Atrial fibrillation; 25. Sex; 26. Cardiac murmur;
27. Myocardial infarction; 28. Diabetes; 29. Hypertension; 30. Digoxin;
31. CCA; 32. ARB.
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TABLE 3. Performance comparison between the proposed model and previous models.

FIGURE 5. Estimated error rate comparison for iRSF- and RSF-based
models with differently grown trees.

FIGURE 6. Ensemble survival function comparison of iRSF, RSF, and
Kaplan–Meier estimator.

MUSIC risk score, the performance is as limited as the Cox
hazard model and a small amount of laboratory variables are
used. Similar to the Meta-Analysis Global Group in Chronic

Heart Failure (MAGGIC) study, in which many laboratory
variables such as AST, ALT, and BUN were not merged.
Overall, our proposed model exhibited superior performance
compared with previous risk models because of its inclusion
of a greater number of laboratory variables to reflect comor-
bidities and its use of the new iRSF-based survival model.

IV. DISCUSSION
A. REAL-VALUED PREDICTORS IDENTIFIED FOR
HEART FAILURE MORTALITY
In our study, 17 laboratory risk factors, including BUN, SCR,
AST, ALT, and WBC, were studied to predict heart failure
mortality. An iRSF-based survival model was proposed to
objectively identify the critical real-valued predictors and
their nonlinear effects on mortality. Age, AST, SCR, BUN,
ALT,WBC, total bilirubin, and triglyceride were identified as
the eight crucial real-valued predictors with iRSF. Compared
with previous studies, liver indicators including AST, ALT,
and total bilirubin, renal indicators including SCR and BUN,
and the inflammation indicator WBC were demonstrated
to have high predictive power for heart failure mortality.
Their estimated effects on the ensemble survival function
are presented in Fig. 7 with red lines. Their Kaplan–Meier
estimated survival functions are also provided in Fig. 7 with
yellow lines for comparison; the estimated survival functions
closely conform to the Kaplan–Meier curves. In other words,
the proposed iRSF is an effective method to reproduce the
inherent relationship between the predictors and the events.

Fig. 7 suggests that different predictors exert different
effects on survival rate. For example, BUN, an indicator for
renal diseases, which was demonstrated to be predictive for
heart failure mortality [30], was found to decrease survival
sharply with its elevation, independent of the normal range.
However, for SCR, another renal function indicator, survival
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FIGURE 7. Ensemble survivals and Kaplan–Meier estimates plotted
against the six newly identified critical continuous predictors: WBC, AST,
BUN, SCR, ALT, and total bilirubin. Red line represents predicted survival
based on the proposed iRSF, while yellow line represents Kaplan–Meier
estimated survival. Each blue point corresponds to each event and black
point corresponds to censored observation. log∗ = log of index. BR =
total bilirubin. The Y-axis presents the predicted survival function based
on the proposed iRSF. Log∗: log of ∗.

was stable in the normal range and then began to decrease
beyond it. WBC, a direct indicator of inflammation, was
demonstrated to be an independent predictor of heart failure
mortality in the Seattle heart failure model [6]. In our study
results, WBC demonstrated its nonlinear effect on predicting
heart failure mortality; specifically, values that were too far
outside the normal range led to low survival rates. In addi-
tion, AST and ALT, which are commonly used as indicators
of liver disease, were identified as valuable predictors for
heart failure mortality in our study. Fig. 7 suggests that the
survival rate decreases sharply when AST and ALT exceed
40 IU/L. Several mechanisms may exist through which AST
and ALT are associated with an increased risk of death. First,
serum levels of AST and ALT have been demonstrated to be

FIGURE 8. Cumulative hazard function computed from the Nelson–Aalen
estimator for four typical categorical variables: ACE-I, ARB, cardiac arrest,
and diuretics. The Y-axis presents the cumulative hazard function (CHF).
Blue line represents the CHF for the subjects without the corresponding
variable, while green line presents CHF for the subjects with the
corresponding variable. CA = cardiac arrest.

associated with future mortality in community residents [31].
Second, AST and ALT might also be markers of cardiovas-
cular diseases and stroke [32], potentially aggravating the
risk of death. Third, AST and ALT elevations may reflect
another serious comorbid condition that increases the risk of
death for patients with heart failure. Bilirubin is a metabolic
byproduct of the breakdown of hemoglobin degradation,
which itself must be metabolized for appropriate excretion.
Although in previous studies total bilirubin has been shown
to correlate inversely with cardiovascular disease in high-risk
patients [33], [34], serum bilirubin appears to be a sensitive
indicator of liver function and thus has been verified to rep-
resent a significant risk of death or renal failure in patients
with spontaneous bacterial peritonitis [35], which was signif-
icantly greater in patients who died owing to postoperative
complications than in the patients who survived [36]. As for
patients with heart failure, a high level of bilirubin implied
the comorbidities of heart failure and renal failure and thus
was a valuable predictor of short-term mortality.

This analysis indicates that the proposed iRSF-based
model can automatically identify the most crucial continu-
ous predictors and their inherent effects on events. We rec-
ommend monitoring the following laboratory indicators to
accurately predict which patients are at high risk: AST, BUN,
SCR, WBC, ALT, total bilirubin, and triglyceride.

B. CATEGORICAL PREDICTORS IDENTIFIED
FOR HEART FAILURE MORTALITY
The comprehensive model with iRSF identified ARB,
ACE-I, and cardiac arrest as three predictive categorical fac-
tors of survival in the cohort of 8,059 ICU patients with
heart failure, whereas ARB was not identified using the

VOLUME 6, 2018 7251



F. Miao et al.: Predictive Modeling of Hospital Mortality for Patients With Heart Failure by Using an iRSF

RSF-based model. Fig. 8 provides the cumulative hazard
function for the three variables and one nonpredictive variable
(diuretics) for comparison.We can observe that ACE-I, ARB,
and cardiac arrest can separate the survival functions for sub-
jects with and without corresponding variables (blue line and
green line in Fig. 8) to a greater extent, whereas the predictive
ability of diuretics is limited, especially in the short term. The
results verified the findings of the iRSF-based model.

ACE-Is are the first line of therapy for patients with heart
failure, improving survival rates and quality of life. They
have been shown to reduce mortality in patients with left
ventricular dysfunction in numerous randomized trials [37].
ARBs, which are often used when patients are intolerant
of the adverse effects produced by ACE-Is, may be useful
because they act to prevent the action of angiotensin II at the
AT1 receptor, leaving the AT2 receptor unblocked. Therefore,
they were found to be a useful medication in reducing heart
failure mortality in our study. In addition, the effectiveness
of beta-blockers and diuretics was determined to be limited
in improving short-term survival, even though a trial showed
that beta-blockers reduced the absolute risk of death by 4.5%
over a 13-month period [38]. Although diuretics are widely
used, evidence on their efficacy and safety is limited [39].

V. CONCLUSIONS AND FUTURE WORK
In this study, we developed a prognostic model with favor-
able discrimination performance based on 32 risk factors,
including demographics, clinical information, laboratory
information, andmedications, for predicting the hospital mor-
tality of ICU patients with heart failure using an iRSF. The
iRSF aimed to identify the predictors that could separate
high-risk and low-risk individuals, especially for real-valued
variables and variables in small populations. This study iden-
tified 11 independent predictors of mortality in heart failure.
Compared with existing models, more laboratory factors that
could reflect comorbidities were merged into the risk model
and presented to have great predictive power, including the
liver indicators AST, ALT, and total bilirubin, and the renal
indicators SCR and BUN. ARB, which is effective only in
small populations, was found to be an independent predictor
with the proposed iRSF and thus demonstrated its perfor-
mance in identifying critical predictors. As a result, the model
separated the 1-year survivors and non-survivors with much
greater accuracy than previous heart failure models, returning
an OOB C-statistics value of 0.821. Moreover, the proposed
iRSF demonstrated a more accurate estimation of the over-
all survival function compared with traditional RSF in our
study.

In the future, we will merge physiological signals such
as electrocardiograph, photoplethysmograph, and blood pres-
sure variation to update and improve the performance of
the risk model. In addition, we will study a simplified risk
model with few variables for predicting heart failure mortal-
ity, to be widely applied in different scenarios, such as ICU
cohorts or monitoring settings in the home.

ACKNOWLEDGMENT
The authors would like to thank Prof. Constantinos
S. Pattichis from University of Cyprus for kind suggestions
on improving this manuscript.

REFERENCES
[1] H. Denolin, H. Kuhn, H. Krayenbuehl, F. Loogen, and A. Reale, ‘‘The

defintion of heart failure,’’ Eur. Heart J., vol. 4, no. 7, pp. 445–448, 1983.
[2] J. J. McMurray and M. A. Pfeffer, ‘‘Heart failure,’’ Lancet, vol. 365,

no. 9474, pp. 1877–1889, 2005.
[3] S. J. Pocock et al., ‘‘Predicting survival in heart failure: A risk score

based on 39 372 patients from 30 studies,’’ Eur. Heart J., vol. 34, no. 9,
pp. 1404–1413, 2013.

[4] R. Vazquez et al., ‘‘TheMUSICRisk score: A simplemethod for predicting
mortality in ambulatory patients with chronic heart failure,’’ Eur. Heart J.,
vol. 30, no. 9, pp. 1088–1096, 2009.

[5] L. Manzano et al., ‘‘Predictors of clinical outcomes in elderly patients with
heart failure,’’ Eur. J. Heart Failure, vol. 13, no. 5, pp. 528–536, 2011.

[6] W. C. Levy et al., ‘‘The Seattle heart failure model: Prediction of survival
in heart failure,’’ Circulation, vol. 113, no. 11, pp. 1424–1433, 2006.

[7] E. Hsich et al., ‘‘Identifying important risk factors for survival in patient
with systolic heart failure using random survival forests,’’ Circulat.,
Cardiovascular Quality Outcomes, vol. 4, no. 1, pp. 39–45, 2011.

[8] M. Senni et al., ‘‘Predicting heart failure outcome from cardiac and
comorbid conditions: The 3C-HF score,’’ Int. J. Cardiol., vol. 163, no. 2,
pp. 206–211, 2013.

[9] P. C. Austin, J. V. Tu, and D. S. Lee, ‘‘Logistic regression had superior
performance compared with regression trees for predicting in-hospital
mortality in patients hospitalized with heart failure,’’ J. Clin. Epidemiol.,
vol. 63, no. 10, pp. 1145–1155, 2010.

[10] P. C. O. Rodrigues, E. S. Santos, E. Ignotti, and S. D. Hacon, ‘‘Space-time
analysis to identify areas at risk of mortality from cardiovascular disease,’’
BioMed Res. Int., vol. 2015, no. 4, Aug. 2015, Art. no. 841645.

[11] L. Breiman, ‘‘Heuristics of instability and stabilization inmodel selection,’’
Ann Stat., vol. 24, no. 6, pp. 2350–2383, 1996.

[12] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
2003.

[13] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, ‘‘Disease prediction
by machine learning over big data from healthcare communities,’’ IEEE
Access, vol. 5, pp. 8869–8879, 2017.

[14] B. J. Lee and J. Y. Kim, ‘‘Identification of type 2 diabetes risk factors
using phenotypes consisting of anthropometry and triglycerides based
on machine learning,’’ IEEE J. Biomed. Health Inform., vol. 20, no. 1,
pp. 39–46, Jan. 2016.

[15] S. Bandyopadhyay et al., ‘‘Data mining for censored time-to-event data:
A Bayesian network model for predicting cardiovascular risk from elec-
tronic health record data,’’ Data Mining Knowl. Discovery., vol. 29, no. 4,
pp. 1033–1069, 2015.

[16] U. R. Acharya et al., ‘‘An integrated index for detection of Sudden Cardiac
Death using Discrete Wavelet Transform and nonlinear features,’’ Knowl.-
Based Syst., vol. 83, pp. 149–158, Jul. 2015.

[17] G. J. Simon, P. J. Caraballo, T. M. Therneau, S. S. Cha, M. R. Castro, and
P. W. Li, ‘‘Extending association rule summarization techniques to assess
risk of diabetes mellitus,’’ IEEE Trans. Knowl. Data Eng., vol. 27, no. 1,
pp. 130–141, Jan. 2015.

[18] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[19] H. Ishwaran et al., ‘‘Random survival forests,’’ Ann. Appl. Stat., vol. 2,
no. 3, pp. 841–860, 2008.

[20] I. K. Omurlu, M. Ture, and F. Tokatli, ‘‘The comparisons of random
survival forests and Cox regression analysis with simulation and an
application related to breast cancer,’’ Expert Syst. Appl., vol. 36, no. 4,
pp. 8582–8588, 2009.

[21] F. Miao, Y. P. Cai, Y. T. Zhang, and C. Y. Li, ‘‘Is random survival forest
an alternative to Cox proportional model on predicting cardiovascular
disease?’’ in Proc. 6th Eur. Conf. Int. Fed. Med. Biol. Eng., 2015, pp. 740–
743.

[22] F. Miao, Y.-P. Cai, Y.-X. Zhang, Y. Li, and Y.-T. Zhang, ‘‘Risk prediction
of one-year mortality in patients with cardiac arrhythmias using random
survival forest,’’ Comput. Math. Methods Med., vol. 2015, Jul. 2015,
Art. no. 303250, doi: 10.1155/2015/303250.

7252 VOLUME 6, 2018

http://dx.doi.org/10.1155/2015/303250


F. Miao et al.: Predictive Modeling of Hospital Mortality for Patients With Heart Failure by Using an iRSF

[23] J. W. Mason, ‘‘A comparison of seven antiarrhythmic drugs in patients
with ventricular tachyarrhythmias,’’ New England J. Med., vol. 329, no. 7,
pp. 452–458, 1993.

[24] S. Yang and R. Prentice, ‘‘Semiparametric analysis of short-term and long-
term hazard ratios with two-sample survival data,’’ Biometrika, vol. 92,
pp. 1–17, Mar. 2005.

[25] S. Yang and R. Prentice, ‘‘Improved logrank-type tests for survival data
using adaptive weights,’’ Biometrics, vol. 66, no. 1, pp. 30–38, 2010.

[26] E. W. Steyerberg et al., ‘‘Internal validation of predictive models:
Efficiency of some procedures for logistic regression analysis,’’ J. Clin.
Epidemiol., vol. 54, no. 8, pp. 774–781, 2001.

[27] H. Uno et al., ‘‘On the C-statistics for evaluating overall adequacy of risk
prediction procedures with censored survival data,’’ Stat. Med., vol. 30,
no. 10, pp. 1105–1117, 2011.

[28] A. L. Goldberger et al., ‘‘PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic signals,’’
Circulation, vol. 101, no. 23, pp. E215–E220, 2000.

[29] M. Saeed et al., ‘‘Multiparameter intelligent monitoring in intensive care II
(MIMIC-II): A public-access intensive care unit database,’’ Critical Care
Med., vol. 39, no. 5, pp. 952–960, 2011.

[30] P. N. Peterson et al., ‘‘A validated risk score for in-hospital mortality in
patients with heart failure from the American Heart Association get with
the guidelines program,’’ Circulat., Cardiovascular Quality Outcomes,
vol. 3, no. 1, pp. 25–32, 2010.

[31] T. H. Lee, W. Kim, J. T. Benson, T. M. Therneau, and L. J. Melton,
‘‘Serum aminotransferase activity and mortality risk in a United States
community,’’ Hepatology, vol. 47, no. 3, pp. 880–887, 2008.

[32] H. C. Kim et al., ‘‘Elevated serum aminotransferase level as a predictor
of intracerebral hemorrhage: Korea medical insurance corporation study,’’
Stroke, vol. 36, no. 8, pp. 1642–1647, 2005.

[33] J. P. Lin et al., ‘‘Association between the UGT1A1*28 allele, biliru-
bin levels, and coronary heart disease in the Framingham Heart Study,’’
Circulation, vol. 114, no. 14, pp. 1476–1481, 2006.

[34] A. Nguyen et al., ‘‘Total bilirubin is an independent risk factor for the
prevalence of coronary artery disease in men,’’ Circulation, vol. 130,
no. Suppl 2, p. A16164, 2014.

[35] R. Terg et al., ‘‘Serum creatinine and bilirubin predict renal failure and
mortality in patients with spontaneous bacterial peritonitis: A retrospective
study,’’ Liver Int., vol. 29, no. 3, pp. 415–419, 2009.

[36] Y. Yokoyama et al., ‘‘Predictive power of prothrombin time and serum
total bilirubin for postoperative mortality after major hepatectomy with
extrahepatic bile duct resection,’’ Surgery, vol. 155, no. 3, pp. 504–511,
2014.

[37] T. S. Investigators, ‘‘Effect of enalapril on survival in patients with reduced
left ventricular ejection fractions and congestive heart failure,’’ New
England J. Med., vol. 325, no. 5, pp. 293–302, 1991.

[38] A. M. Pritchett and M. M. Redfield, ‘‘β-blockers: New standard therapy
for heart failure,’’ Mayo Clinic Proceedings, vol. 77, no. 8, pp. 839–846,
2002.

[39] T. G. Lueder, D. Atar, and H. Krum, ‘‘Diuretic use in heart failure and
outcomes,’’ Clin. Pharmacol. Therapeutics, vol. 94, no. 4, pp. 490–498,
2013.

FEN MIAO received the Ph.D. degree in com-
puter science from the University of Chinese
Academy of Sciences in 2015. She is currently an
Assistant Researcher with the Shenzhen Institutes
of Advanced Technology, Chinese Academy of
Sciences. She is also presiding the National Nat-
ural Science Foundation of China and the Basic
Research Foundation of Shenzhen. She has pub-
lished nearly 20 SCI/EI indexed papers in recent
five years. Her research interests include health

data analysis, cardiovascular disease modeling, and cuff-less blood pressure
estimation.

YUN-PENG CAI is currently an Associate Pro-
fessor with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. He is
also the Executive Director of Guandong Engi-
neering Center and Shenzhen Engineering Lab-
oratory for Health Big Data Analysis. He has
published over 60 peer-reviewed papers, includ-
ing multiple publications on top journals, such as
Nucleic Acids Research, Briefings in Bioinformat-
ics, The ISME Journal, and PLOS Computational

Biology. He is the PI or Co-PI of various national or regional funds, including
the NSFC fund, the National Key Technology R&D Program, the National
High-Tech R&D Program, the CAS Science and Technology Service Pro-
gram, and the Guangdong Applied Technology R&D Program. His research
interests include health big data, health informatics, bioinformatics, machine
learning, and evolution.

YU-XIAO ZHANG received the Doctorate of
Medicine degree from theMedical College of Peo-
ple’s Liberation Army. She has been involved in
clinical medicine for 20 years. She is currently
the Chief Physician with the Department of Senile
Cardiovascular Medicine, The General Hospital of
the People’s Liberation Army. She is an Expert in
cardiovascular diseases treatment, such as hyper-
tension, heart failure, and coronary heart disease.
She has published over 40 peer-reviewed papers.

XIAO-MAO FAN received the bachelor’s
degree in chemistry from Nanchang
University, Nanchang, China, in 2003, and the
master’s degree in system engineering from the
Shanghai University of Science and Technol-
ogy, Shanghai, China, in 2011. He is currently
pursuing the Ph.D. degree in computer applica-
tion technology from the University of Chinese
Academy of Sciences. His current research inter-
ests are in machine learning and high performance
computing.

YE LI received the Ph.D. degree from
Arizona State University in 2002. He is cur-
rently a Professor with the Shenzhen Institutes
of Advanced Technology, Chinese Academy of
Sciences. He has applied for more than 90 related
patents and software copyrights, more than 40 of
which have been granted and many successfully
achieved industrialization. He has published over
120 SCI/EI indexed journal or international con-
ference papers in the fields of mobile medical

and health management and biomedical information technology in the last
five years, over 30 papers were indexed by SCI, and some were cited by
journals of important influence, such as Nature Review. He has served as an
Organizing Member/Workshop Chairman for many times in the important
IEEE biomedical engineering related international conference for many
times.

VOLUME 6, 2018 7253


	INTRODUCTION
	METHODOLOGY
	PROPOSED IMPROVED RANDOM SURVIVAL FOREST
	STATISTICAL ANALYSIS
	EXPERIMENTAL DATA

	EXPERIMENTAL RESULTS
	BASELINE CHARACTERISTICS OF THE STUDY COHORT
	PREDICTOR COMPARISON BETWEEN THE PROPOSED IRSF AND TRADITIONAL RSF
	DISCRIMINATION PERFORMANCE COMPARISON BETWEEN IRSF- AND RSF-BASED MODELS
	DISCRIMINATION PERFORMANCE COMPARISON BETWEEN THE PROPOSED MODEL AND PREVIOUS MODELS

	DISCUSSION
	REAL-VALUED PREDICTORS IDENTIFIED FOR HEART FAILURE MORTALITY
	CATEGORICAL PREDICTORS IDENTIFIED FOR HEART FAILURE MORTALITY

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	FEN MIAO
	YUN-PENG CAI
	YU-XIAO ZHANG
	XIAO-MAO FAN
	YE LI


