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ABSTRACT User-generated content sharing networks (UGCSNets), in which members are content contrib-
utors as well as users, have had a significant impact on the sharing economy and on society via the sharing
and reuse of contents. In a UGCSNet, managing for growth requires a quantitative grasp of how individual
members’ participation and sharing affect and are affected by the membership and content volume; these
interactions form a dynamic loop. In this paper, a quantitative modeling approach for the loop dynamics of
UGCSNet growth is developed by exploiting limited empirical data. A teaching material sharing network
serves as a baseline case study, and Wikipedia serves as a validation case for the modeling approach design.
The novel modeling approach consists of 1) set of generalized bass diffusion model-embedded stochastic
difference equations (GBDSDEs) of the loop dynamics and 2) a quasi-bootstrap-based nonlinear least
square method to extract from the limited empirical data and periodically update the model parameters
as the UGCSNet evolves. In GBDSDEs, two difference equations describe the number of members and
content volume evolution. The stochastic drives consist of measures of individual participation and content
uploading. The drive models are an innovative generalization of the bass diffusion model as probabilistic
models of known qualitative descriptions regarding how the individual willingness to participate and share
is affected by the total membership and content volume. Analyses of the coefficients of determination
show good fits between model predictions and actual outcomes for both Smart Creative Teachers Net and
Wikipedia growths. Applications of the modeling approach to what-if analyses demonstrate its value to
predict and assess the effects of specific managerial strategies—such as the initial content volume and the
number of founding altruistic members—on the growth of a UGCSNet.

INDEX TERMS User-generated content, sharing network, growth dynamics, Bass diffusion model, network
state-dependent generalization, positive feedback to individual, quantitative model.

I. INTRODUCTION OF GROWTH DYNAMICS MODELING
User-generated content sharing networks (UGCSNets) over
the internet have become common worldwide [1], [6]–[9]
and have had significant effects on the sharing economy
and on society via the sharing and reuse of content. User-
generated content is ‘‘any form of content that was created
by users of an online system or service’’ [1], and a UGCSNet
is an online platform for people to both contribute and
exploit user-generated content. In particular, UGCSNets are
creating new content sharing patterns, empowering users to
be more creative, and leading to the development of new

business opportunities [12]. Representative UGCSNets
include Flickr [6], YouTube [7], Wikipedia [8], and Face-
book [9]. Flickr provides a platform on which to share
photographs. YouTube is one of the most popular UGCSNets,
with over 1 billion daily visits, over 100 million videos
watched every day and over 100 hours of video uploaded to
YouTube every minute [7]. Wikipedia is a free encyclopedia
written collaboratively by the people who use it; this process
allows users to contribute and edit content pages in a web
environment [8]. Facebook provides social networking ser-
vices in the form of online meeting places in which it’s over
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2 billion monthly active users can share photos and videos,
send messages, play games, and more [9]. Although these
and other UGCSNets have achieved success, many more
UGCSNets have failed to grow.

There are many forms of user-generated content: content
sharing sites, such as YouTube, allow users to post their
media; blog services allow users to post about many topics;
wikis, such as Wikipedia, allow users to edit the content; and
education knowledge sharing sites allow users to share their
own knowledge and material. Other forms of user-generated
content include internet forums where people talk and dis-
cuss about different topics and social networking sites, such
as Facebook, Twitter, and Instagram, where users interact
with other people by chatting, writing messages, or posting
images or links. In this paper, we address a specific aspect of
content sharing inUGCSNets. Our focus is on loop dynamics,
including the evolution of content volume and membership.
Social aspects and characteristics such as creating a profile
page and publishing messages and connecting to other users
and creating social relationships are not addressed in this
paper.

The life cycle of a UGCSNet spans the following four
stages [11]: introduction, growth, saturation and decline.
In the introduction stage, network founders establish an
infrastructure, recruit new members, install the initial con-
tent and develop operations and management rules. Network
growth refers to a sustaining phase in which the growth rate
of membership or content volume steadily exceeds a certain
level, such as 5%. Network saturation is a phase in which the
growth rate steadily remains below a certain level, such as
less than 1%, whereas network decline refers to a sustained
decrease in membership or new content sharing. A UGCSNet
may skip any of these four stages in its evolution.

In the content sharing aspect of UGCSNets, individual
members share texts, images, photos and content to other
members and are providers of new content. Through content
sharing processes, shared content becomes useful to individ-
uals [12]. Users of a large UGCSNet have a high probability
of finding what they are looking for [13]. The usefulness
of the content in turn attracts and retains members. At the
core of the process, the feedback loop links members, content
sharing, useful content and the ability to attract and retain
members [12]. However, the size of the network can nega-
tively impact the process. Larger networks are more likely
to be subject to free-riding [14]. Individuals may not con-
tribute their own content because they expect that others will
provide it. If the content contributions become inadequate,
then the UGCSNet will not be able to continue attracting and
retaining members [12]. The salient feature of UGCSNets
is a loop through which individual participation and sharing
and UGCSNet membership and content volume affect one
another [12]–[18], as shown in Fig. 1.Membership increases
when the number of joining non-members is higher than
the number of leaving members, and the cumulative content
volume increases with new uploads. The willingness of a non-
member to participate and the willingness of a member to

FIGURE 1. Positive & negative feedback effects in a UGCSNet.

stay and upload new content may increase, (positive feed-
back) or decrease (negative feedback) with an increase in the
cumulative membership and content. The overall impact on
the dynamics of UGCSNet is a combination of positive and
negative effects.

The network lifecycle of a UGCSNet is affected by these
positive and negative feedback effects. The positive feedback
plays a major role in the dynamics from the introduction to
saturation stages [12], [13]. The lifecycle from the introduc-
tion to saturation stages of a UGCSNet is expected to go
through very rapid [11]. In the introduction stage, both the
content volume and membership are low. In the growth stage,
both the membership and content volume growth will speed
up, and the positive feedback will increase the willingness
of members to join and upload new content [13]. Positive
feedback in the saturation stage reduces the willingness of
members to leave; this effect leads to a higher saturation value
of the membership and content volume. Conversely, negative
feedback has a potentially significant impact on network
decline [12] once more users become free riders. This study
focuses on the positive feedback loop, leaving the negative
feedback loop for future research.

As discussed above, many new UGCSNets did not grow
and instead failed quickly. Only a few have grown to become
a major UGCSNet with many members. Managing a UGC-
SNet to sustain healthy growth involves many strategic deci-
sions/questions, such as predicting i1) the growth dynamics,
including the point at which growth begins and the growth
rate, and ii) the saturation time and saturation level (network
size) in the saturation stage. The problem studied herein
is to quantitatively model the loop dynamics between an
individual and a network and to determine their effect on the
growth of a UGCSNet based on qualitative descriptions from
the literature and the empirical data. A major challenge is to
quantitatively model the evolutions in the membership and
content development as well as the interactions between them
based on collective empirical data.

To develop a quantitative modeling approach that exploits
empirical data from network evolution, this paper will utilize
a teaching material sharing network (TMSN) as a baseline
case study and Wikipedia as a validation case for mod-
eling the approach design. Four research subproblems in
the broader problem of developing a quantitative modeling
approach will be addressed:

P1) how tomodel the effects of individual participation and
sharing on membership and content volume;
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P2) how to model the positive feedback effects of member-
ship and content volume on the willingness to participate and
upload new content;

P3) how to extract and update model parameters from
limited empirical data; and

P4) how to validate the approach and apply the approach
for predicting managerial strategies for management.

To address the above subproblems of P1 to P3 and to
achieve our goals, our novel approach consists of two parts:

Part I: Generalized Bass diffusion model-embedded
stochastic difference equations (GBDSDEs) of the loop
dynamics to solve P1 and P2. It includes two submodels.

M1) A set of individual participation and sharing model-
embedded stochastic difference equations describes the num-
ber of memberships and content volume evolution with
individual participation and sharing as stochastic drives,
respectively.

M2) The drives consist of measures of individual participa-
tion and content uploading. The drive models are an innova-
tive generalization of the Bass diffusionmodel (BDM) [29] as
probabilistic models of known qualitative descriptions of how
an individual’s willingness to participate and share is affected
by the total membership and content volume.

Part II: A Quasi-bootstrap-based nonlinear least
square (QBNLS) method [42] that estimates and periodi-
cally updates the GBDM parameters using limited empirical
data as the UGCSNet evolves to address P3.

By analyzing the coefficients of determination between the
predicted outcomes and actual ones in two real case scenarios
(namely, Smart Creative Teachers Net (SCTNet) [10] and
Wikipedia [8] services), a proof of the goodness of fit of the
model is provided. A comparative simulation demonstrates
the effectiveness of GBDSDEs in capturing the positive
feedback effects on the network growth dynamics. Applica-
tions of this approach to what-if analyses demonstrate the
ability to predict and assess the effects of specific managerial
strategies, such as the initial content volume and number of
founding altruistic members (members who do not expect to
receive payment for publishing content), on the growth of a
UGCSNet.

The remainder of this paper is organized as follows.
Section II first summarizes the theoretical background of the
existing quantitative and quantitative models. Section III then
identifies the challenges in designing quantitative models.
Section IV presents models of the evolution of the individual
members and network states based on the empirical data.
Section V then presents models for the participation and shar-
ing willingness of a member with the feedback from network
states. Section VI illustrates the extraction and updating pro-
cesses of the model parameters and model validation based
on the limited data. Applications of the proposed approach
are shown in Section VII. The conclusions are presented in
Section VIII.

II. THEORETICAL BACKGROUND
The previous literature has explored various aspects of
UGCSNet dynamics. Butler [12] presented a qualitative
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FIGURE 2. Resource-based model of sustainable social structures [12].

resource-based model that links members, benefit provision,
and member attraction and retention. Cha et al. [26] investi-
gated the largest UCG video system, YouTube, and studied
the popularity life cycle of videos, the intrinsic statistical
properties of requests and their relationship with the age of
the video to understand the efficiencies and inefficiencies
of UGCSNets. Guille et al. [35] investigated the information
diffusion phenomenon of online social networks including
popular topic detection, information diffusion modeling and
influential spreaders identification. Kumar et al. [27] consid-
ered user interactions in social networks andmodeled the evo-
lution of these networks. Numerous studies have stressed that
network externalities appear to be important in the develop-
ment of UGCSNets [13]–[19]. Other studies have adopted the
BDM to capture and analyze the dynamics of the user accep-
tance of online UGCSNets [13], [34]. In addition, several
studies have adopted epidemiological models to mathemati-
cally capture and explain the member adoption and abandon-
ment of online social networks [30]–[33]. These studies have
provided valuable insights into UGCSNet dynamics model-
ing and are an important foundation for further membership
and content sharing analyses.

A. RESOURCE-BASED MODEL OF SUSTAINABLE
SOCIAL STRUCTURES
Butler presented a resource-based model for telecommunica-
tion networks that focuses on a feedback process at the core of
the internal dynamics of online social structure sustainability,
as shown in Fig. 2 [12]. Members contribute time, energy,
and other resources to enable a social structure that provides
benefits for individuals. These benefits, which include infor-
mation and influence, are the basis of the ability of a social
structure to attract and retain members.

There are several blocks in the model:

1) Membership Size and Resource Availability: Current
members are key providers of resources, and the mem-
bership size provides a measure of the resource avail-
ability. Larger networks tend to have access to more
resources than smaller networks and are expected to
more sufficiently provide valuable benefits to members
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because resource availability is an aspect of benefit
provision.

2) Communication Activity and Benefit Provision: Com-
munication activity is a key factor of the dynamics
model. Through communication processes, the shared
resources will become useful for individuals. Regard-
less of the nature of the available resources within a net-
work, without communication activity, those resources
will remain dormant, and no benefits will be provided
to individuals.

3) Member Attraction and Retention: The benefits in turn
attract and retain members, thereby developing and
sustaining the resource base of the network.

The resource-based model provides valuable insights into
the loop dynamics of communication networks. However,
the model focuses less on web-based UGCSNets and the rela-
tionship between user-generated content and users. In addi-
tion, themodel does not focus on quantitative relations among
each component.

B. NETWORK EXTERNALITIES
Katz and Shapiro first highlighted that network externalities
refer to ‘‘the value or effect that users obtain from a prod-
uct or service will bring about more values to consumers
with the increase of users, complementary products, or ser-
vices [20]’’. The classic example is a telephone network,
in which the utility of the network to the individual increases
with the number of users the individual can talk with. Net-
work externalities have been studied in many areas, such
as business firms [21]–[24], consumer electronics equip-
ment [25] and UGCSNets [13]–[14], [17]–[19].

Positive network externalities also appear to be impor-
tant to developing UGCSNets, in which the user-generated
content increases with the number of members in the
network [13]–[14], [17]–[18]. Researchers believe that an
individual intends to join and use a social network when
the number of members of the network reaches a critical
mass [19], and they become more willing to use and upload
content when more peers join [15]–[17]. This work uses
the number of members of a UGCSNet to represent peer
network externalities. In addition, other researchers have
highlighted how the degree to which users perceive comple-
mentary items or services, such as user-generated content,
influences a user’s intent to join and use the network [13];
examples of such user-generated content include photo shar-
ing, knowledge sharing, and video sharing. These services
help increase the availability of complementary products
perceived by users and further enhance a user’s continued
intention to use the network [16]–[17]. This study uses
the amount of content to represent the indirect network
externalities.

However, instances may also occur in which a network
with a size reduces the value of the network for users,
resulting in negative network externalities [14]. For example,
when more users login to a web network (e.g., an internet

access service), the network can become slow for all users.
Asvanund et al. [14] focused on how positive and negative
network externalities can influence the group size. Although
their research describes the importance of network external-
ities on the growth and decline of UGCSNets, the concepts
that they presented to describe the values and features were
mainly qualitative, with little emphasis on quantitative meth-
ods for network lifecycle management.

C. BDM
To capture the dynamics of the user acceptance of online
UGCSNets, many studies have adopted the BDM [13], [34].
This model, developed by Frank Bass [29], describes the
process of how new products become adopted as a function
of the level of product innovation and imitation between
adopters and potential adopters using difference equation
(1a), as shown below, where P(t) is the number of adopters at
time t and m is the total number of potential adopters in the
market. The basic notion underlying the BDM is that adopters
can be classified as innovators or as imitators, and the speed
of adoption depends on the level of innovation and imitation
among the adopters.

P(t + 1) = P(t)+ α × (m− P(t))+β ×
P(t)
m
× (m−P(t))

= P(t)+ [α + β ·
P(t)
m

]× (m− P(t)). (1a)

The BDM demonstrates that product life cycles follow an
S-curve pattern. An S-curve pattern implies that new product
sales are initially slow, and the sales grow at a rapid rate
before the rate of growth tapers off. According to the classical
BDM (1a), the likelihood of adoption of a new product at
time t , given that it has not yet been adopted, depends linearly
on two forces.

1) In innovation term modeling, individuals decide to
adopt an innovation independently of the decision of
other individuals [29]. In the BDM, the constant coef-
ficient α is an innovation coefficient that describes
the constant attractiveness of a product/innovation to a
user. In this term, the rate of diffusion is proportional to
the number of people who have not yet tried the product
(m-P(t)).

2) In imitation term modeling, adopters are influenced to
adopt based on the adoption of a previous adopter [29].
This term from the equation shows that the rate of
diffusion is proportional to the number of people who
have purchased the product multiplied by those who
have yet to purchase the product. The constant coef-
ficient β is an imitation coefficient that describes the
effects of imitation. The behavioral rationale for the
model is that diffusion occurs among people who have
not purchased the product imitating the people who
have.

In particular, for β > α, the user adoption will increase to
a maximum before decreasing to zero [34], which becomes
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explicit by writing (1a) as

p(t) = P(t + 1)− P(t)

= [α + β ·
P(t)
m

]× (m− P(t))

= α · m+ (β − α)P(t)−
β

m
P(t)2

= a1 + a2P(t)− a3P(t)2, (1b)

which shows that the adoption rate (p(t)) is the result of two
antagonistic processes: a propensity to grow (a1 + a2P(t))
countered by a propensity to decline (a3P2(t)). The BDM can
often be adopted for dynamic analyses because it can model
product sales ormarket acceptance and, thus, may also be able
to explain the effect of collective attention dynamics on adop-
tion motivations. Nonetheless, the BDM does not address the
evolution of user-generated content or the interaction between
content and user adoption.

D. EPIDEMIOLOGICAL MODELS
Tomathematically characterize and explain user adoption and
abandonment of online social networks, many studies have
adopted epidemiological models [30]–[33]. Online social net-
works, which are one class of UGCSNets, can be depicted
as a society infected by an epidemic disease. The process
of adopting and abandoning a network resembles the pro-
cess of infection and recovery. The typical epidemiological
model is an SIR model that considers a fixed population
and three compartments: susceptible people, S(t); infected
people, I (t); and recovered people, R(t). In the SIR model,
the infectious disease spreads by contact with infected people.
The infected people recover by acquiring immunity naturally.
Similarly, the main motivation of a person joining a network
might be influenced by the adoption of a previous adopter;
this process is similar to the imitation effect in the BDM.
Membership growth in a network is similar to that of an
infectious disease because it is driven by contact with existing
members. Similarly, becoming a network user corresponds
to becoming infected, and quitting corresponds to recovering
from infection. Therefore, the SIR model can represent the
growth and decline of a social networking service. Becoming
a social networking service user corresponds to infection,
and quitting the social networking service corresponds to
recovering from infection.

Compared to the BDM, the epidemiological model may
model not only the adoption but also the abandonment of
UGCSNets. In terms of adoption, the epidemiological model
addresses the relationship between new members and exist-
ing members (the imitation effect in the BDM) but not the
relationship between new members and the resources of the
network (the innovation effect in the BDM).

III. THE CHALLENGES OF QUANTITATIVELY MODELING
UGCSNET GROWTH DYNAMICS
The objective of this section is to identify the challenges
of quantitatively modeling the loop dynamics of the growth

of UGCSNets based on data collected from a baseline
study case, SCTNet, and a validation case, Wikipedia. Then,
we propose a framework for a modeling approach to over-
come these challenges.

A. THE CHALLENGES OF QUANTITATIVELY MODELING
GROWTH DYNAMICS
SCTNet [10] is a TMSN that is popular among elementary
school teachers in southern Taiwan; the network was intro-
duced in January 2000 and is operated by the Education
Bureau of Kaohsiung city and National Sun Yat-Sen Univer-
sity. SCTNet provides members with basic sharing functions
with regard to teaching materials (TMs), such as searching,
uploading, and downloading TMs. The network also pro-
vides advanced functions, such as forums, workshops, and
e-learning programs, which enable digital content sharing
and participation in discussions of interest to instructors.
Member teachers contribute TMs to SCTNet on a voluntary
basis. In the content sharing aspect of the TMSN, individual
member activities include participation activities, such as
joining and leaving, and sharing activities, such as download-
ing and uploading TMs. The total number of members and
the total TM volume are two states of network development
that are the cumulative effects of individual participation and
uploading.

Wikipedia [8] is a free-content internet encyclopedia that
is supported and hosted by the non-profit Wikimedia Foun-
dation, and it was launched in 2001. The usability and func-
tionality of Wikipedia makes it easy for users to create new
content pages and to edit and share knowledge with page
viewers across the world [2], [3]. In addition, Wikipedia gen-
erates large data sets regarding its evolution and dynamics.
Historically, Wikipedia grew from hundreds of active editors
in 2001 to thousands in 2004 and peaked in 2007 [8]. The
contributions of editors have propelled Wikipedia to a high
level of quality and completeness [4]. Suh et al. noted that the
tremendous growth of Wikipedia attracted more contributors
to increase its value, and in turn, Wikipedia became valu-
able [5]. In regard to sharing aspects in growth, Wikipedia
has similar characteristics to a TMSN.

To address the problem of quantitatively modeling growth
dynamics, the collective statistics of a study case, SCTNet,
were collected monthly from January 2001 to Decem-
ber 2007, covering the periods of introduction, growth, and
saturation. The collective statistics of the validation case,
Wikipedia, were collected monthly from 2001 to 2007.
Such collective statistical data are available for analysis by
researchers. Based on the collective statistics, there are four
research challenges to overcome when quantitatively mod-
eling UGCSNet growth dynamics, one for each subproblem
mentioned in Section I.
C1) Modeling individual participation and sharing and

their effects on membership and total content volume using
only collective statistics

Differences exist among the individual users of a network,
but only collective and network state statistics are available
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FIGURE 3. Proposed modeling framework of loop dynamics.

from a UGCSNet, such as a TMSN. Modeling individual
differences with collective empirical data is challenging.
C2) Modeling the positive feedback effect from member-

ship and total content volume to individual sharing and par-
ticipation

Developing this quantitative model requires the innovative
integration of qualitative descriptions from the literature with
a positive feedback effect extracted from empirical data.
C3) Extracting and updating model parameters with the

evolution of a UGCSNet given limited data availability
Only limited data and statistics are available for mod-

eling, particularly during the early development stage of
a UGCSNet. Extracting and updating the dynamic model
parameters that fully exploit the available data as a UGCSNet
evolves are essential and challenging tasks.
C4) Validating the resultant approach for modeling the

loop dynamics of a TMSN and Wikipedia
The membership and total content volume are the super-

position of an individuals’ willingness to participate and
share, and the willingness of each participation to share
is affected by the membership and total content volume.
It is quite challenging to determine how to evaluate net-
work dynamics with sufficient fidelity and to validate the
resulting approach using the available empirical data from
the introduction through the saturation stages. In addition,
demonstrating the potential of applications that can man-
age the growth of a new UGCSNet is also essential but
challenging.

B. MODELING FRAMEWORK OF QUANTITATIVE
GROWTH DYNAMICS
To address C1 and C2, we develop a set of GBDSDEs to
model the network growth dynamics with the aim of cap-
turing the feedback loops of the UGCSNet. Fig. 3 illustrates
the proposedmodeling framework. The upper side depicts the
membership dynamics, and the lower side describes the con-
tent dynamics. Members contribute content to the UGCSNet.
The members’ willingness to share content is affected by the

existing members and current content. The cumulative con-
tent is the aggregation of the individual contributions. Then,
the shared content and existing members constitute the basis
from which to attract and retain members. In GBDSDEs, two
difference equations describe the membership and content
volume evolutions separately using individual participation
and content uploading as stochastic drives. The drive models
are a generalization of the BDM and innovatively model how
the activities of individuals are affected by the feedback of
the network states of the existing members and cumulative
content.

To address C3, a QBNLS method is developed to extract
and update the model parameters from limited empirical data
as the UGCSNet evolves. To address C4, we develop what-
if scenarios to analyze how the number of altruistic mem-
bers among the founding members and the number of initial
content entries may influence UGCSNet growth dynamics
such that the models may help a manager find cost-effective
strategies for network growth.

IV. DIFFERENCE EQUATION MODELING OF THE LOOP
DYNAMICS WITH INDIVIDUAL ACTIVITIES AS
STOCHASTIC DRIVES
Now we consider modeling the individual activity events and
their effects on the network states based on the collected
statistics of n(t), N (t), r(t), D(t) and L(t). A set of individual
participation and sharing model-embedded stochastic differ-
ence equations (SDEs) [36], [37] are developed to describe
the network state evolutions of the membership and con-
tent volume that are driven by the probabilistic occurrences
of individual participation and sharing events. Limited by
having access to collective data exclusively, the differences
among the individuals are captured by modeling the occur-
rence of each activity event as 0-1 indicator random variables,
which are independent and identically distributed among the
members. We then define how the event occurrence probabil-
ities are estimated from available empirical data.

A. DESIGN OF THE PARTICIPATION AND SHARING
MODELS
After developing the network growth dynamic models, a few
symbols are defined in Table 1. The assumptions of the model
are as follows.

AS1) This paper adopts the content volume to represent
content richness in the following discussions.

AS2) Event occurrences during (t, t + 1] are probabilistic
and depend on the network states of the membershipN (t) and
content volume R(t) and member i’s participation state xpi(t).
Because only collective data are available, the occurrence
probability of each type of event is assumed to be independent
and identically distributed among the individuals. During (t,
t + 1], a member has at most one occurrence of each event
type.

AS3) A member will access the TMSN/Wikipedia at least
once during each time slot (t, t + 1].
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TABLE 1. Symbols for the participation and sharing models.

1) PARTICIPATION MODELS
Fig. 4(a) depicts the state transition of the membership state
of an individual i through the occurrence of member partic-
ipation (join and leave) events. The state space Sp = {0, 1}
describes the membership states of a non-member and mem-
ber. A participation transition occurs if event joining/leaving
occurs. A non-member that joins the network becomes a
member. In contrast, once a member leaves, the member
then becomes a non-member. Equations (2a)–(2c) describe
the transition between the member and non-member states
using a stochastic difference equation, in which (2a) and (2b)
define random variables of joining and leaving events, and
(2c) describes the participation state equation of user i.

eji(t + 1, xpi(t),N (t),R(t))

≡


1,with pji(xpi(t),N (t),R(t)), if xpi(t) = 0;
0,with 1− pji(xpi(t),N (t),R(t)), if xpi(t) = 0;
0, otherwise.

(2a)

eli(t + 1, xpi(t),N (t),R(t))

≡


0,with 1− pli(xpi(t),N (t),R(t)), if xpi(t) = 1;
1,with pli(xpi(t),N (t),R(t)), if xpi(t) = 1;
0, otherwise.

(2b)

xpi(t + 1)

= xpi(t) + eji(t + 1, xpi(t),N (t),R(t))

− eli(t + 1, xpi(t),N (t),R(t)), xpi(0) = 0. (3)

FIGURE 4. (a) Participation model and (b) sharing model of a member i
and (c) individual and network state transitions.

The space of the total membership state, N (t), is SN =
{0, 1, . . . ,TN }. As shown in Fig. 4(c), membership change
is a combination of the joining and leaving events of indi-
viduals. The maximum number of members leaving during
(t, t + 1] is N (t), and the maximum number of non-members
joining during (t, t + 1] is TN − N (t). Thus, we express the
total membership evolution using an individual participation
model-embedded stochastic difference equation as follows:

N (t) ≡
TN∑
i=1

xpi(t). (4a)

By combining (2), (2c) and (4a), we obtain

N (t + 1) = N (t)+
TN−N (t)∑
k=1

ejk (t + 1, xpk (t),N (t),R(t))

−

N (t)∑
i=1

eli(t + 1, xpi(t),N (t),R(t)), (4b)

where k represents the non-members (k ∈ NM ) and i repre-
sents the members (i ∈ M ).

2) SHARING MODELS
Fig. 4(b) depicts the state transition of the sharing (upload-
ing and downloading) states of a member i through the
occurrence of member sharing (uploading and download-
ing) events. The state space Ss = {0, 1, 2, . . .} describes
the amount of content that is uploaded/downloaded, where
s ∈ {u, d}. Equations (5a)–(5c) describe the sharing state
transitions as the SDEs below, where (5a) and (5b) define
the random variables of the uploading and downloading event
occurrences and (5c) and (5c) describe the sharing state equa-
tions of member i.

eui(t + 1, xpi(t),N (t),R(t))

≡


1,with pui(xpi(t),N (t),R(t)), if xpi(t) = 1;
0,with 1− pui(xpi(t),N (t),R(t)), if xpi(t) = 1;
0, otherwise.

(5a)

VOLUME 6, 2018 4785



R.-H. Chen, S.-C. Chang: Modeling Content and Membership Growth Dynamics of UGCSNets With Two Case Studies

edi(t + 1, xpi(t),N (t),R(t))

≡


1,with pdi(xpi(t),N (t),R(t)), if xpi(t)=1,R(t)>0;
0,with 1−pdi(xpi(t),N (t),R(t)), if xpi(t)=1,R(t)>0;
0, otherwise.

(5b)

xui(t + 1)

= xui(t) + eui(t, xpi(t),N (t),R(t)), xui(0) = 0; (6a)

xdi(t + 1)

= xdi(t) + edi(t, xpi(t),N (t),R(t)), xdi(0) = 0. (6b)

Similarly, the state space of the content volume, R(t),
is SR = {0, 1, 2, . . .}. The maximum number of members
uploading during (t , t+1] is N (t). Then, we express the total
content volume evolution using an individual sharing model-
embedded corresponding stochastic difference equation as
follows:

R(t) ≡
TN∑
i=1

xui(t), (7a)

which can be combined with (5a) as follows:

R(t + 1) = R(t)+
N (t)∑
i=1

eui(t + 1, xpi(t),N (t),R(t)). (7b)

B. ESTIMATING EVENT OCCURRENCE PROBABILITIES
BASED ON THE AVAILABLE EMPIRICAL DATA
The key to the models of the individual activity events and
state transitions involves three event occurrence probabilities
pai(xpi(t),N (t), R(t)), a ∈ {j, u, d}. By exploiting the monthly
available statistics of n(t), N (t), r(t), D(t) and L(t) and the
notation of the relative frequency, the empirical data-based
estimates of the event occurrence probabilities are defined as
follows.

1) OCCURRENCE PROBABILITY OF JOINING EVENT

p̂ji(t + 1, xpi(t),N (t),R(t)) ≡
n(t + 1)
TN − N (t)

, (8a)

which corresponds to the ratio of the number of newmembers
to the number of non-members at time t .
In practice, for the SCTNet and Wikipedia, there is no

periodic renewal requirement to maintain membership. Thus,
UGCSNet management cannot be used to determine whether
a member has left or simply has become inactive. Hence,
the probability of leaving is not estimated.

2) OCCURRENCE PROBABILITIES OF THE UPLOADING AND
DOWNLOADING EVENTS

p̂ui(t + 1, xpi(t),N (t),R(t)) ≡
r(t + 1)
L(t)

(8b)

p̂di(t + 1, xpi(t),N (t),R(t)) ≡
D(t + 1)
L(t)

(8c)

which correspond to the ratios of the number of
uploaded/downloaded content entries to the total number of

logins, respectively. The occurrence probability of uploading/
downloading describes the individual uploading/ download-
ing willingness of a member per login [36] and assumes AS3.
In current practice, a member may download more than one
unit of content per login. However, individual data are not
available for estimating amount of downloaded content per
individual login.

V. GENERALIZED BDMS FOR EMBEDDING POSITIVE
FEEDBACK INTO STOCHASTIC DRIVES
The qualitative research results presented in [12]–[18] sug-
gest that the event occurrence probabilities of individual par-
ticipation and content uploading in (2) and (5) are functions
of the total membership and content volume. This section will
first summarize the qualitative models of the UGCSNet loop
and then develop quantitative models to determine how one’s
individual willingness to participate and share is affected by
the membership and content volume in the growth stage.
An analysis of the empirical data from the SCTNet reveals
that the event occurrence probabilities increase according to
an S-shaped curve with respect to the values of the mem-
bership and content volume from the introduction through
the saturation stages. Taken together, these results motivate
extending the use of the BDM to describe technology accep-
tance within a population [29] over time to a baseline model
of how the probability of each event occurrence of a member
evolves with network states instead of time. The results from
references [13] and [39] further indicate that the attractive-
ness of a UGCSNet is positively correlated with the content
that is shared among the network members. Thus, instead
of adopting the constant innovation coefficient, as in BDM,
we construct probability models for innovative event occur-
rence that integrate the aforementioned qualitative descrip-
tions into a content volume-dependent innovation coefficient
to capture the positive feedback effect of the content volume
on the two drives expressed in (2) and (5). The event occur-
rence probability models are then embedded into the SDEs
to capture the loop dynamics between the network states and
individual events.

A. EXTENSION OF THE BDM TO MODEL AN INDIVIDUAL’S
WILLINGNESS TO PARTICIPATE AND SHARE
References [12] and [13] show that the amount of content and
the number of community members are twomain motivations
for individual participation and sharing. A high existingmem-
bership and rich content tend to attract newmembers and keep
members from leaving [12]. Powell and Tapscott [15], [16]
also noted that an individual becomes more willing to share
and join when more peers share content and join; this con-
clusion implies that an individual’s willingness changes with
respect to the value of the two network states. The effects
of membership and content development on an individual’s
willingness are considered as the imitation and innovation
effects, respectively, and these effects inspire us to extend the
BDM [29] as a baseline model of how each event occurrence
probability of a teacher evolves along with a state variable
instead of time.
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FIGURE 5. Scatter plots: (a) joining, (b) downloading, and (c) uploading
probability trends vs. total membership.

In addition, observations from Chen and Chang [37]
revealed that the development trajectories of the joining
event occurrence probability in (2) are S-shaped curves as
a function of the membership (N ). A further analysis of the
empirical data from the SCTNet reveals that the event occur-
rence probabilities of joining, uploading and downloading
((2) and (5)) are S-shaped curves with respect to the values
of the membership (N ) and content volume (R), as shown
in Figs. 5 and 6. The SCTNet data were collected from the
period between 2001 and 2005. Each data point in the scatter
plot corresponds to the statistics of pai(xpi(t), N (t), R(t)),
a ∈ {j, u, d} following the definitions of (8a)–(8c). As shown
in Figs. 5(a)–5(c), we can characterize the evolutions of the
probability of joining, downloading, and uploading with
respect to the membership using three segments: i) the
slow start from data points 01–06 (diamond shaped), ii) the

FIGURE 6. Scatter plot: (a) joining, (b) downloading, and (c) uploading
probability trends vs. cumulative content volume.

fast growth from data points 07–12 (square shaped), and
iii) the saturation in the data points from 13–18 (triangle
shaped). Similar characterizations regarding the evolutions
of the three event occurrence probabilities with respect to
the content volume can be observed in Figs. 6(a)–6(c). There
are two abnormally low points in Figs. 5(c) and 6(c) that
are indicated by a circle at which sharp decreases in the
uploading probability occurred when school semesters ended
in July, 2001 and July, 2005. Except for the two abnormally
low points, the trends in the event occurrence probabilities
with respect toN (t) andR(t) basically fit S-curves. Therefore,
the BDM in [29] can be naturally extended to model the
S-shaped curves of the individual event occurrence proba-
bilities over state variables N and R.

The manner in which each of the three event occurrence
probabilities, pa, a ∈ S ′ and S ′ ≡ {j, u, d}, varies with respect
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to N (t) under given a R(t) and xpi(t) can be modeled in (1a)
by replacing argument t with N (t), P with probability pai and
m with 1, as shown in (9a),

pai(xpi(t),N (t)+ 1,R(t))

= pai(xpi(t),N (t),R(t))+ αai · (1− pai(xpi(t),N (t),R(t)))

+βa · pai(xpi(t),N (t),R(t)) · (1−pai(xpi(t),N (t),R(t))),

(9a)

where the second term on the right-hand side of the equation
is an innovation term, αa reflects how the content volume
yields a constant effect on the event occurrence probability
in a UGCSNet, and the third term captures how imitation
among members affects the event occurrence probability of
a member.

As for modeling the leaving members, direct observa-
tions of a member leaving in the case of the SCTNet and
Wikipedia were not available. However, members who leave
a UGCSNet can be viewed as joining the community of non-
members; this definition leads to the notion of modeling the
probability of leaving as an S-curve. Therefore, the leaving
occurrence probability is modeled by extending the BDM as
follows:

pli(xpi(t),N (t)+ 1,R(t))

= pli(xpi(t),N (t),R(t))− αli · (pli(xpi(t),N (t),R(t)))

−βl · pli(xpi(t),N (t),R(t)) · (1−pli(xpi(t),N (t),R(t))).

(9b)

B. GENERALIZATION TO MODEL THE POSITIVE
FEEDBACK OF THE CONTENT
Although (9a) and (9b) are innovative extensions of the BDM,
EBDMs, for modeling how the activity occurrence probabil-
ities evolve with the membership value from the introduction
through the saturation stages, the two equations do not yet
capture the content volume feedback of an individual’s will-
ingness to participate. The results in references [13] and [39]
further indicated that the attractiveness of a UGCSNet is
positively correlated with the content that is shared among the
networkmembers. Amember’s willingness to participate, use
resources and upload content increases with the increasing
content volume, and this result inspires us to further gen-
eralize the EBDM by replacing the constant coefficient of
the innovation term with the content-dependent coefficient to
capture the evolution of the event occurrence probability.

Let the level of innovation, I , be defined as

I ≡ f (R(t)), (10)

where function f (.) describes the content-dependent attrac-
tiveness of the UGCSNet and is assumed to monotonically
increase and marginally decrease with respect to the con-
tent volume. Such assumptions are based on the following
research results from the literature:
i) I monotonically increasing with R: Belvaux [13]

claimed that the probability of a member finding what

they are looking for increases as the size of the shared
content grows. In a UGCSNet, members can find and
download the content they need more easily than with-
out a UGCSNet. An increase in the content volume can
enhance UGCSNet attractiveness.

ii) I marginally decreasing with R: The innovation of
UGCSNets is a type of ‘‘sustaining innovation.’’ Chris-
tensen [39] claimed that sustaining innovation has the
features of f1) low-cost innovation and f2) eventual
saturation, which imply a marginally decreasing inno-
vation rate.

Based on the two assumed properties regarding f (.),
we adopt a specific form of the log function for f (.), i.e.,

Ia(R(t)) = αa(logR(t)+ 1), (11)

whereαa is a positive constant.We then generalize the EBDM
in (9a) to capture the positive content feedback effect using a
content volume-dependent innovation coefficient as follows:

pai(xpi(t),N (t),R(t)+ 1)

= pai(xpi(t),N (t),R(t))+Ia(R(t))·(1−pai(xpi(t),N (t),R(t)))

+βa · pai(xpi(t),N (t),R(t))·(1− pai(xpi(t),N (t),R(t))),

(12a)

where a ∈ S ′. Similarly, the generalization of the leaving
occurrence probability model is defined as follows:

pli(xpi(t),N (t),R(t)+ 1)

= pli(xpi(t),N (t),R(t))− Il(R(t)) · (pli(xpi(t),N (t),R(t)))

−βl · pli(xpi(t),N (t),R(t)) · (1− pli(xpi(t),N (t),R(t))).

(12b)

Fig. 7 presents a block diagram of the GBDSDEs which
model the loop between the network and the individual and
provide a foundation to evaluate UGCSNet growth dynam-
ics. GBDSDEs capture the previously modeled qualitative
descriptions in the literature including the following: QD1)
the positive feedback loop whereby an individual mem-
ber’s willingness to participate and upload new content
is positively related to the membership and content vol-
ume [12]–[18] and QD2) The lifecycle from the introduction
to saturation stages of a UGCSNet is expected to go through
very rapid [11].

VI. QUASI-BOOTSTRAPPING MODEL PARAMETER
EXTRACTION AND MODEL VALIDATION BY SIMULATION
This section addresses the problem of extracting and periodi-
cally updating the GBDMmodel parameters in (11) and (12a)
by exploiting the limited empirical data increments as the net-
work evolves. The two specific model parameters to extract
are the innovation and imitation coefficients, αa and βa in
(11) and (12a), respectively. Once αa and βaare extracted
from the available data, equations (11) and (12a) provide
the complete dynamics of the event occurrence probabilities
and, in turn, the complete membership and content volume
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FIGURE 7. Block diagram of the GBDSDEs.

dynamics. Such dynamics are the foundation of predicting
the network state evolution. In validating our quantitative
modeling approach, the comparative simulation first demon-
strates the effectiveness of the GBDSDEs in capturing the
positive feedback effect on the growth dynamics of the net-
works. Then, comparisons between the simulated evolution
of the membership and content volume using the SCTNet and
Wikipedia data finally validate the modeling approach.

A. GBDM PARAMETER EXTRACTION AND PERIODIC
UPDATING BY USING THE QBNLS METHOD TO EXPLOIT
EARLY STAGE EMPIRICAL DATA
Now we consider how to extract and update the embedded
parameters of the innovation and imitation coefficients (αa,
βa) in (11) and (12a) for each activity event a ∈ {j, u, d}
by exploiting the limited empirical UGCSNet data (n(t),
N (t), r(t) and R(t)) increments as the network evolves.
The calculations of the event occurrence probability of
pai(xpi(t), N (t), R(t)) follow the definitions in (8a)–(8c).
Among the available BDM parameter estimation methods
in the literature [40]–[42], the QBNLS method designed
by Lin and Yang [42] extends and outperforms the nonlinear
least square methods presented by [40] and [41] for estimat-
ing the imitation and innovation coefficients (p, q) andmarket
size (m).
Fig. 8 presents the schematic diagram of the GBDM

parameter extraction and updating process. If we consider
starting a new UGCSNet and collecting the data items of
n(t), N (t), r(t), and R(t), parameter extraction and updating
includes four steps:

1) TheQBNLSmethod is applied to extract the innovation
and imitation parameters (αa, βa) of the event occur-
rence probabilities of joining, uploading and download-
ing from the existing trajectories: n(t), N (t), r(t), and
R(t); t = 1, 2, 3 . . . k1.

2) Based on the extracted innovation and imitation param-
eters (αa, βa), we adopt a simulator of the GBDSDEs

FIGURE 8. Schematic diagram of the parameter extraction and updating
process.

to predict the evolutions of the membership and content
development from time slot k1+1 to time slot k2.

3) We update the data set to enrich the database (n(t),N (t),
r(t), and R(t), t = 1, 2, 3 . . . k2.)

4) We proceed through step 1) to step 3) to periodically
update the GBDM parameters and then finally com-
plete the predictions of the membership and content
volume dynamics.

B. VALUE OF CAPTURING THE POSITIVE FEEDBACK
EFFECT USING GBDMS
GBDSDEs [(2a)–(7b) and (12a)] are stochastic nonlinear
difference equations for which analytic solutions are difficult
to obtain. As the models of individual members constitute
the cornerstones of GBDSDEs and network states are simply
sums of individual states, a discrete time agent-based simula-
tion ([43]–[44]) is adopted to simulate and analyze the UGC-
SNet growth dynamics. An agent simulates the participation
and sharing behavior of a member, and the environment of the
agent simulates the evolution of the membership and content
volume. In each time slot (t , t + 1], a member agent decides
whether or not to participate and share. This probabilistic
decision is based on the network states of the membership
N (t) and content volume R(t) and member i’s state xpi(t)
using (12a). Then, the environment simulates the network
state transitions of the content volume and membership using
(4b) and (7b) during (t, t + 1].
Comparative simulations of the GBDSDEs and BDSDEs,

in which the former contains a content-dependent innovation
coefficient and the latter contains only a constant coefficient,
are used to evaluate how the content volume affects an indi-
vidual’s willingness to participate and share and further the
UGCSNet growth dynamics. Table 2 lists the initial simula-
tion settings. A comparative simulation analysis shows that
in the introduction stage, both models indicate low uploading
and joining probabilities leading to a low content volume
and low total membership. Figs. 9(a) and 9(b) show that the
GBDSDEs predict faster growth for the membership and
content volume during the growth stage and higher saturation
values during the saturation stage than those predicted by the
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TABLE 2. Simulation settings of THE captured positive feedback effect.

FIGURE 9. Comparison between the GBDSDEs and BDSDEs:
(a) membership; (b) content volume.

BDSDEs. Such differences demonstrate that the GBDSDE
has a slower start in the introduction stage, faster growth in
the growth stage and higher saturation values in the saturation
stage than the BDSDE model due to the positive feedback
effects of the added content; these results are consistent with
the qualitative descriptions of QD1 and QD2 ([11]–[18]) in
Section V.

C. GBDSDE VALIDATION USING THE SCTNET AND
WIKIPEDIA GROWTH DATA
To validate the proposed quantitative modeling approach
using the GBDSDE and QBNLS method, the empirical
data of two UGCSNets, the SCTNet, Wikipedia and an

FIGURE 10. Simulation architecture for the model validation.

agent-based simulation study are utilized. Fig. 10 presents
the schematic diagram of the agent-based simulation archi-
tecture, which includes three parts: the approach of the
GBDSDEs and QBNLS method, an agent-based simulator,
and validation bymodel extraction and testing. The validation
procedure first applies the QBNLS method to extract param-
eters from the early-stage data of the SCTNet and Wikipedia.

The specific data items collected are as follows:
i) n(t): number of new members (new Wikipedians in

Wikipedia) during (t − 1, t], i.e., the t-th month;
ii) N (t): total membership (Wikipedians in Wikipedia) at

time t; that is, N (t) =
t∑

k=1
n (k) , given N(0)=0;

iii) r(t): number of new content entries (new pages in
Wikipedia) uploaded during (t − 1, t];

iv) R(t): cumulative number of uploaded content entries at

time t; that is, R (t) =
t∑

k=1
r (k) , given R(0) = R0;

v) D(t): total number of downloads (page views in
Wikipedia) during (t − 1, t]; and

vi) L(t): total number of logins by members during
(t − 1, t].

For the SCTNet and Wikipedia, there is no periodic renew
requirement to maintain membership, so we assume that
the leaving probability is zero. Then, the validation pro-
cedure adopts an agent-based simulator for the GBDSDEs
and finally compares how well the simulation results of
the GBDSDEs match with the subsequent performance of
SCTNet and Wikipedia by examining the directly measured
statistics.

1) GBDSDE VALIDATION WITH SCTNET: NETWORK STATES
OF MEMBERSHIP AND TM VOLUME
In preparing the validation data set, in addition to the SCT-
Net data and statistics, the calculations of the event occur-
rence probabilities of pai(xpi(t), N (t), R(t)), a ∈ {j, u, d}
follow (8a)–(8c), in which each data point represents three
months. The GBDSDE validation separates the empirical
data obtained from the SCTNet over a period of 20 data points
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FIGURE 11. GBDSDE validation with SCTNet statistics: (a) membership;
(b) TM volume.

(60 months) into the training and testing components. The
data of the first 6 data points are for the GBDM parameter
extraction, and data points 7–12 are for updating. The latter
data is for comparison with the GBDSDE simulation results.
In each simulation case, one hundred replications are per-
formed for statistical analysis.

Next, we validate the membership and content volume
evolution using the SCTNet data. In Figs. 11(a) and 11(b),
the horizontal axis represents time, and the vertical axis
represents the total membership and cumulative TM volume.
The lines of the squares in Figs. 11(a) and 11(b) represent the
simulation predictions.

In Fig. 11(a), the membership growth predicted by simu-
lating the GBDSDEs is characterized by three segments with
different slopes: i) a slow start with a slope of 0.62, ii) fast
growth with a slope of 3.25 beginning in 2002 (19th month),
and iii) saturation with a slope of 0.48 and an approximate
saturation value of 107,032 beginning in 2005 (52nd month),
where the growth time, saturation time and saturation value
follow the definitions in Section I. These three slopes are
calculated using a linear regression of the simulation data.
Table 3 lists and compares the characteristic data of the
membership growth between the simulation prediction and
SCTNet data. Similar simulation results regarding the evolu-
tion of the TM volume can be observed in the SCTNet data

TABLE 3. Membership comparison between the simulation predictions
and SCTNet data.

TABLE 4. TM volume comparison between the simulation predictions
and SCTNet data.

in Fig. 11(b). The evolution of the TM volume, as predicted
by the simulation using GBDSDEs, can be characterized by
three segments with different slopes: i) a slow start with a
slope of 0.22, ii) fast growth with a slope of 8.63 starting
at month 22 (2002), and iii) saturation with an approximate
saturation value of 5,523 beginning at month 61 (2006).
Table 4 presents a comparison of the simulation predictions
and SCTNet data. Special events, such as promotions for
content contribution and membership with a prize or reward,
that were organized after the training data period by the
EducationBureaumight have caused the occurrence of higher
actual values than those simulated in the growth phase. The
effects of incentives, such as special promotion events, extend
beyond the scope of this paper. The coefficient of deter-
mination for the test between the simulation and empirical
data [45] analyzes how well the GBDSDEmodels fit with the
SCTNet data. The coefficient of determination, denoted R2,
provides a measure of how well the membership evolution is
replicated by the GBDSDEs. An R2 of 1 indicates that the
regression line fits the data perfectly, whereas a value of 0
indicates that the line does not fit the data at all. As a whole,
the GBDSDEs with parameters extracted using the QBNLS
method with the SCTNet data generate membership and TM
volume growth trajectory predictions with an R2 of over
0.85 and capture the features of the slow start, fast growth,
and saturation from the introduction through the saturation
stages.

2) GBDSDE VALIDATION WITH WIKIPEDIA: NEW
WIKIPEDIANS AND NEW CONTENT PAGE VOLUME
In preparing the validation data set, the GBDSDE validation
separates the empirical data obtained from Wikipedia over
a period of 28 data points (84 months) into training and
testing components, in which each data point represents three
months. Data for the first 6 data points (2001–2002) are for
the GBDM parameter extraction process, and data for the
7–12 data (2002–2003) points are for the GBDM parameter
updating process. The latter data are meant for comparison
with the GBDSDE simulation results.

In Figs. 12(a)–12(b), the horizontal axis represents time
(each period is 3-months), and the vertical axis represents the
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FIGURE 12. GBDSDE validation with Wikipedia statistics: (a) new
Wikipedieans; (b) new content page volume.

number of new Wikipedians and the number of new content
pages. The lines marked by the squares represent the simu-
lation predictions. The line marked by the circles represents
the Wikipedia statistics data. In Fig. 12(a), the evolution of
new Wikipedians predicted by simulating the GBDSDEs is
characterized by three segments: i) a slow start, ii) fast growth
beginning in 2004 (37th month), and iii) saturation, with an
approximate saturation value of 17,580, beginning in 2007
(76th month). Table 5 lists and compares the characteristic
data of the new Wikipedians between the simulation predic-
tion and Wikipedia data. Similar simulation results regard-
ing the evolution of the new content page can be observed
in Fig. 12(b). The evolution of new content pages is char-
acterized by three segments: i) a slow start, ii) fast growth
beginning in 2003 (31st month), and iii) saturation, with an
approximate saturation value of 2,536, beginning in 2006
(69th month). Table 6 presents a comparison of the simu-
lation prediction and the Wikipedia data. At the beginning
of 2007, both the number of new content pages and the num-
ber of new Wikipedians began to decline [5]. In other words,
the UGCSNet ofWikipedia was entering a decline phase after
a very short saturation period. In fact, the GBDSDEs do not
capture the decline dynamics which is a subject of future

TABLE 5. Comparison of the simulation predictions of The Wikipedia
data with regard to the new Wikipediean values.

TABLE 6. New content page volume comparison between the simulation
predictions and Wikipedia data.

FIGURE 13. Applications of the modeling approach to the what-if
analysis.

research. So the growth prediction values of 2007 shown
in Figs. 12(a) and 12(b) are higher than the actual decline
trajectories of Wikipedia. As a whole, the prediction results
from the GBDSDEs match well with the actual Wikipediean
and content page evolution trajectories, with an R2 > 0.8 for
predictions over the 2004–2007 period.

VII. POTENTIAL APPLICATIONS TO PERFORMANCE
PREDICTIONS AND MANAGERIAL STRATEGY
EVALUATION
Applications of the quantitative modeling approach to what-
if analyses in this section are motivated by the findings
of [38], [46] and [47]. Two of the many managerial strat-
egy design issues requiring what-if analysis include: i1) the
initial content volume and i2) how the altruistic founding
members affect individual behaviors and network growth
dynamics. Agent-based simulations of two what-if scenarios
with 1,000 replications of each scenario are conducted to
assess how the modeling approach can be used to facilitate
management applications.

The what-if analysis using the modeling approach:
Fig. 13 presents the schematic diagram of the what-if

analysis architecture, which considers starting up a new
UGCSNet and planning for its growth. There are four steps:

1) The network management first plans for a target net-
work, its target development trajectories for the mem-
bership and cumulative content volume, its target time
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TABLE 7. Simulation settings for controlling the initial content volume.

frame and managerial strategy options in the planning
stage.

2) Applications of the approach to what-if analyses eval-
uate the effects of managerial strategies on the growth
of the network. Management first applies the QBNLS
method to extract the innovation and imitation param-
eters (αa, βa) of the event occurrence probabilities of
joining, uploading and downloading using target trajec-
tories. In the following study, we assume the SCTNet
trajectories are target trajectories and set the assumed
innovation and imitation parameters (αa, βa) equal to
0.01 and 0.38, respectively. Management then runs
agent-based simulations of the GBDSDEs within the
target time frame.

3) Networkmanagement then performs quantitative what-
if analyses to predict the growth trends and evaluate
how threshold values of the strategies affect growth.

4) The management finally identifies effective strategies
based on the quantitative analysis.

A. ASSESSING THE EFFECTS OF INITIAL CONTENT
VOLUME
Akaka et al. [47] noted that content resourced and shar-
ing are salient factors required to boost network growth.
Gummesson and Mele [46] noted that sharing networks com-
monly evolve and grow because of the added value that
content sharing brings. In the GBDSDE models, the con-
tent volume provides a positive feedback effect on the event
occurrence probabilities, particularly through the innovation
term.

If there is a lack of initial content, the probabilities of join-
ing and uploading will be low because of the small positive
content gain, and then, the number of new members and new
uploads will also remain low, and the network will not grow
within the target time frame.

The hypothesis of this what-if assessment is that
H1) A UGCSNet will grow within the target time frame

when the initial content volume is higher than a certain
threshold.

The control variable is the amount of initial content vol-
ume. The dependent variables include the total membership
and the cumulative content volume over time. One time
period represents one month, and the time horizon of the
simulation is 3 years (36 time periods), which is assumed as
the target time frame for management. The initial settings are
listed in Table 7.

FIGURE 14. Evolution of (a) the membership and (b) content volume
given various initial amounts of content.

Figs. 14(a) and 14(b) illustrate the developments of the
membership and content volume after 36 time period over
various values of the initial content volume. The difference
between the upper and lower dotted lines indicates the 95%
confidence interval. When the initial content volume is below
100, the individual probabilities of joining and sharing stay
low, and theUGCSNet does not develop in eithermembership
or content volume within the target time frame. Conversely,
when the initial content volume exceeds these 100, both
membership and content volume of the network grow higher
than the initial ones after 36 time periods. This quantitative
finding supports H1, and is consistent with the qualitative
findings reported in the literature [47]. This what-if analysis
demonstrates that the quantitative modeling approach can be
used to determine the initial content volume given the target
network plan.

B. ASSESSING THE EFFECTS OF INITIAL NUMBER OF
ALTRUISTIC MEMBERS
Vassilakis and Vassalos [38] reported that altruistic members
actively contribute to a sharing network and that sharing
networks grow quickly when members are altruistic. Altru-
istic behavior is costly to the actor and beneficial to the
recipient and the altruistic members in this simulation is

VOLUME 6, 2018 4793



R.-H. Chen, S.-C. Chang: Modeling Content and Membership Growth Dynamics of UGCSNets With Two Case Studies

TABLE 8. Simulation settings for controlling the initial altruistic members.

defined as the members who actively contribute contents and
promote sharing without expectation of receiving monetary
returns [48]. The initial number of altruistic members is an
important factor that affects the behavior of individuals and
the network growth dynamics. In this assessment, there are
two types of initial members: altruistic and general. In terms
of GBDSDEs, altruistic members are modeled as individuals
with a higher initial value of content uploading probability
than general members. In the simulation, initially altruistic
members are assumed to remain altruistic over the entire time
horizon while late joining members are all general members.

It is intuitively clear that a higher number of altruistic
founding members will lead to a higher content volume
uploading and in turn a higher membership increase at the
early development stage; these will then be amplified through
the positive feedback effect as time evolves. The hypotheses
of this what-if analysis are as follows:
H2) A UGCSNet will grow when the initial number of

altruistic members is higher than a certain threshold.
H3) An increase in the initial number of altruistic members

moves the growth start time and saturation time forward and
increases the saturation level.

In our simulations, the number of initial altruistic members
varies from 10–50 among the 50 founding members and the
target time frame of management is again 36 time periods.
The simulation settings are listed in Table 8. Figs. 15(a)–(c)
shows what-if simulation assessment results.

In Fig. 15(a), the UGCSNet has significant membership
growth after 36 months when the initial number of altruis-
tic members is more than 25, i.e., more than 50% of the
50 founding members. Figs. 15(b) and 15(c) illustrate how
the start time and saturation time monotonically decrease
with the increase of the initial number of altruistic members.
Again, the difference between the upper and the lower dotted
lines indicates the 95% confidence interval. Our quantitative
results thus support both H2 and H3 and are consistent with
previous qualitative findings reported in the literature [38]
that altruistic founding members has significant effects on
membership development. This analysis demonstrates the
application of the quantitative modeling approach in this
paper to determining the initial number of altruistic members
for a given target network growth plan.

In summary, after setting a target network growth plan,
the network management may apply the dynamic modeling

FIGURE 15. (a) Membership developments, (b) start time, and
(c) saturation time given various initial numbers of altruistic members.

approach and perform quantitative analysis to evaluate design
parameters of strategies such as initial content volume and
initial altruistic members. Based on the quantitative analysis,
the management may further design managerial strategies to
achieve desired growth, e.g., purchasing outsourced content
to increase the initial content volume or holding a competition
to attract altruistic members. It can further serve as a part of
cost and performance trade-off tool for strategy decision.

VIII. CONCLUSION
In this paper, we have considered the important class of
content sharing and reuse networks, UGCSNets, in which
members are both content contributors and users. To manage
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for growth of a UGCSNet, we have developed a quantita-
tive approach to model the dynamic loop of how individual
members’ participation and sharing affect and are affected
by the membership and content volume. Our novel modeling
approach consists of i) GBDSDEs of the loop dynamics and
ii) a QBNLS method to extract from limited empirical data
and periodically update model parameters as the UGCSNet
evolves. The skeleton of the GBDSDE is a set of individual
participation and sharing model-embedded SDEs that cap-
ture the evolution of the individual member and network
states with individual participation and content uploading
as stochastic drives. The drive models are innovative gen-
eralization of the BDM (1969) to probabilistic models of
known qualitative descriptions regarding how an individual’s
willingness to participate and share is affected by total mem-
bership and content volume. Our approach generalizes the
constant innovation coefficient of BDM as being content-
volume dependent to capture, in the growth stage, the positive
feedback effect of content from a network to the individuals.
The modeling approach development first used the teaching
material sharing network of SCTNet as a baseline case and
then validated by using the empirical data of Wikipedia,
which is also a UGCSNet but has many characteristic differ-
ences with SCTNet. Analyses of the coefficients of determi-
nation have shown good fits between model predictions and
actual outcomes for both SCTNet and Wikipedia growths.
Applications of the modeling approach to what-if analyses of
growth management strategies, for example, the initial con-
tent volume and the number of founding altruistic members,
have shown the value of our modeling approach in facilitating
growth management of a UGCSNet.
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