
SPECIAL SECTION ON SOFTWARE STANDARDS AND THEIR IMPACT IN
REDUCING SOFTWARE FAILURES

Received November 2, 2017, accepted December 12, 2017, date of publication January 4, 2018,
date of current version February 14, 2018.

Digital Object Identifier 10.1109/ACCESS.2017.2786781

Ontology-Based Finite Satisfiability of
UML Class Model
ABDUL HAFEEZ KHAN1, SAYED HYDER ABBAS MUSAVI2,
AQEEL-UR-REHMAN3, AND ASADULLAH SHAIKH 4
1Department of Computer Science, Hamdard Institute of Engineering and Technology , Karachi 74600, Pakistan
2Department of Computing, Faculty of Engineering Science and Technology, Indus University, Karachi 75300, Pakistan
3Department of Computing, Hamdard Institute of Engineering and Technology, Karachi 74600, Pakistan
4Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

Corresponding author: Abdul Hafeez Khan (abdul.hafeez@hamdard.edu)

ABSTRACT Software models are core artifacts in model driven engineering (MDE) and processable by
computer. They are automatically transformed into other models and in MDE, programming code is also
produced by the models. The automatic transformation provides a systematic reuse of existing artifacts.
However, sometimes models are developed with defects and the defects can implicitly shift into the code,
which may be difficult to discover and repair. A promising solution to this problem is model verification.
UML class model is a key ingredient of MDE. However, UML only offers graphical components without the
support of reasoning, due to lack of the formal foundation. Therefore, the verification of formal properties,
such as consistency and finite satisfiability is not possible in UML. This paper proposes an ontology-based
optimized verification method for important correctness property ‘‘finite satisfiability’’ of UML class model.

INDEX TERMS Finite satisfiability, model satisfiability, ontology-based satisfiability, model checking,
model verification.

I. INTRODUCTION
Software models present clear and precise description of the
system [1]. In modern software development methodologies
(e.g. MDE) they are considered as a nucleus and are rec-
ognized as a first-class elements instead of programming
code [2]. As the core artifacts, they can be processable by
computer and can be automatically transformed into other
models (in MDE, programming code is also considered as
the lowest level model) [2]. The automatic transformation
gives the systematic reuse of existing artifacts. However,
sometimes automatic transformation can cause some prob-
lems e.g. models are created in initial stages of software
development and in the initial stages software development
team does not well aware of the underdeveloped system and
its constraints. Consequently, models are built with defects,
and these defects can implicitly shift into the code [3]. Model
verification can solve this problem [3]. However, the higher
complexity of UML class model verification, current meth-
ods consumes a lot of computational resources (CPU, mem-
ory) and even in some cases verification result cannot be
generated especially for the large and complex model [4], [5].
Cabot and Clarisó [6] pointed out many research directions
for optimizing verification of the UML class model. This

work mainly focuses on research direction search space
reduction which identified in [6].

UML is a graphical modeling language and it is commonly
used in MDE [7]. It offers various diagrams for dealing
with different aspects of software and each describes the
different views of software [8], [9]. The most important dia-
gram of UML is a class diagram [10]–[15] and it describes
static/structural aspects of the system [9]. UML only offers
graphical components without the support of reasoning, due
to lack of formal foundation [15], [16]. Therefore, verifica-
tion of model correctness is not possible in UML.

The consistency and finite satisfiability are two major cor-
rectness facets of the UML class model. Both of them give
surety of a non-empty and finite instance model. Consistency
focuses on non-emptiness and finite satisfiability focuses on
finiteness [14]. Contradicting constraints such as creating
a subclass of two disjoint classes can cause emptiness and
interaction among association multiplicity constraints which
limit the number of links between instances of related classes
can cause non-finiteness. A UML class model is considered
consistent if and only if it has legitimate non-empty instances
of all classes (maybe infinite), and finitely satisfiable if
it has one legitimate finite instance where all classes are

3040
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-4806-6159

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

non-empty [17]. Hence, finding a single legitimate instance
of the UML class model is adequate to guarantee consistency
in which all classes are non-empty. Therefore, finite satis-
fiability can cover consistency [17]. This work proposes an
optimized ontology-based method for verification of finite
satisfiability of the UML class model.

II. BACKGROUND AND RELATED WORK
Verification of finite satisfiability of a static model (Entity
RelationshipModel similar to theUML classmodel) has been
discussed in [18]–[20]. Mainly, there are twomethods ‘‘linear
inequalities method’’ and ‘‘detection graph method’’ which
have been used for verification of various fragments of the
UML class model. In the first method, finite satisfiability
problem is solved through the finding a solution of linear
inequalities. In the second method, a UML class model is
represented through the directed graph and finite satisfiability
is verified by the detection of the critical cycle in the graph.

FIGURE 1. Representation of association constraints in linear inequalities.

A. LINEAR INEQUALITY METHOD
The finite satisfiability of a conceptual schema (ERD model)
was initially addressed by [19] and [20]. In the linear inequal-
itymethod, cardinality constraints are transformed into the set
of linear inequalities. Figure 1 shows, the UML class model
and equivalent linear inequality representation.

According to Figure 1, there should be at least min2 ∗ B
and min1 ∗ A and at most max2 ∗ B and max1 ∗ A links in the
relationship R in order to satisfy association cardinality con-
straints, semantically, each instance of B should be connected
to at least min1 and at most max1 instance(s) of A, and vice
versa for A.

Many research works also used linear inequality system
for representation and verification of other UML class model
fragments such as Calvanese and Lenzerini [21] represented
the class hierarchy constraint through the linear inequalities.
Balaban and Maraee [10], [12], [13] also used the linear
inequalities for representing class hierarchy constraints, gen-
eralization set, qualifier constraints, and association class
constraints. Clarisó et al. [22] also used linear inequalities for
bounded verification of UML Class/OCL model.

B. GRAPH-THEORETIC MODEL
The graph-theoretic model for detection of non-finite satisfi-
ability of the UML class model addressed by [18] and [19].

FIGURE 2. Graph theoretical model of UML class association constraints.

In this approach, a weighted directed graph is built, where
nodes represent entities and relationships, edges join relation-
ship nodes with their respective entities nodes and cardinality
constraints are marked over the edges. Figure 2 shows the
graph-theoretic model of the UML class model presented
in Figure 1.

In this method, the weight of every cycle is calculated
through the multiplication of weight of edges in the cycle.
If the total weight of any cycle is calculated less than 1 then
the cycle is considered as a critical cycle and indicates non-
finitely satisfiable cardinality constraint. For detection of the
critical cycle, the Bellman-Ford algorithm has been used with
little alteration [18]. The Bellman-Ford is an efficient algo-
rithm for obtaining the weight of the directed graph with the
negative cycles. The complexity of the Bellman-Ford algo-
rithm is 2 (|V||E|) from a single vertex. However, there is a
possibility to miss negative cycle from a single vertex. There-
fore, traversing is performed by all vertices which increases
the complexity of the algorithm to2 (|V2

||E|) and some paths
are traversed many times. Queralt and Teniente [23] also used
a graph-theoretic method for detecting dependency among
OCL constraints. In the approach, cycles are searched for
verifying the absence of an infinite model. Formica [24] used
a graph-theoretic approach for checking finite satisfiability of
object-oriented database schema and deals with cardinalities,
navigation path, and comparison operators.

C. ONTOLOGY
Many researchers have used ontology for specification and
verification of different software artifacts. Mahmud [25] pre-
sented an ontology-based domain specific language called
ReSA for an embedded system. The ReSA uses ontology
axioms for specification of the embedded system. The pro-
posed approach checks refinements and requirement consis-
tency and performs scalable formal verification of various
Simulink models. Nguyen et al. [26] combined goal-oriented
and use case modeling technique and proposed an ontology-
based integrated framework for automated verification of
incorrectness, incompleteness, and inconsistency. They also
developed a prototype tool called GUITAR that takes require-
ments in the textual form and transforms them into the struc-
tured specification for performing automatic reasoning. The
tool also generates comprehensive feedback for problems.
The proposed approach also applied to six industrial case
studies. Corea and Delfmann [27] combined the business
rules with the ontology and proposed an ontology-based

VOLUME 6, 2018 3041

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

approach for verification of business processes against the
business rules. In the approach, business rules are specified as
a logic program. They used ontology reasoner to performed
reasoning to detect model elements which violate the rules.

Liao et al. [28] discovered the challenges which faced
by the legacy Enterprise Information System (EIS) in
the fourth industrial revolution and proposed their poten-
tial solutions. They summarized seven main categories of
requirements for future EIS and identified interoperability
infrastructure issues related to the future EIS. They pro-
posed a notification-based approach which derived from
the notification-oriented paradigm. A notification-oriented
paradigm is a new approach for software and hardware spec-
ification. Finally, they presented the ontology-based model-
driven patterns for notification-oriented data intensive EIS.

Fellmann et al. [29] proposed ontology-based specification
and verification of business process models. In this approach
model elements are represented through the ontology and
constraints through the rules thenmodel and rules are verified
by the inference engine. Sun et al. [30] presented ontology-
based representation of software architecture components and
transformed dynamic communication (constraints) into the
SWRL. Mokos et al. [31] presented ontology-based transfor-
mation and verification of the dependable system and intro-
duced ontology-based verification of safety-critical system.
Kezadri and Pantel [32] proposed an ontology-driven knowl-
edge base and related verification and validation technique
for the behavioral model. Lapets et al. [33] used the ontol-
ogy to represent the formal facts for improving the usabil-
ity of the verification system. They proposed a lightweight
verification system AARTIFACT that utilizes the ontology
for the conceptualization of common mathematical concepts
(e.g. numbers, sets, vectors, graphs).

Various research works also utilized an ontology for trans-
formation and verification of UML models. He et al. [34]
used an ontology for verification of UML behavioral model.
They divided UML behavioral models into static semantics
and dynamic semantics. The static semantics are represented
by OWL DL and dynamic semantics are represented by
DL-safe rules. Finally, the ontology is verified by pellet
reasoner. Xu et al. [35] performed a comparison of UML
Class diagram and web ontology language and specified
that both have many similar elements e.g. classes, relation-
ships, and attributes. They also pointed out the difference
between these two languages such as UML has numerous
relationships between classes (association, generalization,
composition, etc) and OWL only has object property. Finally,
they concluded that both are compatible with each other.
Bahaj and Bakkas [36] proposed a different transformation
technique from UML class model to ontology and considered
encapsulation, aggregation, and composition as a special type
of association. Belghiat and Bourahla [37] presented graph-
based transformation of UML class model and transformed
meta-model of the UML class model into the ontology.
Parreiras and Staab [38] combined UML with OWL-DL for
representing software model. They integrated MOF meta-

model as the backbone for both UML and OWL. Guizzardi
et al. [39] presented the ontological foundation to UML class
diagram. They provide ontological adequacy tomodeling lan-
guage for efficiently representing the real-world semantics.
They also argued that the ontological foundation of model-
ing language produces a conceptually cleaner, semantically
unambiguous and ontologically well-founded version of the
UML Class diagram. They also proposed a systematic evalu-
ation method for comparing a meta-model of the UML class
diagram with the reference ontology of the corresponding
domain. They transformed the types and type taxonomies,
roles, attributes, attribute values and attribute value spaces,
relationships, and part-whole relations into the ontology [40].
They combined UML class diagram and Ontology into a lan-
guage called ONTUML. the ONTUML meta-model reflects
the ontological feature prescribed by Unified Foundational
Ontology (UFO) and the formal constraint [41]. The
ONTUML addresses the various conceptual modeling prob-
lems such as transitivity problem in the part-whole rela-
tionship, the collapse of cardinality constraints, association
specialization, association sub-setting, and association redef-
inition.

FIGURE 3. Classical researcher and paper model with graph theoretic
model [5]. a) Paper-Researcher UML class model. b) Graph theoretic
representation of Paper-Researcher model.

III. ANALYSIS OF CYCLES IN GRAPH-THEORETIC
REPRESENTATION OF UML CLASS MODEL
The graph-theoretical representation of the UML class model
has many cycles in which only a few cycles are signifi-
cant for verification of finite satisfiability. The Figure 3a
shows the classical benchmark ‘‘Paper-Researcher’’ and
Figure 3b shows the graph-theoretical representation of it.
Graph-theoretical representation of ‘‘Paper-Researcher’’ has
32 cycles and for each vertex, it has 8 cycles. Table 1 shows
the complete 32 cycles and Figure 4 shows 8 cycles from
Researcher vertex. It can be clearly seen in Figure 4 that the
majority of cycles are not important due to they are balance
or greater.
Definition 1 (Balance Cycle): The balance cycle is a cycle

where the weight formula contains same quantities for the

3042 VOLUME 6, 2018

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

TABLE 1. Total cycles of graph-theoretical representation of
‘‘paper-researcher’’ benchmark.

division and multiplication due to the same Min and Max
cardinalities. Therefore, it always produces 1.
Example 1: The cycle 2 in Figure 4 is a balance cycle

because the weight from Researcher to Review is 1, Review
to Paper is 1

3 , Paper to Review is 3, and Review to Researcher
is 1

1 . The weight calculation formula of the cycle 2 will

be
{
1 ∗

(
1
3

)
∗ 3 ∗

(
1
1

)}
.

Definition 2 (Greater Cycle): The greater cycle is a cycle
where the weight formula uses a smaller quantity for the
division and a larger quantity for multiplication and produces
a value greater than 1.
Example 2: The cycle 6 in Figure 4 is a greater cycle

because the weight from Researcher to Write is 1, Write to
paper is 1

1 , Paper to Write is 2 and Write to Researcher is
1
1 and the weight calculation formula of the cycle 6 will be{
1 ∗

(
1
1

)
∗ 2 ∗

(
1
1

)}
.

FIGURE 4. Cycles from node researcher (Rr).

The graph-theoretical representation of class association
cardinality constraints has many balance and greater cycles.
Balance and greater cycles are not important to determine
finite-satisfiability therefore, they should not be traversed.
The running example has 32 cycles in which 28 cycles are
balance or greater and only 4 cycles are significant as shown
in Table 1. Furthermore, if one critical cycle is detected in
the graph, then it will be enough to prove that the UML class
model is not finitely satisfiable. As per the above analysis,
we propose an ontology-based method which reduces the
search space for finding a critical cycle in the ontology-based
representation of the UML class model.

IV. ONTOLOGY-BASED FINITE SATISFIABILITY
Ontology is also a graph-theoretic structure which has
concepts (like vertices of the graph), relationships (like
directed edges in the graph). The proposed work uses an
ontology-based algorithm for finding critical cycles in the
graph-theoretical representation of the UML class model.
Figure 5 shows, how an ontology graph will be built and how
classes, association, and cardinalities will be represented in
the ontology. In the proposed method, weight distribution
formula given by Hartmann is distributed among object

VOLUME 6, 2018 3043

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

FIGURE 5. Ontology-based graph-theoretic of UML class diagram.

FIGURE 6. Ontology-based representation of ‘‘paper and researcher’’
benchmark.

properties and inverse properties as shown in
figure 5.

In this work, UML classes are transformed into ontology’s
classes and associations into object properties. An inverse
object property is also added for every association. The asso-
ciation cardinalities are transformed into ontology’s qualified
cardinalities. Figure 6 shows, the ontology graph of the Paper-
Researcher class model. The proposed method greatly con-
cerned about that, there are few critical cycles among many
which cause unsatisfiability as discussed in the previous
section.

In the proposed method, the ontology graph is only tra-
versed by the object properties. The traversing method starts
from the selection of an arbitrary object property and moves
forward to the successor adjacent object property until the
successor adjacent object property range is equal to the
domain of initial object property (where the traversing was
started).
Definition 3 (Adjacent Object Property):Object properties

P1 and P2 are considered adjacent object property if and only
if the P1range is equal to the P2domain (except the inverse
property of P1for avoiding unnecessary cycles discussed in
section IV).

Example 3 in ‘‘Paper-Researcher’’Write and∼Review are
adjacent as shown in Figure 6. However, Write and ∼Write
are not considered adjacent even their range and domain
are equal since they are inverse to each other and if it is
considered as adjacent then balance and greater cycles will be

traversed. Algorithm 1 describes the step-by-step ontology-
based method for detecting critical cycles.

Algorithm 1 Ontology-Based Algorithm for Detecting
Critical Cycle
1. p← Arbitrary Property
2. s← p. Domain
3. w← 1
4.While s 6= p. Range
∼p← Inverse (p)
w← w ∗ (p.MaxRange∗(1/∼ p.MinRange))
ap← SearchProperties()
(Where ap.Domain = p.Range and ap 6= ∼p)
p← ap

End While
5. ∼p← Inverse (p)
6. w← w ∗ (p.MaxRange∗(1/∼p.MinRange))

In the algorithm 1, ontology graph is traversed by each
object property only once. The running example ‘‘Paper-
Researcher’’ has four object properties Write, ∼Write,
Review, and ∼Review. For algorithm demonstration, we start
from object property Review. The following steps are
repeated until successor adjacent object property range is not
equal to the domain of initial property.

1) Start from object property Review and it’s become
selected property.

2) Select the inverse property of selected property
(∼Review).

3) After getting the inverse property, the weight of the path
is calculated and is added to the total weight. According
to running example, the MaxCradinality of Review is
1 and the MinCardinality of ∼Review is 3 then the
weight of current path will be .33 and it will be added
to the total weight.

4) Then adjacent properties of the selected property will
be searched and according to running example, two
properties will return as successor adjacent object prop-
erty ∼Write and ∼Reviews. ∼Review is the inverse
property of selected property (Review). Therefore,
it will be ignored and ∼Write will become a selected
property. The range of ∼Write is Researcher which is
equal to the domain of Review (the initial property).
Therefore the algorithmfinishes here (when the succes-
sor adjacent property rangewill be equal to the domain
of initial property).

Table 2 shows the complete iterations of the presented algo-
rithm for object property Review. The running example has
four object properties; therefore only four cycles will be tra-
versed for verification of finite satisfiability. However, in the
four cycles, some cycles are calculating the same weight due
to traversing the same node but their order of calculation is
different.

Table 3 shows the four unique cycles which are important
for verification of finite satisfiability. If the table 3 is keenly

3044 VOLUME 6, 2018

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

TABLE 2. Iterations of algorithm 1 for object property review.

TABLE 3. Significant cycles in ‘‘paper and researcher’’ example.

analyzed then it can be observed thatWrite and∼Review, and
Review and ∼Write traverse the same path and calculate the
same weight. The only difference is their order of multiplica-
tion as shown in the last column of table 3. Therefore, if one
object property and its inverse property are traversed then it
will be enough for checking all unique cycles in the graph
and there is no need of traversing the ontology graph by other
object properties.

V. COMPLEX GRAPH
Algorithm 1 works fine on the simple graph where search
property procedure only returns two adjacent object prop-
erties, (1) the inverse of the selected property and (2) other
than inverse property. However, when the procedure returns
two or more than two adjacent object properties except the
inverse property then the algorithm can procced only with
one of them and the path starts from the other adjacent
object properties are missed. For example, Figure 7a shows a
complex class model and Figure 7b shows equivalent ontol-
ogy graph. If the selected property is R1 then adjacent object
properties will be ∼R1, R4, and R2. The ∼R1 is the inverse
of R1 and it will be ignored but anyone from R4 or R2 will
be selected and traversed according to algorithm 1. There-
fore, the paths which lead by other property will be missed.
Algorithm 2 introduces recursiveness in the algorithm 1 for
dealing with the limitation mentioned above.

VI. COMPLEXITY
Table 4 shows the complexity of the proposed method and
presents the comparison with Bellman-Ford. The complexity
of Bellman-Fords is 2 (|V||E|) from the single vertex and
from all vertex or for complete graph the complexity is 2

(|V2
||E|). The complex UML class diagram such as a shown

in Figure 7 a. will be transformed into the complete graph and
there is a chance to miss negative cycle from a single vertex.
Therefore we consider both complexities for comparison.

FIGURE 7. Class model with complex association. a) UML class model
with complex associations. b) Graph theoretic representation of complex
associations model.

Algorithm 2 Ontology-Based Recursive Algorithm for
Detecting Critical Cycle
FindCycle(s, r, p, 1)
1. visited[p]← true
2. ∼p← Inverse (p)
3. if s = r then

return w
4. else

ap← SearchProperties ()
(Where ap.Domain = p.Range and ap 6= ∼p)
foreach i ∈ Ap do
w← p.Range.MaxRange∗(1/∼p.Range.MinRange)
if visited (p) 6= true then

FindCycle(s, i.Range, Class, i.Property, weight)
5. visited[p]← false

We consider single vertex complexity as a best case and all
vertex as a worst case. For the proposed algorithm best and
worst case are same. The last fours columns of table 4 also
show the number of paths will be traversed by each algorithm
in the best case and worst case for ‘‘Paper-Researcher’’ and
‘‘Complex Association’’.

VII. SOUNDNESS AND COMPLETENESS
Theorem 1 (Soundness and Completeness):LetG be an ontol-
ogy graph and suppose that proposed algorithm run onG from
a given property P and its inverse property ∼P then, during

VOLUME 6, 2018 3045

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

TABLE 4. Comparison bellman-ford and proposed algorithm.

its execution, proposed algorithm discovers critical cycles in
the ontology-based graph of UML class model.

Proof: utmost (nn−1) object properties (in which half
will be inverse) will be required when each class connect
to other class by a single association in the ontology-based
graph of UML class model. Therefore, there should be
((n2 − n)/n) cycles which will unique and enough for pro-
cessing all weight and detection of critical cycles.
• Let suppose we have C = {c1, c2, c3} for the classes
and P = {p1, p2, p3, p4, p6} for object properties where
p4, p5, p6 are inverse object properties of p1, p2, p3. The
graph connectivity is as follows:

G = {p1(c1, c2), p2(c2, c3), p3(c1, c3), p4(c2, c1),

p5(c3, c2), p6(c3, c1)}

• Let suppose, we traverse graph from p1 and it inverse p4
then we found the following subset of G:
p1 = {(c1, c2), (c2, c3), (c3, c1)} and access the follow-
ing adjacent object properties:
A = {p1, p2, p3}
p4 = {(c2, c1), (c1, c3), (c3, c2)} and access the follow-
ing adjacent object properties:
AI = {p4, p5, p6}

• A ∩ AI = ∅, all cycles are unique.
• A ∪ AI = P, all object properties have been traversed
and all weights have been calculated.

• For other object properties, the path will remain same
just their order of traversing and order of multiplica-
tion will be different. According to the Associative law,
in multiplication order does not matter. �

The discussion in section V has shown that algorithm 1,
work with simple ontology graph which returns only two
adjacent properties one is the inverse of the selected property
and second is other than inverse property.

Algorithm 1 is thus incomplete; that is, it does not guaran-
tee the traversing of all valid paths. The algorithm 2 which
is improved version of algorithm 1 work with complex graph
and guarantee the traversing of all valid paths and determines
the existence of a critical cycle in the ontology graph. For
example Figure 8 shows the recursive call of algorithm 2 for
property R1. There are two paths move forward from R1 in
which one path goes to R2 and other goes to R4. From R2,
further two paths move forward, one path goes to R3 which
completes the cycle and other path goes to R5. From R5,

FIGURE 8. Recursive Call of Algorithm 2 from R1.

the path moves forward to R4 which completes the cycle at
R1. Here all unique cycles which start fromR2 complete their
cycle. On the other side, R4 goes to R5 and R5 further move
forward to R3 and R2. On R3 another cycle is completed
and R2 further goes to R1 and complete the cycle.

VIII. EMPIRICAL EVALUATION
The objective of this evaluation is to investigate the effective-
ness and correctness of the proposed ontology-based verifi-
cation method. Especially, the evaluation aims to answer the
following questions:

— RQ1. Is it possible for a proposed approach to scale
well at a practical extent?

— RQ2. How does the proposed approach compare to
other UML class diagram verification methods?

The subsubsections below presents the overview the subject
of the study and the experimental setup, and describe, for
each research question, the measurements performed and the
achieved results.

A. EXPERIMENT SETUP AND SUBJECT OF THE STUDY
We implemented our approach as a Java prototype that relies
upon the Jena library for processing the ontology. The Jena
is an open source Java framework which provides support for
extracting and writing RDF, and OWL graph. Jena provides
a layer of abstraction for transforming statement into java
artifacts. The abstraction layer reduces the effects required
for accessing and managing ontology. It has excellent docu-
mentationwhich includes powerful resources such as descrip-
tion of artifacts and tutorial. It also supports all variant of
OWL: Full, Description Logic and Lite. The input UML
class model of the prototype tool is represented in XMI
(XML Metadata Interchange). XMI is an OMG standard
for exchanging metadata information by Extendable Markup
language (XML). Specifically, the XMI is intended to provide
a common format for UML diagrams for sharing among

3046 VOLUME 6, 2018

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

different CASE tools and it is supported by the majority
of modern UML CASE Tools. So the input models of our
tool must be specified in XMI version 2.4.1. The version
2.4.1 of XMI is backward compatible. However, it includes
some extra elements for supporting new features of UML
version 2.

As the subject of our study, we considered 5 UML class
diagrams. The list and brief detail of class models used in the
evaluation are as follows:
Paper-Researcher: The Paper-Researcher class model

describes the concepts of article writing and reviewing pro-
cess. This model took from class model benchmark paper [5].
Coach: The coach model describes the information of Bus

Company Ticking system, and this model took from class
model slicing paper [3].
Point of Sale (POS): The POS describe the set of classes

and associations of point of sale and took from [42]
Script 1: The script 1 model is a programmatically gener-

ated model, for verification of large model.
Script 2: It is also a programmatically generated model but

has more elements.
We used the bellman-ford algorithm for comparison with

the proposed method because of the bellman-ford also a
graph-based algorithm and used for detecting critical cycles
with a negative weight. Various existing methods have been
used it with little modification for verification of finite satisfi-
ability of UML class diagram association constraint. Further-
more, there are many other verification methods which used
different techniques for verification of UML class model with
different features. We used UMLtoCSP and Alloy for com-
parison because these two verification methods are widely
used and other methods such as USE and Mova are used
for model validation. UML2Alloy transforms the UML class
model into Alloy specification; therefore they are same as in
Alloy. For checking performance and scalability of the pro-
posed method, the experiments run on Intel Core i7 3.40 GHz
machine with 4GB of RAM. However, to allow for a fair
comparison between the different methods, the experimental
runs were each executed on a computer having the same
characteristics. The comparison experiments were run Intel
Core2Duo 1.34 GHz machine with 2 GB of RAM. Due to
UMLtoCSP does not support 64-bit architecture.

B. RQ1: IS IT POSSIBLE FOR A PROPOSED APPROACH TO
SCALE WELL AT A PRACTICAL EXTENT?
1) MEASUREMENTS AND SETUP
The proposed approach should be fast enough and scale effec-
tively as classes and associations increase and minimized the
verification time as compared to the bellman-ford algorithm.
For this reason, to respond to RQ1, we applied the proposed
method to various class models as shown in Table 5. The
size of these models ranges from 4 to 2,000 classes and
associations. For example, Paper-Researcher only has two
classes and two associations and script 2 has 1000 classes
and 1000 associations. For each UML class model, we mea-

TABLE 5. Size of class models used in the evaluation.

TABLE 6. Description of experimental results.

sured the verification time with the proposed approach and
bellman-ford approach. Especially, we analyzed the relation-
ship between execution time and model size for each model.

2) RESULTS
Table 6 and Figure 9 shows the average execution time
(in seconds) required to verify the UML association
constraints through proposed method and bellman-ford.
Table 6 and Figure 9 also shows that the approach scales
to a practical extent. For first model Paper-Researcher,
the proposed approach requires on average 0.00006 sec-
onds with 2 classes and 2 associations and bellman-ford
takes 0.0009 seconds. In the case of Coach model which
have 10 classes and 10 associations, the proposed approach
requires on average 0.00014 seconds and bellman-ford takes
0.00212 seconds. In the case of POS model which have
11 classes and 15 associations, the proposed approach
required on average 0.00027 seconds and bellman takes
0.00315. In the case of script 1 which has 100 classes
and 100 associations the proposed approach takes on aver-
age 0.00261 seconds and bellman-ford takes 0.041. Finally,
for checking the performance of the proposed method on
a large model experiment performed on Script II which
has 1000 classes, 1000 associations the proposed approach
takes on average 0.034 seconds and bellman-ford takes
0.354 seconds.

A model containing thousands of classes and associations
are particularly complex to verify and there is very less
chance that a single model contains a number of elements
like Script II, which highlighted the scalability and effi-
ciency of our approach. It can also be observed that the
proposed method is efficient than the bellman-ford in the
verification of UML class model association cardinality con-
straints. The last row of Table 5 also shows the improvement
achieved by the proposed method in percentage which is
approximately 90%.

C. RQ 2: HOW DOES THE PROPOSED APPROACH
COMPARE TO OTHER VERIFICATION METHODS?
1) MEASUREMENTS AND SETUP
To respond to RQ 2, we thus compared the performance of
the approach proposed with UMLtoCSP and UML2Alloy.
In the comparison, we used all five UML class models (1)

VOLUME 6, 2018 3047

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

FIGURE 9. Analyzing UML class model benchmarks. a) Analyzing
Paper-Researcher, Coach, and POS UML class model. b) Analyzing Script 1
and Script 2 UML class model. c) Improvement achieved by the proposed
method.

Paper-Researcher (2) Point of Sale (3) Coach (4) Script I and
(5) Script II. All Experiments are conducted on Intel Core
2 Duo Processor 1.3 GHz with 2GB of RAM. All times are
measured in seconds and a time-out limit has been set at
2 hours (7200 seconds).

2) RESULTS
Figure 10 and Table 7 show the comparison results between
existing methods (UMLtoCSP and UMLtoAlloy) and the
proposed method. The x-axis of Figure 10 reports models
and the y-axis reports the execution time taken in a second.
As the results show proposed approach is efficient from the
existing methods. The comparison also shows that the for the

FIGURE 10. Analyzing UML class model benchmarks.

TABLE 7. Description of experimental results.

small model the verification time of proposed method and
other method have a small difference but when the size of
model increase the proposed methods is more efficient than
the existing methods. Furthermore, in some cases, the exiting
tools unable to verify the complex and large model such as
in the evaluation the UMLtoCSP tool found unable to verify
Script II as shown in Table 7.

IX. CONCLUSION AND FUTURE WORK
This paper presents an innovative ontology-based method for
verification of finite satisfiability of UML class model to
reduce the verification time in order to improve the efficiency.
In this method efficiency of the verification process has been
achieved by a reduction of search space. This work also
presented an analysis of the graph-theoretic representation
of the UML class model. In the analysis, it has been identi-
fied that the graph-theoretic representation of the UML class
model has many cycles which are balance or greater and
they do not impact on verification. Therefore, they should
not be considered as a part of the search space. Furthermore,
we demonstrated the proposed method on real-world case
studies such as Paper-Researcher, Coach, and POS to analyze
the improvement and also applied the proposed method on
programmatically generated large models which have thou-
sands of classes and associations in order to demonstrate that,
the proposed method efficiently support large and complex
model.

As our future work, we plan to explore two research direc-
tions. Firstly, we plan to investigate more efficient method
which more speeds up the verification. Secondly, provide
the support of other UML class model constraints and OCL
constraints.

3048 VOLUME 6, 2018

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

REFERENCES
[1] D. Cuadra, P. Martínez, E. Castro, and H. Al-Jumaily, ‘‘Guidelines

for representing complex cardinality constraints in binary and ternary
relationships,’’ Softw. Syst. Model., vol. 12, no. 4, pp. 871–889,
Oct. 2013.

[2] R. Van Der Straeten, ‘‘Inconsistency management in model-driven engi-
neering an approach using description logics,’’ Ph.D. dissertation, Dept.
Comput. Sci., Vrije Univ. Brussel, Brussels, Belgium, 2005.

[3] A. Shaikh and U. K. Wiil, ‘‘Efficient verification-driven slicing of
UML/OCL class diagrams,’’ Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 5,
pp. 530–547, 2016.

[4] A. Shaikh and U. K. Wiil, ‘‘A feedback technique for unsatisfiable
UML/OCL class diagrams,’’ Softw., Pract. Exper., vol. 44, no. 11,
pp. 1379–1393, 2014.

[5] A. Shaikh, U. K. Wiil, and N. Memon, ‘‘Evaluation of tools and slicing
techniques for efficient verification of UML/OCL class diagrams,’’ Adv.
Softw. Eng., vol. 2011, Jun. 2011, Art. no. 370198.

[6] J. Cabot and R. Clarisó, ‘‘UML-OCL verification in practice,’’ in Proc.
MoDELS Workshops, vol. 5421. 2008, pp. 31–35.

[7] N. Przigoda, J. G. Filho, P. Niemann, R. Wille, and R. Drechsler,
‘‘Frame conditions in symbolic representations of UML/OCL mod-
els,’’ in Proc. ACM/IEEE Int. Conf. Formal Methods Models Syst.
Design (MEMOCODE), Nov. 2016, pp. 65–70.

[8] M. Cadoli, D. Calvanese, G. De Giacomo, and T. Mancini, ‘‘Finite sat-
isfiability of UML class diagrams by constraint programming,’’ in Proc.
Workshop CSP Techn. Immediate Appl., Sep. 2004, pp. 1–17.

[9] H. Malgouyres and G. Motet, ‘‘A UML model consistency verification
approach based on meta-modeling formalization,’’ in Proc. ACM Symp.
Appl. Comput., 2006, pp. 1804–1809.

[10] M. Balaban and A. Maraee, ‘‘Finite satisfiability of UML class diagrams
with constrained class hierarchy,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 22, no. 3, 2013, Art. no. 24.

[11] A. Artale, D. Calvanese, andA. Ibáñez-García, ‘‘Full Satisfiability of UML
class diagrams,’’ in Proc. 29th Int. Conf. Conceptual Model., Vancouver,
BC, Canada, Nov. 2010, pp. 317–331.

[12] A. Maraee, V. Makarenkov, and B. Balaban, ‘‘Efficient recognition and
detection of finite satisfiability problems in UML class diagram,’’ in
Proc. Int. Workshop Model Co-Evol. Consistency Manage. (MoDELS),
Toulouse, France, 2008.

[13] A. Maraee and M. Balaban, ‘‘Efficient recognition of finite satisfiability
in UML class diagrams: Strengthening by propagation of disjoint con-
straints,’’ inProc. Int. Conf.Model-Based Syst. Eng. (MBSE), 2009 pp. 1–8.

[14] M. Balaban, A. Maraee, A. Sturm, and P. Jelnov, ‘‘A pattern-based
approach for improving model quality,’’ Softw. Syst. Model., vol. 14, no. 4,
pp. 1527–1555, 2015.

[15] H. Ledang and J. Souquières, ‘‘Integration of UML and B specification
techniques: Systematic transformation from OCL expressions into B,’’ in
Proc. Asia–Pacific Softw. Eng. Conf. (APSEC), 2002, pp. 495–504.

[16] N.-T. Truong and J. Souquieres, ‘‘An approach for the verification of UML
models using B,’’ in Proc. Int. Conf. Workshop Eng. Comput.-Based Syst.,
Brno, Czech Republic, 2004, pp. 195–202.

[17] M. Balaban, A. Maraee, and A. Sturm, ‘‘Management of correctness
problems in UML class diagrams towards a pattern-based approach,’’ Int.
J. Inf. Syst. Model. Des., vol. 1, no. 4, pp. 24–47, 2010.

[18] S. Hartmann, ‘‘Coping with inconsistent constraint specifications,’’ in
Proc. ER, vol. 2224. 2001, pp. 241–255.

[19] M. Lenzerini and P. Nobili, ‘‘On the satisfiability of dependency constraints
in entity-relationship schemata,’’ Inf. Syst., vol. 15, no. 4, pp. 453–461,
1990.

[20] B. Thalheim, Fundamentals of Entity-Relationship Modeling. New York,
NY, USA: Springer, 2000.

[21] D. Calvanese and M. Lenzerini, ‘‘On the interaction between ISA
and cardinality constraints,’’ in Proc. 10th Int. Conf. Data Eng., 1994,
pp. 204–213.

[22] R. Clarisó, C. A. González, and J. Cabot, ‘‘Towards domain refinement for
UML/OCL bounded verification,’’ in Software Engineering and Formal
Methods (Lecture Notes in Computer Science), vol. 9276. U.K.: Springer,
2015, pp. 108–114.

[23] A. Queralt and E. Teniente, ‘‘Reasoning on UML class diagrams with OCL
constraints,’’ in Conceptual Modeling—ER, vol. 4215. Tucson, AZ, USA:
Springer, 2006, pp. 497–512.

[24] A. Formica, ‘‘Finite satisfiability of integrity constraints in object-oriented
database schemas,’’ IEEE Trans. Knowl. Data Eng., vol. 14, no. 1,
pp. 123–139, Jan. 2002.

[25] N. Mahmud, ‘‘Ontology-based analysis and scalable model checking of
embedded systems models,’’ Ph.D. dissertation, Dept. Comput. Sci. Eng.,
Mälardalen Univ., Västerås, Sweden, 2017.

[26] T. H. Nguyen, J. C. Grundy, and M. Almorsy, ‘‘Ontology-based automated
support for goal–use case model analysis,’’ Softw. Qual. J., vol. 24, no. 3,
pp. 635–673, 2016.

[27] C. Corea and P. Delfmann, ‘‘Detecting compliance with business rules in
ontology-based process modeling,’’ in Proc. Int. Tagung Wirtschaftsinfor-
matik (WI), 2017, pp. 226–240.

[28] Y. Liao, H. Panetto, J. M. Simão, and P. C. Stadzisz, ‘‘Ontology-based
model-driven patterns for notification-oriented data-intensive enterprise
information systems,’’ in Proc. 7th Int. Conf. Inf. Soc. Technol. (ICIST),
2017, pp. 148–153.

[29] M. Fellmann, F. Hogrebe, O. Thomas, and M. Nüttgens, ‘‘An ontology-
driven approach to support semantic verification in business process mod-
eling,’’ in Proc. MobIS, 2010, pp. 99–110.

[30] J. Sun, H. H.Wang, and T. Hu, ‘‘Design software architecture models using
ontology,’’ in Proc. SEKE, 2011, pp. 191–196.

[31] K. Mokos, G. Meditskos, P. Katsaros, N. Bassiliades, and V. Vasiliades,
‘‘Ontology-based model driven engineering for safety verification,’’ in
Proc. 36th EUROMICRO Conf. Softw. Eng. Adv. Appl. (SEAA), 2010,
pp. 47–54.

[32] M. Kezadri and M. Pantel, ‘‘First steps toward a verification and validation
ontology,’’ in Proc. KEOD, 2010, pp. 440–444.

[33] A. Lapets, P. Lalwani, and A. Kfoury, ‘‘Ontology support for a lightweight
formal verification system,’’ Dept. CS, Boston Univ., Tech. Rep. BUCS-
TR-2010-012, 2010.

[34] H. He, Z. Wang, Q. Dong, W. Zhang, and W. Zhu, ‘‘Ontology-based
semantic verification for UML behavioral models,’’ Int. J. Softw. Eng.
Knowl. Eng., vol. 23, no. 2, pp. 117–145, 2013.

[35] W. Xu, A. Dilo, S. Zlatanova, and P. van Oosterom, ‘‘Modelling emergency
response processes: Comparative study on OWL and UML,’’ in Proc. Inf.
Syst. Crisis Response Manage. Harbin Eng. Univ., 2008, pp. 493–504.

[36] M. Bahaj and J. Bakkas, ‘‘Automatic conversion method of class diagrams
to ontologies maintaining their semantic features,’’ Int. J. Soft Comput.
Eng., vol. 2, no. 6, pp. 65–69, 2013.

[37] A. Belghiat andM. Bourahla, ‘‘FromUML class diagrams to OWL ontolo-
gies: A graph transformation based approach,’’ in Proc. ICWIT, 2012,
pp. 330–335.

[38] F. S. Parreiras and S. Staab, ‘‘Using ontologies with UML class-based
modeling: The TwoUse approach,’’ Data Knowl. Eng., vol. 69, no. 11,
pp. 1194–1207, 2010.

[39] G. Guizzardi, H. Herre, and G. Wagner, ‘‘Towards ontological foundations
for UML conceptual models,’’ in On the Move to Meaningful Internet
Systems: CoopIS, DOA, and ODBASE. Irvine, CA, USA: Springer, 2002,
pp. 1100–1117.

[40] G. Guizzardi, H. Herre, and G. Wagner, ‘‘On the general ontological foun-
dations of conceptual modeling,’’ in Conceptual Modeling—ER (Lecture
Notes in Computer Science), vol. 2503. Tampere, Finland: Springer, 2002,
pp. 65–78.

[41] A. B. Benevides and G. Guizzardi, ‘‘A model-based tool for conceptual
modeling and domain ontology engineering in OntoUML,’’ in Enterprise
Information Systems (Lecture Notes in Business Information Processing),
vol. 24. Milan, Italy: Springer, 2009, pp. 528–538.

[42] C. Larman, Applying UML and Patterns: An Introduction to Object Ori-
ented Analysis and Design and Iterative Development. New Delhi, India:
Pearson Education, 2012.

ABDUL HAFEEZ KHAN received theM.S. degree
in software engineering from Hamdard University,
where he is currently pursuing the Ph.D. degree
in computer science. His current research interests
include software engineering, model verification,
and ontology-based software.

VOLUME 6, 2018 3049

A. H. Khan et al.: Ontology-Based Finite Satisfiability of UML Class Model

SAYED HYDER ABBAS MUSAVI received the
B.E. degree in electronics engineering and the
Ph.D. and M.E. degrees in telecommunication
engineering under HEC Scholarship from the
Mehran University of Engineering and Technol-
ogy, Pakistan. He is currently serving as the Dean
of the Faculty of Engineering Science and Tech-
nology with Indus University, Karachi. Previously,
he was engaged as the Chairman of the Depart-
ment of Electrical and Electronics Engineering

with Hamdard University, Karachi. In past, he has served as a Professor and
the Principal at Petroman–an Institute ofMinistry of Information Technology
and Telecommunications, Government of Pakistan at its various campuses
for over ten years and had also remained Executive District Officer IT
(EDO-IT) District Government, Larkana. To his credit are over 30 research
publications in national and international journals. He has attended numerous
international conferences as an invited speaker. He is on review board of two
impact factor international journals. He is a member of numerous national
and international societies, including the IEEEP Karachi Local Council,
the IEEE Computer Society, the IEEE Signal Processing Society, the IEEE
Devices and Circuits Society, and the IEEE Communications Society.
He was a General Chair at the IEEE ICIEECT 2017.

AQEEL-UR-REHMAN received the B.S. degree
in electronic engineering from the Sir Syed Uni-
versity of Engineering and Technology, Karachi,
Pakistan, in 1998, the M.S. degree in information
technology from Hamdrad University, Karachi,
in 2001, and the Ph.D. degree in computer science
with specialization in ubiquitous computing from
the National University of Computer and Emerg-
ing Sciences, Karachi, in 2012. He is a Profes-
sor, the Deputy Director (Admin)-HIET, and the

Chairman of the Department of Computing, Faculty of Engineering Sci-
ences and Technology, Hamdard Institute of Engineering and Technology,
Hamdard University, Karachi. He is associated with Hamdard University
since last 18 years. He has over 19 years of teaching, research, and aca-
demic administration experience. He is the author of 47 research articles in
journals, conferences, and book chapters of international repute. His current
research interests include sensor networks, ubiquitous computing, computer
networks, and smart agriculture.

ASADULLAH SHAIKH received the B.Sc. degree
in software development from the University
of Huddersfield, England, the M.Sc. degree in
software engineering from the University of
Gothenburg, Sweden, and the Ph.D. degree in soft-
ware engineering from the University of Southern
Denmark, Denmark. He is currently an Assistant
Professor, the Head of research, and the Coordina-
tor of seminars and training at the College of Com-
puter Science and Information Systems, Najran

University, Najran, Saudi Arabia. He has vast teaching and research experi-
ence. He has written and published more than 70 research papers in top class
conferences and impact factor journals. He is also an editorial board member
and a reviewer of several national and international conferences/journals. He
is also a member of Technical Committee of Software Engineering of the
IEEE Computer Society. Previously, he was a member of the Software Engi-
neering Group with the Universitat Oberta de Catalunya, Barcelona, Spain.

3050 VOLUME 6, 2018

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	LINEAR INEQUALITY METHOD
	GRAPH-THEORETIC MODEL
	ONTOLOGY

	ANALYSIS OF CYCLES IN GRAPH-THEORETIC REPRESENTATION OF UML CLASS MODEL
	ONTOLOGY-BASED FINITE SATISFIABILITY
	COMPLEX GRAPH
	COMPLEXITY
	SOUNDNESS AND COMPLETENESS
	EMPIRICAL EVALUATION
	EXPERIMENT SETUP AND SUBJECT OF THE STUDY
	RQ1: IS IT POSSIBLE FOR A PROPOSED APPROACH TO SCALE WELL AT A PRACTICAL EXTENT?
	MEASUREMENTS AND SETUP
	RESULTS

	RQ 2: HOW DOES THE PROPOSED APPROACH COMPARE TO OTHER VERIFICATION METHODS?
	MEASUREMENTS AND SETUP
	RESULTS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ABDUL HAFEEZ KHAN
	SAYED HYDER ABBAS MUSAVI
	AQEEL-UR-REHMAN
	ASADULLAH SHAIKH

