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ABSTRACT Spatial remote sensing images are usually degraded during image capturing procedures mainly
due to the mixed factors of atmospheric turbulence, spacecraft motion, and out of focus lenses. The real
point spread function (PSF) of the whole imaging system is the convolution of all factors contributing to
degradation. The exact degradation PSFmodel estimation is important for the image restoration result. In this
paper, we considered the properties of the mixed degradation factors and proposed a new blind deconvolution
model to simultaneously estimate and remove blurs from remote sensing images. Inconsistent with existing
models, whichmainly focus on only one degradation type and estimate blur kernel parameters using the fixed
regularizer, we concentrated on the diversity of different PSF types and used the variable exponent regularizer
to improve kernel flexibility. The proposed model could estimate not only single PSF types, such as motion,
uniform, and Gaussian, but also composite PSFs of different types. Following the split Bregman method,
we employed an efficient computational method, which did not require PSF initial values, to minimize the
proposed cost function iteratively. Experimental results demonstrated the effectiveness and robustness of the
proposed method for simulated and real remote sensing images with different PSFs’ types.

INDEX TERMS Blind restoration, blur kernel estimation, variable exponent, alternating split Bregman.

I. INTRODUCTION
Generally, the blurring of satellite remote sensing images
occurs for various reasons, such as atmospheric turbulence,
spacecraft motion, out of focus lens, and other sensor proper-
ties [1], [2]. Blurriness can significantly degrade remote sens-
ing image quality, which lowers the performance of various
remote sensing applications, such as object detection, track-
ing, and disaster monitoring. Although image quality can be
improved using complex optical systems, such as free surface
design [3], [4], the costs are excessive. Therefore, a method
for deblurring the degraded image is actively required for sev-
eral remote sensing applications. One common mathematical
model for the forward blur process may be expressed as

u(x, y) = k(x, y)⊗ f (x, y)+ n(x, y) (1)

where u(x, y), f (x, y), k(x, y), and n(x, y) are the blurred
image, unknown sharp image, point spread function (PSF),
and additive noise, respectively; and ⊗ represents the

convolution operator. If k(x, y) is known, the model becomes
a non-blind deconvolution problem, which provides very
good results. However, the PSF is difficult to obtain in prac-
tice, and the task of blind deconvolution is to simultane-
ously estimate f (x, y) and k(x, y) given only the degraded
image, u(x, y).
In the general image processing field, many methods have

been proposed to address blind deconvolution [5]–[7], such
as spectral and cepstral zero estimation [8]–[10], statisti-
cal estimation [11]–[13], wiener filtering [14]–[16], learning
based [17]–[19], energy based [20], [21], etc. For remote
sensing images, researchers have often estimated the PSF
using specific features or objects (point source, edges, etc.).
Commonly used approaches include the knife edge [22],
sparsity based regularization [23], and pulse methods [24].

Since blind image deconvolution is a highly ill-posed
problem, regularizers must be added to make the problem
well-posed. A recent trend in blind image deconvolution
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FIGURE 1. Different point spread function (PSF) compositions: (a) Gaussian; (b) Disk; (c) Motion; (d) Gaussian-disk;
(e) Gaussian-motion; and (f) Gaussian-disk-motion.

focuses on extending regularization theory to address image
deconvolution. Chen et al. [25] proposed a soft double regu-
larization approach to parametric blind image deconvolution
that could estimate many well-known parametric PSFs, such
as motion, uniform and Gaussian blurs. Kenig [17] employed
example based machine learning techniques for modeling the
space of point spread functions. Tzikas et al. [11] proposed
a sparse kernel based model for the PSF using priors based
on the Student’s t probability density function. The perfor-
mance of their method was superior to Gaussian priors and
total variation (TV) [30] based methods. Keuper et al. [26]
proposed a regularization method deconvolution kernel on
widefield data based on imposing constraints on the PSF
in the frequency domain, which is easy to describe and is
well localized. Krishnan et al. [27] introduced a new type
of image regularization that produced the lowest cost for a
true sharp image. You and Kaveh [28] used the Tikhonov
regularizing term to capture the PSF smooth properties.
Chan and Wong [29] proposed a TV regularization based
approach to effectively restore piecewise constant PSF.
Liao and Ng [31] used a second order difference reg-
ularization term to recover PSF. A recent study in
Reference [32] used the Huber-Markov random field prior
to model both remote sensing images and PSF. Bayesian
methods are also frequently used in blind restoration. Such
methods use auto regressive (AR) and moving average (MA)
tomodel the image and PSF. Under this framework, the objec-
tive of blind deconvolution is to estimate image and blur
kernels using statistical tools such as the expectation max-
imization (EM) [33], maximum likelihood (ML) [34], or

FIGURE 2. Regularization parameter p for different parameter values.

generalized cross validation (GCV) [35]. However, the
smoothness constraint of the image and PSF, which is equiva-
lent to regularization methods, is implicitly incorporated into
these algorithms via the space invariant ARmodel [35]. Thus,
these techniques are not appropriate for blocky images and
sharp kernels. Babacan et al. [36] incorporated a TV function
as the image priori and an AR model as the blur priori.

For remote sensing applications, PSFs have some fixed
degree of parametric structure. If we only consider atmo-
spheric turbulence as the cause of degradation to the image,
the PSF would be Gaussian, which is smooth and non-
sparse. If an out of focus lens is the main reason, then the
PSF would be piecewise constant, which has sharp edges.
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FIGURE 3. Global framework of the proposed method.

FIGURE 4. Preprocessed test images for simulated experiments.

TABLE 1. Parameter choices for the simulation experiments.

If aircraft motion is the main reason, the PSF would be
piecewise constant and sparse. In reality, all three factors
contribute to degradation, and the PSF is a convolution of
the three forms. Thus, using a simple prior will not provide
satisfactory results. However, most existing blind restoration

methods require a hard decision on the PSF’s structure (usu-
ally Gaussian type) by adding simple priors to the algorithms,
which restricts algorithm flexibility.

In our study, we concentrated on the diversity of dif-
ferent PSF types. We proposed a new blind deconvolution
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TABLE 2. Peak signal to noise ratio (RSNR), structural similarity (SSIM), and Q metric for the simulation experiments.

model using a variable exponent regularizer to improve kernel
structure flexibility. The main advantage of the proposed
model was that it could incorporate many PSF types such as

motion, uniform, Gaussian, and composite PSFs. We showed
theoretically that the existence of a solution of the proposed
model was guaranteed. We derived the split Bregman based
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FIGURE 5. Simulation experiment using images degraded by 5 × 5 truncated Gaussian PSF: (a), (b) degraded images; and
restored images using (c), (d) NSBD; (e), (f) HMBD; (g), (h) TVBD method; and (i), (j) the proposed method.

alternating minimization, which does not need PSF initializa-
tion, to minimize the proposed cost function iteratively.

The rest of the paper is organized as follows. In Section 2,
we present the new model. In Section 3, we develop the
split Bregman based method to solve the proposed model.
In Section 4, we discuss the choice of parameters and
compare the proposed method with several state-of-the-art
models. In Section 5, we discuss connections with the other
methods, convergence analysis of the algorithm and the
advantages and disadvantages of the model. In Section 6,
we provide our conclusions.

II. BLIND DECONVOLUTION WITH VARIABLE
EXPONENT REGULARIZER
One of the biggest challenges in blind restoration is PSF
estimation. Actual remote sensing PSFs are often composed
of simple PSF types. Composite PSFs have more flexi-
ble structures, combining different features of simple PSFs.
FIGURE 1 shows three of the most common simple PSFs and
three composite PSFs formed by convoluting two or three

different PSF types. The Gaussian-disk composite PSF
formed by convoluting Gaussian and disk PSFs is similar to
Gaussian, but less smooth than pure Gaussian. The Gaussian-
motion composite PSF is no longer piecewise constant and
the Gaussian-disk-motion composite PSF has no sharp edges.

Conventional blind methods normally employ two distri-
bution priors to model PSF shapes, Gaussian and Laplace
distributions, which are equivalent to TV and Tikhonov reg-
ularizers. The TV regularizer is a very successful method for
piecewise constant PSF restoration because of its crisp edge
reconstruction. However, for smooth PSFs, the TV regular-
izer does not produce satisfactory results [37]. Tikhonov reg-
ularization is far superior for smooth PSF reconstruction, but
smears edges if the PSF is piecewise constant. Thus, it seems
sensible to combine the advantages. The basic concept was
to use TV-like regularization near the edges, Tikhonov-like
regularization in flat regions, and a compromised regularizer
elsewhere as it would provide better smoothness, while still
allowing recovery of the sharp edges, thus allowing improved
flexibility in PSF structures. For remote sensing images,
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FIGURE 6. Simulation experiment using images degraded using disk PSF: (a), (b) degraded images; and restored images using
(c), (d) NSBD; (e), (f) HMBD; (g), (h) TVBD; and (i), (j) the proposed method.

although the main degradation factor is atmospheric turbu-
lence, the PSF is usually a composition of multiple simple
PSFs, leading to a less smooth shape than pure Gaussian. The
proposed model uses a variable exponent regularizer R(k) for
estimating PSF,

R(k) =
∫
|∇k|p(|∇c|)dδ

where k is the PSF estimation, |∇k| =
√
k2x + k2y , where kx

and ky are the partial derivatives. c is the true PSF, which will
be discussed in Section 3, and

p(s) = 1+
1

1+ ts2
(2)

which has the following properties:
1. p(s) is an inversely relation function with respect to s;
2. p(s) ranges from 1 to 2;
3. for edges, i.e., s is large, p tends to 1;
4. for flat regions, i.e., s is small, p tends to 2.

Thus, |∇k|p(|∇c|) can automatically distinguish different
regions and provide different penalty degrees adaptively.

The parameter t can be considered as a threshold. It con-
trols the curve rate of decrease, as shown in Figure 1 for
various t . When t is large, TV-like regularization is domi-
nant; whereas if t is small, Tikhonov-like regularization has
the leading role in most regions, which would smear edges.
Thus, t must be appropriately selected to meet the anticipated
requirements.

We formulated the proposed model as

min
f ,k

J (f , k)

= min
f ,k

γ ||k(x, y)⊗ f (x, y)− u(x, y)||22

+ αR(k)+ β
∫
|∇f |dδ

subject to k(x, y) ≥ 0, (x, y) ∈ D,∫
D

k(x, y)dδ = 1, (x, y) ∈ D,

0 ≤ min(f ) ≤ f (x, y) ≤ max(f ) <∞,

(x, y) ∈ �, (3)
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FIGURE 7. Simulation experiment using images degraded using motion PSF: (a), (b) degraded images; and restored images
using (c), (d) NSBD; (e), (f) HMBD; (g), (h) TVBD; and (i), (j) the proposed method.

Where γ , α and β are positive constants; and D denotes the
PSF support.

Similar regularization has been applied in other fields.
Blomgren et al. [37] proposed a similar functional for image
denoising problems, minimizing

E(u) =
∫
�

|∇u|p(|∇u|)dx

where u is the denoised image and p(·) is the decreasing
function with lim

s→0
p(s) = 2, lim

s→∞
p(s) = 1. However, since

p relies on ∇u, it is difficult to establish the lower semi
continuity property of the functional. Chen et al. [38] pro-
posed a variable exponent linear growth functional model for
image denoising, enhancement, and restoration. Li et al. [39]
extended this using variable exponent functionals for image
denoising problems. Dou et al. [40] proposed a variable
exponent functional based Retinex model for realistic image
rendition.

We show a solution existence for the proposed model.
Theorem 1: Let � ⊂ R2 be a bounded set, u ∈ L2(�) ∩

BV (�), f ∈ L2(�)∩BV (�), ||f ||∞ ≤ ||u||∞; ||∇f || < M a.e.
on �. k ∈ W 1,p(x)(�) ∩ L1(�) is equi-continuous and has a
compact support D, k ≥ 0,

∫
�

kdx = 1. Then Equation (3) has

the solution pair (f∗, k∗) ∈ (L2(�)∩BV (�))× (W 1,p(x)(�)∩
L1(�)).

Proof: Please see Appendix A.

III. NUMERICAL IMPLEMENTATION EMPLOYING SPLIT
BREGMAN ITERATION
Following the split Bregman framework [41] and alternating
minimization algorithm [28], we derived an alternating split
Bregman scheme to solve Equation (3). To use Fourier trans-
form, we assumed that both images and PSFs had periodic
boundary conditions. To derive the alternating split Breg-
man algorithm, we introduced two dual variables, b1 and b2,
to replace ∇k , ∇f respectively and considered the discrete
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FIGURE 8. Simulation experiment using images degraded using Gaussian-disk PSF: (a), (b) degraded images; and restored
images by (c), (d) NSBD; (e), (f) HMBD; (g), (h) TVBD; and (i), (j) the proposed method.

version of Equation (3), yielding the discrete constrained
optimization problem

min
f ,K

J (f ,K )

= min
f ,K

γ ||Kf − u||22 + α
∑
|b1|p(|∇c|) + β

∑
|b2| (4)

subject to b1 = ∇k, b2 = ∇f (5)

where f , u, and k denote the unknown sharp image, observed
image, and PSF, respectively, in vector form, which are
formed by column lexicographical ordering; γ , α, and β
are positive constants; K is a block circulant matrix with a

circulant block formed by k; |b| =
√
b21 + b

2
2, where all the

operation is element-wise and b = (b1, b2) where b1 and b2
are the vectors;∇k = (kx , ky),∇u = (ux , uy), in which ux and
uy (or kx and ky) represent the first-order finite difference of
u (or k) in the horizontal and vertical directions respectively;
p is defined in Equation (2) and

∑
denotes the summation

taken over all elements of the vector. Using the augmented

Lagrangian method, we redefined this model as

min
f ,k

J (f , k)

= min
f ,k

γ ||Kf − u||22 + α
∑
|b1|p(|∇c|) + β

∑
|b2|

+ λ1||b1 −∇k||22 + λ2||b2 −∇f ||
2
2 (6)

where λ1 and λ2 are positive parameters. Like the split Breg-
man iteration, the proposed iteration scheme is

(k i+1, f i+1, bi+11 , bi+12 )

= argmin
k,f ,b1,b2

γ ||Kf − u||22 + α
∑
|b1|p(|∇c|)

+β
∑
|b2| + λ1||b1 −∇k − t i1||

2
2

+ λ2||b2 −∇f − t i2||
2
2 (7)

t i+11 = t i1 +∇k
i+1
− bi+11 (8)

t i+12 = t i2 +∇f
i+1
− bi+12 (9)
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FIGURE 9. Simulation experiment using images degraded using Gaussian motion PSF: (a), (b) degraded images; and restored
images using (c), (d) NSBD; (e), (f) HMBD; (g), (h) TVBD; and (i), (j) the proposed method.

Using the alternating minimizing algorithm, the joint mini-
mizing Equation (7) can be solved by decoupling into several
subproblems:

1. Calculate the k subproblem with fixed b1, t1 and f :

k i+1 = argmin
k

γ ||F ik − u||22 + λ1||b
i
1 −∇k − t

i
1||

2
2 (10)

where F i is a block circulant matrix with a circulant block
generated by image f i. The optimal k i+1 satisfies

γ (F i)T (F ik i+1 − u)− λ11k i+1 + div(bi1 − t
i
1) = 0 (11)

Where T , 1 and div are the conjugate, Laplace and diver-
gence operators respectively. Equation (11) can be computed
efficiently using fast Fourier transform (FFT),

k i+1 = FFT−1
(
FFT ((F i)T u− λ1

γ
div(bi1 − t

i
1))

FFT ((F i)TF i − λ1
γ
1)

)
(12)

Then some constraints of model (3) are added to obtain
physical solutions. Note that as the support size of true
PSF is usually unknown, the size of the initial supportDmust
be set no less than the true support.

2. Calculate the b1 subproblem with fixed k i+1, t1, and f :

bi+11 = argmin
b1

α
∑
|b1|p(|∇c|) + λ1||b1 −∇k i+1 − t i1||

2
2

(13)

The corresponding Euler–Lagrangian equation system is

αp(|∇c|)|b1|p(|∇c|)−
1
2 b1 + 2λ1(b1 −∇k i+1 − t i1) = 0

(14)

Let b1 = (b11, b12) and t1 = (t11, t12), then Equation (14)
becomes{

(a+ 2λ1)b11 − 2λ1k i+1x − 2λ1t i11 = 0
(a+ 2λ1)b12 − 2λ1k i+1y − 2λ1t i12 = 0

(15)
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FIGURE 10. Simulation experiment using images degraded using Gaussian-disk-motion PSF: (a), (b) degraded images; and
restored images using (c), (d) NSBD; (e), (f) HMBD; (g), (h) TVBD; and (i), (j) the proposed method.

where

a = αp(|∇c|)(b211 + b
2
12)

p(|∇c|)
2 −1 (16)

This system cannot be solved explicitly. We describe two
approaches to find the numerical solution of Equation (15).

Newton method: A few steps of Newton’s method can be
used to obtain the numerical solution. From Equation (15),
we can deduce that if neither b11 nor b12 equal zero, then

b11 =
k i+1x + t i11
k i+1y + t i12

b12 (17)

Newton’s algorithm for Equation (15) with respect to b11 is
where

r = αp(|∇c|)(1+ (
k i+1y + t i12
k i+1x + t i11

)2)
p(|∇c|)

2 −1 (19)

Lookup Table Method: Using the above Newton method
is time consuming. However, motivated by [46], for a fixed

FIGURE 11. PSNR histogram for various PSFs.

value of p, b11 (b12) only depends on k i+1x + t i11 (k
i+1
y + t i12)

and α/λ1, hence we can easily tabulated the solution of
Equation (15) in advance to form a lookup table (LUT), which
speeds up the computation.We sample 20 numbers uniformly
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FIGURE 12. The raw sub images cropped from ZY-3 Panchromatic images. (a) Anping City with nadir camera; (b) zoom in;
(c) Zhaodong City with nadir camera; (d) zoom in; (e) Anping City with forward camera; (f) zoom in; (g) Zhaodong City with
forward camera; (h) zoom in; (i) Pearl River Estuary; (j) zoom in; (k) Hainan Island; (l) zoom in.

Algorithm 1 Newton’s Method
While not convergent

bj+111 = sign(k i+1x + t i11) max{bj11

−
r(bj11)

p(|∇c|)−1
+ 2λ1(b

j
11 − |k

i+1
x + t i11|)

(p(|∇c|)− 1)r(bj11)
p(|∇c|)−2 + 2λ1

, 0} (18)

End

from the range of p, from 1 to 2, to make 20 tables. For
each sampled number p, b11 (b12) is numerically solved for
10,000 and 500 different values of k i+1x + t i11 (k i+1y + t i12)

and α/λ1 over the range encountered in our problem (−1 ≤
k i+1x + t

i
11 ≤ 1,−1 ≤ k i+1y + t

i
12 ≤ 1, 0 ≤ α/λ1 ≤ 1). During

the computation, we first approximate p of every pixel by
the nearest sampled numbers, then use the corresponding off-
line tables to solve Equation (15). Although the LUT gives
an approximation, it allows b1 subproblem to be solved very
quickly for any p ∈ (1, 2].
3. Update t1:

t i+11 = t i1 +∇k
i+1
− bi+11 (20)

The main problem of this algorithm is that d is unknown
in practice. One alternative was to use the last updated k
to replace d . In other words, k i+1 was used to replace d
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FIGURE 13. Restoration performance using: (a), (i) NSBD and (b), (j) zoomed-in; (c), (k) HMBD and (d), (l) zoomed-in;
(e), (m) TVBD and (f), (n) zoomed-in; (g), (o) proposed method and (h), (p) zoomed-in; restored PSF using (q),
(u) NSBD; (r), (v) HMBD; (s), (w) TVBD; (t), (x) the proposed method.
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FIGURE 13. Continued. Restoration performance using: (a), (i) NSBD and (b), (j) zoomed-in; (c), (k) HMBD and (d),
(l) zoomed-in; (e), (m) TVBD and (f), (n) zoomed-in; (g), (o) proposed method and (h), (p) zoomed-in; restored
PSF using (q), (u) NSBD; (r), (v) HMBD; (s), (w) TVBD; (t), (x) the proposed method.

during the ith iteration step. As the exponent changes during
computation, it was difficult to prove the overall convergence
of the algorithm mathematically. However, as presented in
Section 5.1, the algorithm did converge to the desired solution
pair.

4. Calculate the f , b2, t2 subproblem with fixed b1, t1
and k .
When we placed the iterative minimization problem

into the framework described in Reference [41] directly,
we obtained the algorithm 2, where K i+1 is a block circulant
matrix with a circulant block generated by k i+1 and

shrink(x, r) =
x
|x|

max(|x| − r, 0).

The main advantage of the proposed algorithm is that it
does not require an initial estimation of PSF. Figure 3 shows
the global framework of the proposed method, and the pro-
posed blind deconvolution algorithm can be summarized
as algorithm 3. Readers can read the block diagram and
algorithm 3 to understand the global framework.

IV. PARAMETER SELECTION AND NUMERICAL RESULTS
Here we provide a guideline for parameter selection and
present numerical results to demonstrate the efficiency of the
proposed model and algorithm. Here we provide a guide-
line for parameter selection and present numerical results
to demonstrate the efficiency of the proposed model and
algorithm. In Section 4.1, we present the heuristic choice
of parameters, and in Sections 4.2 and 4.3, we used simu-
lated and real data images, respectively, to test the algorithm.
Three state-of-the-art blind restoration methods were com-
pared: the normalized sparsity measure (NSBD) [27], Huber-
Markov (HMBD) [32], and total variation (TVBD) [21].

Algorithm 2 Calculate the Latent Image
While not convergent

For j = 1 to M

f i+1 = FFT−1
(
FFT ((K i+1)T u− λ2

γ
div(bi2 − t

i
2))

FFT ((K i+1)TK i+1 −
λ2
γ
1)

)

bi+12 = shrink(∇f i+1 + t i2,
β

λ2
)

t i+12 = t i2 +∇f
i+1
− bi+12

End
End

In our approach, we compare the performances of the Newton
and LUT methods as well.

We tested the proposed algorithm experimentally using
different images and PSFs. The code was implemented using
MATLAB with machine precision approximately 10−16. For
simulated images, we used peak signal to noise ratio (PSNR),
structural similarity (SSIM), and the Q metric to evaluate
the restored image quality. These indexes were defined as
follows.

PSNR = 10 log (
(2n − 1)2

||f − u||2
) (21)

SSIM =
(2µuµf + C1)(2δfu + C2)

(µ2
f + µ

2
u + C1)(δ2f + δ

2
u + C2)

(22)

Q = s1
s1 − s2
s1 + s2

(23)

where f and u are the recovered and high quality reference
images; µf and µu represent the mean intensities of f and u,
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FIGURE 14. Restoration performance using: (a), (i) NSBD and (b), (j) zoomed-in; (c), (k) HMBD and (d), (l) zoomed-in; (e), (m) TVBD and (f),
(n) zoomed-in; (g), (o) proposed method and (h), (p) zoomed-in; restored PSF using (q), (u) NSBD; (r), (v) HMBD; (s), (w) TVBD; (t), (x) the
proposed method.
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FIGURE 14. Continued. Restoration performance using: (a), (i) NSBD and (b), (j) zoomed-in; (c), (k) HMBD and (d),
(l) zoomed-in; (e), (m) TVBD and (f), (n) zoomed-in; (g), (o) proposed method and (h), (p) zoomed-in; restored
PSF using (q), (u) NSBD; (r), (v) HMBD; (s), (w) TVBD; (t), (x) the proposed method.

respectively; δf , δu and δfu represent the standard deviation
of the restored and high quality reference images, and their
covariance, respectively;C1,C2 are two constants, and s1 and
s2 are singular values of each 8×8 block in the gradientmatrix
of the restored image.

For all experiments in this paper, the original image inten-
sities were rescaled into the range [0, 1].

A. PARAMETER SELECTION
There are five parameters in Equation (7), i.e., γ , α, β, λ1 and
λ2. γ measures the fidelity to the original data. Parameters α
and β control the PSF and image smoothness, respectively.
λ1 and λ2 are the penalty term weights which control the
similarities between b1, b2 and ∇k , ∇f , respectively.
Many recent papers have reported the failure of joint image

and PSF estimation, showing that joint estimation meth-
ods provided only trivial solutions, i.e., PSF was the delta
function and the restored image was the degraded image as
both the fidelity and regularizer terms favored a blur solu-
tion. Since we wanted non-trivial solutions, the solution pair
should be far from the trivial solutions to avoid the undesired
local minimum. To achieve this, we imposed an initial strong
regularizer to avoid the undesired trivial solution pair.

B. SIMULATED RESTORATION EXPERIMENTS
We tested the proposed algorithm on different kernel types
and images, including Gaussian, motion, disk, and compos-
ites of these PSFs. Since remote sensing image noise is
usually not serious, we added a moderate level of noise to
the simulated experiments. The parameters were shown in
table 1.

Figure 4 shows two preprocessed 512×512 remote sensing
images used in the simulated experiments, cropped from high
quality QuickBird products. Figures 5–7 show blurred images
generated by a 5 × 5 truncated Gaussian PSF with standard
deviation = 3, motion PSF with length 7 and angle 30◦, and
disk PSF with radius = 3, respectively. Blurred images in
Figures 8–10 were generated by composite PSFs com-
pounded with the previous PSFs for Gaussian-motion,
Gaussian-disk, and Gaussian-disk-motion, respectively. All
blur images had white Gaussian noise (WGN) added with
variance 0.001. For all experiments, HMBD and TVBD used
the Gaussian function as PSF initialization, while NSBD used
the horizon bar as PSF initialization. Note that we also used
different PSF initialization for the compared methods, but the
results remained similar. In contrast, the proposed algorithm
didn’t require PSF initialization. We have conducted many
experiments for all methods and reported the best results.

Table 2 summarizes the PSNR, SSIM, and Q metric of
the recovered images for the different methods, including
proposed Newton and LUT methods, and PSFs. In general,
NSBD performance was limited in certain cases, while the
other three methods produced impressive results. The pro-
posed algorithm produced comparable or superior results to
the three current state-of-the-art methods in most cases. For
Gaussian PSFs, the proposed methods (PSNR and SSIM)
were comparable to the other methods. For motion and disk
PSFs (which are piecewise constant), TVBD produced bet-
ter results than the other methods. These outcomes were
expected as TV prior favors a piecewise constant solution.
However, for composite PSFs, the proposed method outper-
formed all the other methods in most cases. The main reason
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FIGURE 15. Restoration performance using: (a) NSBD and (b) zoomed-in; (c) HMBD and (d) zoomed-in; (e) TVBD and (f)
zoomed-in; (g) proposed method and (h) zoomed-in; restored PSF using (i) NSBD; (j) HMBD; (k) TVBD; (l) the proposed method.

is that composite PSFs have new characteristics compared
with previous PSFs; and are neither sparse in the gradi-
ent domain, nor follow pure Gaussian distribution. Unlike
these models, the variable exponent regularizer can adap-
tively capture the PSF smoothness, thus providing more flex-
ibility and producing superior results. All of the evaluation
indexes for the proposed method are almost the same whether
we use LUTs or Newton method. However, LUT is about
3 times faster than Newtonmethod, hence in practice the LUT
method is preferred.

Figures 5–10 show various visual comparisons of the
results. In most cases, NSBD performance was limited,
while the three other methods achieved significant visual
improvement. For single type kernels, i.e., Gaussian, disk,
and motion kernels, HMBD suffered more artifacts in the
simulated experiments. These artifacts mainly resulted from
the HMRF prior hard threshold, which may mistake some
mid-level edges in the images for texture. In contrast, TVBD

and the proposed method had few artifacts and similar
appearance.

For composite kernels, the proposed method outperformed
the other three methods. HMDB and TVBD suffered from
ripple (Figure 10) or mosaic (Figures 8–10) effects, while few
of these appeared in the proposed method. Since the vari-
able exponent regularizer was more flexible than Tikhonov
and TV regularizers, the proposed method could recover
more accurate PSFs, thus reducing artifacts in the recovered
images.

Figure 11 shows the PSNR histogram of the recov-
ered PSFs for different kernel types. The proposed method
achieved the highest PSNR in composite PSF cases,
i.e., restored PSFs using the proposed method were closest
to ground truth.

Table 3 shows the running time of all the algorithms.
The proposed algorithm with LUT is highly competitive
compared with the other state-of-the-arts.
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FIGURE 16. Restoration performance using: (a) NSBD and (b) zoomed-in; (c) HMBD and (d) zoomed-in; (e) TVBD and (f)
zoomed-in; (g) proposed method and (h) zoomed-in; restored PSF using (i) NSBD; (j) HMBD; (k) TVBD; (l) the proposed method.

TABLE 3. Running time (seconds) comparisons of 5 different methods.

C. RESTORATION OF REAL ZY-3 AND
GF-4 PANCHROMATIC IMAGE
The Zi Yuan 3 (ZY-3) cartographic satellite, which was
launched on 9 January 2012, is China’s first civil high
resolution stereo mapping satellite. It carries four opti-
cal cameras: three panchromatic time delay integration
CCD (TDI-CCD) cameras in the nadir, forward, and after-
ward views and an infrared multispectral scanner [43]. The
nadir (forward) camera has a resolution of 2.1 (3.5) m,
a swath width of 50 (52) km, and an on-orbit MTF value
at the Nyquist frequency tested of more than 0.12 (0.16).
The Gao Fen 4 (GF-4) satellite, launched in Xichang

Satellite Launch Center on December 29, 2015, is the first
geosynchronous orbit remote sensing satellite in China and
equipped with one stare camera with resolution of 50m
visible light/400m medium wave infrared ray and swath of
over 400km [45].

We tested six real panchromatic images, four from ZY-3
nadir (Figure 12(a), (c)) and forward (Figure 12(e), (g))
cameras, and the other two (Figure 12(i), (k)) from GF-4
satellite. The four images of ZY-3 were acquired on
18 February 2012 (Figure 12(a), (c)) and 13 September 2013
(Figure 12(e), (g)), in Anping and Zhaodong City, Hebei
and Heilongjiang Province, and the two test images of GF-4
were acquired on 26 January 2017 (Figure 12(i)) and
20 August 2013 (Figure 12(k)), in Pearl River Estuary and
Hainan Island. All of them were level-1 data. Since all the
full raw panchromatic images were very large, we cropped
six 400 × 400 sub-images, which contain the calibration
targets or other representative features.
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FIGURE 17. Residual images of bottom right part of Figure 12 (g) : (a) NSBD; (b) HMBD; (c) TVBD;
(d) the proposed method.

Figures 13–16 show the restored images and restored PSFs.
All methods improved visual quality over the raw images;
however, the zoomed-in portions of the restored images
showed that the proposed method produced less disorder and
noise around the calibration target and the representative fea-
tures, while the other three methods introduced noise or dis-
order. The restored PSFs showed that they were not purely
Gaussian, but more like Gaussian-disk PSFs. Figure 17 shows
the comparisons of residual image of the bottom right part
in Figure 12 (g). We see that the residual images of NSBD
and TVBD have fewer details than those of HMBD and the
proposed method, while the residual images of the proposed
method contain less noise ( see the isolate points of residual
images) than that of HMBD.

V. DISCUSSION
A. CONNECTION AND COMPARISONS WITH
EXISTING METHODS
Our objective was to develop a more general and flexible
regularizer for estimating PSF from a single degraded remote
sensing image. Most existing blind restoration models for
remote sensing images, such as the knife edge model [22] and
pulse model [24], assumes that the remote sensing images
are degraded due to atmosphere turbulence, i.e., the PSF is

FIGURE 18. The PSF estimation of the first iteration.

Gaussian function. If we set t = 0 in p, the proposed
variable exponent regularizer would degrade to the Tikhonov
regularizer, which is equivalent with the above-mentioned
models. Thus, the proposed model can be considered as the
generalization of the existing models.

Compared to existing methods, we included other degra-
dation factors such as out of focus lens and motion into
consideration. The proposed variable exponent regularizer
allowed more flexibilities of PSFs, thus could estimate com-
posite PSFs more accurately. In Section 4, we used both
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FIGURE 19. Evolution of PSNR, SSIM and Q metric with iteration for different PSF types: (a) Gaussian; (b) motion; (c) disk;
(d) Gaussian-motion; (e) Gaussian-disk; and (f) Gaussian-motion-disk.

simulated and real blurred remote sensing images to validate
the efficiency of the proposed model. For simple PSFs in
simulated experiments, i.e., Gaussian, disk and motion PSFs,
the proposed model achieved highly competitive perfor-
mances in comparison with the other blind restoration meth-
ods [21], [27], [32]. For composite PSFs, i.e., Gaussian-disk,
Gaussian-Motion and Gaussian-disk-motion PSFs, the pro-
posed model outperformed the other state-of-the-arts in both

visual and quantitative assessment, thus validating the effi-
ciency of the proposed model. The real data experiments
using raw ZY-3 and GF-4 panchromatic images further
validated the effectiveness of the proposed model, which
performed well in all experiments. In these experiments,
the results of NSBD were the worst in the most of cases,
because it used the sparse regularizer to model PSFs, which
is incompatible with remote sensing images; the other three
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Algorithm 3 Overall Algorithm

1: Initialize: f 0 = u, i = b01 = b02 = t01 = t02 = 0 and
support size of PSF
2: While |f i − f i−1|2 ≤ ε
3: For j = 1, 2, . . . do

k i+1 = FFT−1
(
FFT ((F i)T u− λ1

γ
div(bi1 − t

i
1))

FFT ((F i)TF i − λ1
γ
∇)

)
;

Impose constraints on k i+1;
Solve bi+11 using Newton or LUT method;

t i+11 = t i1 +∇k
i+1
− bi+11

End
4: For j = 1, 2, . . . do

f i+1 = FFT−1
(
FFT ((K i+1)T u− λ2

γ
div(bi2 − t

i
2))

FFT ((K i+1)TK i+1 −
λ2
γ
∇)

)

bi+12 = shrink(∇f i+1 + t i2,
β

λ2
)

t i+12 = t i2 +∇f
i+1
− bi+12

End
i = i+ 1;

5: End

methods achieved impressive results. TVBD used TV reg-
ularizer to model PSFs, but TV is valid only for piecewise
constant PSFs. HMBD method used Huber Markov prior to
model both PSFs and images. Huber Markov prior ρa also
combined the advantages of TV regularizer and Tikhonov
regularizer via a hard threshold a:

ρa(|∇f |) =

{
|∇f |2, |∇f | ≤ a
2a|∇f | − a2, |∇f | > a

The hard threshold combination may be not the best choice
because it maymistake some less smooth regions in PSFs and
lead to the piecewise constant like PSFs. However variable
exponent regularizer used the compromised regularizer to
handle mid-level smooth regions, leading to the more robust
results.

While other existing algorithms for remote sensing images
are sensitive to the initial PSF [22], the proposed algorithm
does not require PSF initialization. In fact, the proposed algo-
rithm used a Gaussian like PSF as the initialization, because
the split Bregman algorithm used the Tikhonov regularizer
for the first iteration, making the shape of PSF like a Gaussian
function, of which Figure 18 shows an example. In addition,
though the exponent changed during computation, the algo-
rithm ultimately converged to the desired solution pair.
Figure 19 shows the evolution curves of the PSNR, SSIM
and Q metric with iterations for different PSF types, where

the index values have been normalized to assist visualization.
All indexes converged within 15 iterations, indicating the
robustness of the proposed algorithm.

B. LIMITATIONS AND FUTURE WORK
The main limitation is that though we formally proved the
solution existence of the proposed model, the proof of the
proposed algorithm is difficult since the exponent changed
during the computation. Thus, we will investigate this as
future work.

VI. CONCLUSIONS
We proposed a new blind deconvolution model using a vari-
able exponent regularizer. The main advantage of the pro-
posed model was that it could incorporate many PSF types,
such as motion, uniform, Gaussian and composite PSFs.
A split Bregman based alternating minimization method was
employed to minimize the proposed cost function iteratively.
Furthermore, the proposed algorithm did not require PSF
initialization. The algorithm converged within 15 loops in all
experiments.

In our work, both simulated and real blurred remote sens-
ing images were tested. Experimental results demonstrated
that for simple PSFs, i.e., Gaussian, disk, andmotion, the pro-
posed model achieved highly competitive results with other
state-of-the-art methods; for composite PSFs, the proposed
model outperformed the other methods. The real data exper-
iments with ZY-3 and GF-4 panchromatic images further
demonstrated the effectiveness of the proposed method.

We formally proved the solution existence of the proposed
model, but evidence of the proposed algorithm was difficult
since the exponent changed during the computation. Thus,
this will be investigated as a future research area.

APPENDIX
Appendixes, if needed, appear before the acknowledgment.

Proof of Theorem 1. We first present some prelim-
inaries for variable exponent space and its properties,
following [39] and [43].
Definition 1 (Variable Exponent Spaces): Let � be a

bounded open set with a Lipschitz boundary and p(x) : �→
[1,+∞) a measurable function, with the family of all mea-
surable functions on � being P(�). We define a functional,
which is also called modular,

Qp(x)(u) =
∫
�

|u|p(x)dx

and a norm,

||u||p(x) = inf{λ > 0 : Qp(x)(u/λ) ≤ 1}.

Then the variable exponent Lebesgue and Sobolev spaces
are, respectively,

Lp(x)(�) = {u : �→ R|||u||p(x) <∞},

and

W 1,p(x)(�) = {u : �→ R|u ∈ Lp(x)(�),∇u ∈ Lp(x)(�)}.
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With the norm ||u||1,p(x) = ||u||p(x)+||∇u||p(x),W 1,p(x)(�)
becomes a Banach space.
Definition 2 (Log Holder Continuity):A function p : �→

R is said to be globally log-Holder continuous on � if there
exists positive constants c1, c2, and a ∈ R, such that

|p(x)− p(y)| ≤
c1

− log |x − y|

|p(x)− a| ≤
c2

log |e+ |x||

For all x ∈ �. We denote Log holder continuous function
set as Plog(�).
Lemma 1 (Relationship BetweenModular and Norm [43]):

Let Qp(x) be a modular on X and u ∈ X , then ||u||p(x) ≤
Qp(x)(u)+ 1.
Lemma 2 (Embedding Theorem [39]): Let p(x), q(x) ∈

P(�), and p(x) ≤ q(x) for a.e. x ∈ �. Then Lq(x)(�) is
continuously embedded in Lp(x)(�).
Lemma 3 (Convexity [39]): Let F(∇l, x) = |∇l|p(x), with

p(x) = 1 + 1
1+w|∇c|2

as in Equation (3). Then for each x,
F(ξ, x) is convex in ξ .
Lemma 4 (Weak Lower Semi Continuity [39]): Let F(ξ, x)

be bounded from below, and the map ξ → F(ξ, x) be convex
in each x ∈ �. Then the energy functional, I =

∫
�

F(∇l, x)dx,

is weak lower semi-continuous inW 1,p(x).
Lemma 5 [43]: Let p ∈ Plog(�), then for every u ∈

W 1,p(·)
0 (�) the inequality

||u||W 1,p(�) ≤ (1+ c diam(�))||∇u||Lp(x)(�)

holds.
Lemma 6 [43]: Let Q denote the modular and u ∈ X , then.
||u||p(x) ≤ Q(u)+ 1.
Lemma 7 [39]: Let the dimension of� be 2, 1 < p(x) ≤ 2.

Then W 1,p(�) is compactly embedded in Lp(x)(�).
Theorem 1: Let � ⊂ R2 be a bounded set, u ∈ L2(�) ∩

BV (�), f ∈ L2(�) ∩ BV (�), ||f ||∞ ≤ ||u||∞; ||∇f || < M
a.e. on �. k ∈ W 1,p(x)(�) ∩ L1(�) is equi-continuous and
has a compact support D, k ≥ 0,

∫
�

kdx = 1. Then Equa-

tion (3) allows a solution pair (f∗, k∗) ∈ (L2(�) ∩ BV (�))×
(W 1,p(x)(�) ∩ L1(�)).
Proof: There exists a special image-PSF pair (f , k) such

that J < ∞. Therefore, there must exist a minimizing
sequence (fn, kn) subject to constraints

||kn(x, y)⊗ fn(x, y)− u(x, y)||22 ≤ M ,∫
|∇kn|p(|∇c|)dxdy < M ,∫

|∇fn|dxdy < M ,

where M denotes a universal positive constant that may
differ from line to line. From the Poincare inequality, {fn} is
bounded in L2(�). Then from the Schwartz inequality,

||f ||L1(�) ≤ ||f ||L2(�) ×
√
|�|.

Hence, {fn} is also bounded in L1(�). Then from the L1

precompactness of bounded sets of BV functions on bounded
domains and Cantor’s diagonal selection method, we can find
a subsequence of {fn}, for convenience still labeled by {fn},
and f∗, such that on any finite disk Bρ = {x ∈ R2 : |x| < ρ},

fn→ f∗. (24)

With a further round of subsequence selection, we can
assume that fn→ f∗ a.e. in R2.
Since

∫
|∇kn|p(|∇c|)dxdy < M , from Lemma 6

||∇kn||Lp(x)(�) < M , and from Lemma 5, ||kn||W 1,p(�) ≤ M .
Thus, since

∫
�

|k|dx = 1, {kn} is bounded in W 1,p(x)(�) ∩

L1(�). From Lemma 7 and the L1 pre-compactness of
bounded sets of BV functions on bounded domains, we find a
Cauchy subsequence. which we still label as {kn}. Similarly,
we can find k∗ such that on any finite disk Bρ = {x ∈ R2 :
|x| < ρ},

kn→ k∗ (25)

With a further round of subsequence selection, we can assume
that kn→ k∗ a.e. in R2.
For any fixed x ∈ R2, define kx(y) = k(x− y), r = R+ |x|

where R is the radius of the support. Then

k ∗ f (x) = < kx(y), f (y) >

= < kx(y), f (y) >Br + < kx(y), f (y) >Bcr

where Bcr = �\Br . Hence, restricted on Br , Equation (24)
implies kxn (y)→ kx∗ (y) in L

p(x)(Br ).
From Lebesgue’s dominated convergence theorem, com-

bined with Equation (24) and the boundedness of fn,

< kx∗ , fn >→< kx∗ , f∗ > . (26)

However,

|| < kxn , fn >Br − < kx∗ , fn >Br ||1 ≤ M ||k
x
n − k

x
∗ ||1→ 0.

(27)

Therefore,

< kxn , fn >Br→< kx∗ , f∗ >Br . (28)

On the complementary y ∈ Bcr , |y − x| ≥ R. Thus,
|kxn (y)| = |kn(x − y)| = 0 in Bcr . From Lebesgue’s dominated
convergence theorem,

< kxn (y), fn(y) >Bcr→< kx∗ (y), f∗(y) >Bcr . (29)

Combined with Equations (28) and (29),

kn ∗ fn(x)→ k∗ ∗ f∗(x), x ∈ �.

Applying Fatou’s lemma to the pointwise convergent non-
negative sequence,

en(x) = (kn ∗ fn − u(x))2,

then ∫
�

e∗dxdy ≤ lim inf
n→∞

∫
�

en(x)dxdy. (30)
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Combined with Lemma 4 and lower semi continuity of TV,∫
|∇k∗|p(|∇c|)dxdy ≤ lim inf

n→∞

∫
|∇kn|p(|∇c|)dxdy,∫

|∇f∗|dxdy ≤ lim inf
n→∞

∫
|∇fn|dxdy, (31)

and with Equations (30) and (31), then

J (f∗, k∗) ≤ lim inf
n→∞

J (fn, kn).

From Equations (24) and (25), Fatou’s Lemma, and the
Poincare inequality,

||f∗||L1 ≤ lim inf
n→∞

||fn||L1 <∞

||f∗||L2 ≤ lim inf
n→∞

||fn||L2 ≤ lim inf
n→∞

|∇f | <∞∫
|∇f∗|dxdy ≤ lim inf

n→∞

∫
|∇fn|dxdy <∞

||k∗||W 1,p(x) ≤ lim inf
n→∞

||kn||W 1,p(x) <∞

||k∗||L1 ≤ lim inf
n→∞

||kn||L1 <∞,

So that f∗ ∈ L2(�)∩BV (�) and k∗ ∈ W 1,p(x)(�)∩L1(�).
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